
Hebbian learning and competition in the Neural Abstraction Pyramid

Sven Behnke

Free University of Berlin, Institute of Computer Science

Takustr. 9, 14195 Berlin, Germany

behnke@inf.fu-berlin.de

Abstract

The recently introduced Neural Abstraction Pyramid is a hi-
erarchical neural architecture for image interpretation that
is inspired by the principles of information processing found
in the visual cortex. In this paper we present an unsuper-
vised learning algorithm for it’s connectivity based on Heb-
bian weight updates and competition. The algorithm yields
a sequence of feature detectors that produce increasingly ab-
stract representations of the image content. These representa-
tions are distributed, sparse, and facilitate the interpretation
of the image.

We apply the algorithm to a dataset of handwritten digits,
starting from local contrast detectors. The emerging feature
detectors correspond to step edges, lines, strokes, curves, and
digit shapes. They can be used to reliably classify the digits.

1 Introduction

One of the most important problems in pattern recognition is
the extraction of meaningful features from the input signals.
To compute symbolic information, such as the class of the
observed object, it is necessary to aggregate characteristic as-
pects of the observation in a feature vector that is presented
to a classification system.

A variety of feature extraction methods exist, e.g. for the
problem of handwritten digit recognition [9]. Some methods
use the normalized pixel image as input for a powerful sta-
tistical or neural classifier [2]. Others use features having a
certain degree of abstraction, such as moments [8] or coef-
ficients of the KL-transformation [6]. The most abstract fea-
tures are extracted by methods that use the digit’s structure for
recognition [1]. All these features usually need specific tun-
ing towards the task at hand. Therefore, the transfer to other
applications is difficult. For this reason it would be desirable
to learn abstract features from example images.

One way to extract features is to construct image pyramids
[4]. This multiscale representation quickly reduces the size
of the image and can be used to aggregate meaningful infor-
mation in a single feature. Two-dimensional wavelets [2] are
more general, since they usually compute four features per
level. The recently introduced Neural Abstraction Pyramid

more abstract

less abstract

feed-forward links

lateral links

feedback links
4×1×8

8×2×4

16×4×2

Figure 1: Sketch of the Neural Abstraction Pyramid.

approach to image interpretation [3] offers an even more pow-
erful way for image representation: the number of features
increases as the spatial resolution decreases.

In this paper we introduce an unsupervised learning algo-
rithm for the connections which determine the features de-
tected in the pyramid. It is based on Hebbian weight updates
and competition and yields a sequence of more and more
abstract representations as their spatial resolution decreases,
their diversity increases and they become increasingly sparse.
The paper is organized as follows: In the next section we give
a brief summary of the Neural Abstraction Pyramid architec-
ture and algorithms. The unsupervised weight construction is
described in Section 3. In Section 4 this algorithm is applied
to a dataset of handwritten digits. The paper concludes with a
discussion of some experimental results and gives an outlook
to future work.

2 Neural Abstraction Pyramid

The Neural Abstraction Pyramid [3] is a hierarchical architec-
ture for iterative image interpretation that is based on image
pyramids [4] and cellular neural networks [5]. It is inspired
by the information processing principles found in the visual
cortex. Algorithms for this architecture are defined in terms
of local interactions of processing elements that utilize hori-
zontal as well as vertical feedback loops. The goal is to trans-
form a given image into a sequence of increasingly abstract
representations. The main features of the architecture are:

• Pyramidal shape: Layers of columns are arranged verti-
cally to form a pyramid (see Fig. 1). Each column con-

asdasd asd
In Proceedings of International Joint Conference on Neural Networks (IJCNN'99) -- Washington, DC, paper number #491, 1999.

Figure 2: Iterative image interpretation.

sists of a set of neural processing elements (nodes) with
overlapping receptive fields. The number of nodes per
column increases and the number of columns per layer
decreases towards the top of the pyramid.

• Analog representation: Each layer describes an image
in a two-dimensional representation where the level of
abstraction increases with height, while spatial resolu-
tion decreases. The bottom layer stores the given image
(a signal). Subsymbolic representations are present in
intermediate layers, while the highest layers contain al-
most symbolic descriptions of the image content. These
representations consist of quantities that have an activity
value from a finite interval for each column.

• Local interaction: Each node is connected to some
nodes from its neighborhood via directed weighted links.
The shared weights of all nodes in a layer that represent
the same quantity are described by a common template.
The links can be classified as:

– feed-forward links: perform feature extraction,

– lateral links: for consistent interpretation,

– feedback links: provide interpretation hypotheses.

• Discrete time computation: The update of a node’s value
for time step t depends only on the input values at (t−1).
It can be done in a predefined order or priority driven.

Image interpretation works iteratively, as sketched in Fig. 2.
First, the given image is fed into the bottom layer. In the
course of computation the activities spread upwards via feed-
forward links at locations where little ambiguity exists. These
partial results provide, via lateral and feedback links, a larger
context for the interpretation of the more ambiguous image
parts. This refines the output and, after a few iterations, the
interpretation becomes stable.

3 Unsupervised learning

In order to make the Neural Abstraction Pyramid approach
to image interpretation work, we need a sequence of increas-
ingly abstract models of the potential image content. In [3]
we designed such models manually. We derived templates
for foreground/background, oriented edges, and oriented lines

for the binarization of handwritten digits following a Gestalt
approach. Although the manual design for such a task is pos-
sible, it becomes difficult for problems with more levels of
abstraction, since the number of quantities per layer and the
number of potential weights per node increase exponentially
when going up in the pyramid. Therefore, we need an auto-
matic procedure that learns the models from a given set of ex-
ample images. Since we don’t know exactly, how such mod-
els should look like, learning has to be unsupervised. The
emerging representations should have following properties:

• Completeness: All interesting features of the input im-
age should be represented.

• Sparseness: The value of a quantity should be zero at
most positions and high at only a few positions.

• Fairness: All quantities of a layer should contribute ap-
proximately equally to the representation.

In the following we present an unsupervised learning al-
gorithm that constructs templates with the desired properties.
It is based on Hebbian weight updates and competition. We
assume that appropriate templates for the bottom layer are
given. Training works iteratively. Using the topmost repre-
sentation on layer (z − 1) as input it constructs templates for
the next layer z. For each layer, first the feed-forward weights
are constructed, then the feedback weights to the previous
layer are added, and finally the lateral weights are trained.
Since the number of layers is logarithmic in the image size,
only a few steps are needed to construct the entire hierarchy.

3.1 Feed-Forward Weights

3.1.1 Initialization

We use Σ-Units as neural processing nodes that compute the
weighted sum of their inputs and apply a nonlinear output
function. The update of a nodes value vx,y,z,q at column
(x, y) in layer z for quantity q is done as follows:

vt+1
x,y,z,q = σ


 ∑

j∈L(i)

W(j) vt
X (j,x),Y(j,y),Z(j,z),Q(j) + B(i)


 .

The template i = T (z, q) is associated with quantity q at
layer z. L(i) is the set of links of that template and B(i) is the
template bias. (X (j, x),Y(j, y),Z(j, z),Q(j)) describe lo-
cation and quantity of the input value for link j, and W(j) is
the link weight. The output function σ(.) is here a saturation
function that limits the values to the interval [0, 1]. We set the
bias values B(i) to zero. All feed-forward inputs of a node
come from the corresponding position in the layer (z − 1)
directly below the node. Every link is either excitatory or in-
hibitory. We decided to use specific excitatory links that have
the sum E(i) and unspecific inhibition via a single inhibitory
link I(i). The excitatory connections originate from all nodes

of a K × K window of columns around the position of the
node in layer (z − 1). The weights of the excitatory links are
initialized unspecifically: larger positive weights are used in
the center and weaker weights are used towards the periphery
of the receptive field window. The weights have a random
component and are normalized to a sum of E(i) = 2.0. The
unspecific inhibitory inputs I(i) don’t come directly from the
nodes of the below layer, but are aggregated via two inter-
mediate steps. First, the smoothed sum sx,y,(z−1) of the val-
ues vx,y,(z−1),q of all quantities q is computed for each col-
umn (x, y) in layer (z − 1). Each node in the same column
has the weight of α0 in that sum and nodes from neighbor-
ing columns contribute with the weight α1. Then, sx,y,(z−1)

is subsampled by two in each direction and called ŝx,y,(z−1).
The inhibitory connection of a node in layer z originates from
the corresponding node of this quantity and is initialized with
the weight I(i) = 0. The ratio between the sum of the exci-
tatory links E(i) and the inhibitory link I(i) determines how
specific a node will react to incoming stimuli. If the inhibi-
tion is small compared to the excitation, the node will react
unspecifically to many stimuli that partially match its excita-
tory links. In contrast, if the inhibition is strong, the node will
be sharply tuned to the stimuli that exactly match its weights.

The number of nodes per column is chosen to be two times
the corresponding number from the layer below and the num-
ber of columns reduces by a factor of four. This reduces the
number of nodes per layer by a factor of two with each step.
In addition to the templates that describe the quantities of the
new layer, we insert a template that computes the smoothed
sum of all quantities sx,y,z as described above.

3.1.2 Hebbian weight update

Hebbian weight modifications [7] are used to make the exci-
tatory weights specific. The idea is to change the template of
the most active node so that it becomes more specific to the
current input. This means, it will answer stronger to the same
stimulus and answer weaker to other stimuli.

For each training step an image is chosen randomly. It is
loaded into the bottom layer of the pyramid and the values of
all nodes are computed in the appropriate order for a small
number of iterations. We apply the following learning rules
for all positions in which the smoothed and subsampled sum
of the inputs ŝx,y,(z−1) and the smoothed sum of the outputs
sx,y,z is different from zero. For these columns (x, y) we
find the most active quantity qmax and the quantity qsec with
the second highest value. We change the excitatory weights
W(j) of the winning template i = T (z, qmax) as follows:

∆W(j) = ηz vin vout,

with vin = H(j) vX (j,x),Y(j,y),z−1,Q(j),

vout = vx,y,z,qmax − vx,y,z,qsec .

A weight W(j) is increased by an amount that is propor-
tional to the product of scaled input activity and the amount

that the activity of the winner exceeds the one of the second
best quantity. The learning rate ηz increases with height, e.g.
ηz = 0.001Mz, where Mz is the number of quantities in layer
z. The scaling factor H(j) used for the input activity is one in
the center of the window and descends to zero towards the pe-
riphery. It enforces a centered response of the template. The
Hebbian term makes the weights larger. To prevent unlimited
weight growth, the sum of the excitatory weights E(i) is kept
constant by scaling down all weights W(j) with a common
factor. The net effect is that the weights receiving strong input
are increased and the other weights are decreased.

3.1.3 Competition

The above normalization of the sum of excitatory weights is
a form of competition. The excitatory weights W(j) of a
template i compete to have a large portion of its weight sum
E(i). We need also some sort of competition between the Mz

templates of layer z to enforce the given constraints.
To fulfill the fairness constraint, the winning frequency

of all templates should be about the same. We increase the
strength of a node’s inhibitory weight I(i) each time it wins
the competition, and decrease it otherwise. This makes tem-
plates that win above average less active and more specific.
Consequently, these templates will not win too frequently.
On the other hand, templates that win less often become
more active and less specific and therefore win now more
often. The change is done by adding a small constant δ f

to I(i) such that the net effect for a template that has an
average winning frequency is zero, e.g. δ winning

f = −ηf ,

δnot winning
f = −δwinning

f /(Mz − 1). If this makes I(i)
positive, we add its weight to E(i) and set I(i) to zero.

To achieve a complete representation, we force the tem-
plates to react to all significant stimuli by controlling the
smoothed sum sx,y,z of the quantities in layer z to be equal
to the smoothed and subsampled sum ŝx,y,z−1 of the in-
put quantities from layer (z − 1): ∆I(i) = ∆E(i) =
(ηc/Mz) vx,y,z,q(ŝx,y,(z−1) − sx,y,z). If the activity of the
templates is too low, we increase the excitatory weights of
the active templates and disinhibit them at the same time.

To enforce sparseness, we make the average winning ac-
tivity of a template large, e.g. V = 0.75: ∆E(i) = ηs(V −
vx,y,z,qmax). If the activity of the winner is too small, its ex-
citatory weights are scaled up. Otherwise they are decreased.

The efficacy of the constraint enforcing rules can be con-
trolled by the factors η. One useful choice could be: ηf =
ηc = ηs = 0.1ηz . The rules are designed such that their
net effect goes to zero, if the produced representation has the
desired properties. Then the templates become stable and
the training can be terminated. The number of training im-
ages needed to determine the weights of the templates for a
layer increases with the height of that layer, since the number
of examples per image decreases and the number of weights
per layer increases. Because the emerging representations are

sparse, most of the weights will be zero after training and can
be pruned away without loss. This significantly speeds up the
computation and saves memory.

3.2 Feedback Weights

After the feed-forward weights of the topmost layer z have
been constructed, the feedback weights to the previous layer
(z− 1) are added to the pyramid. Each node receives specific
excitatory feedback from all quantities in the upper layer that
correspond to its position and unspecific inhibitory feedback
from the smoothed sum of these quantities. The excitatory
weights are initialized with a constant value. To make them
specific, the pyramid is updated for some iterations and the
local maxima of the activities in the layer (z − 1) are deter-
mined. The weights of the winning nodes qmax are changed
using a Hebbian term:

∆W(j) = ηb vX (j,x),Y(j,y),z,Q(j) vx,y,z−1,qmax .

The learning rate ηb decreases with the number of updates.
To prevent unlimited weight growth, the sum of the excita-
tory weights is normalized. The inhibitory weight is chosen
such that there is neither oscillation nor unlimited increase of
activity, but a stable intermediate state after few iterations.

3.3 Lateral Weights

The final step in the design of a new layer is the construction
of its lateral weights. Again, we use specific excitation and
unspecific inhibition. The set of excitatory lateral weights of a
node in layer z originate from all nodes of its L×L neighbor-
hood. The inhibitory lateral weight comes from the smoothed
sum of these quantities. After the pyramid has been updated
for some iterations, the nodes qmax with locally maximal ac-
tivities are found and updated using the Hebb rule:

∆W(j) = ηl vX (j,x),Y(j,y),z,Q(j) vx,y,z,qmax .

As for the feedback weights, ηl decreases, the sum of the ex-
citatory weights is kept constant, and the inhibitory weight is
chosen to balance the average effect of the excitation.

4 Experimental Results

To illustrate the properties of the described unsupervised
learning algorithm, we apply it to a dataset of handwritten
digits that have been extracted from German ZIP-codes. The
available digits were partitioned as follows: 44619 digits con-
stitute the training set, 5379 digits were used for testing the
system performance and to stop training, and 6313 digits were
used for final validation.

Since the digits show a high degree of variance, some pre-
processing steps are necessary prior the presentation to the

z name quantities columns nodes size

5 digits 128 1×1 128 32×32
4 curves 64 2×2 256 16×16
3 strokes 32 4×4 512 8×8
2 lines 16 8×8 1024 4×4
1 edges 8 16×16 2048 2×2
0 contrasts 4 32×32 4096 1×1

Table 1: Hierarchy of emerging representations.

Contrasts Input ContrastSum EdgeSum

1
1.75

−0.58

2
2.05

−0.78

3
2.28

−0.97

4
2.24

−0.96

5
2.25

−0.78

6
2.22

−0.63

7
2.09

−0.64

8
5.24

−3.12

Edge(i) Excitatory Weights
E(i)
I(i)

Best Stimuli

Figure 3: Edge templates. Shown are: activity of the quan-
tities for some digit (Input ”0”), excitatory weights to Con-
trasts, excitation sum E(i) and inhibition I(i), stimuli that
caused the highest winning activity.

pyramid. Preprocessing consists of binarization, size and
slant normalization. The images are scaled to 24×24 pixel
and centered into the 32×32 bottom layer of the pyramid.

The Neural Abstraction Pyramid is initialized at the low-
est level (z=0) with contrast detectors. These have a center-
surround type receptive field that looks at the gray values of
the input image. There are four different quantities: center-
on-off-surround and center-off-on-surround in two scales,
representing the fine and coarse details of the foreground
and the background, respectively. We construct feed-forward
templates for higher layers using the window-size K = 4 and
the sum weights α0 = 2/Mz, and α1 = 0.5 α0.
The following representations emerge (compare to Table 1):
• Edges: Vertical, horizontal, and diagonal step edges are

detected at layer one. Figure 3 shows the activities of the
Edge-templates and their weights that receive input from
the contrast detectors. In addition, the best stimuli from
the training set are displayed for each edge template.

• Lines: At layer two short line segments with 16 different

Edges EdgeSum LineSum

4
3.48

−0.94

6
3.46

−0.85

9
2.99

−0.45

15
2.60

−0.35

Line(i) Excitatory Weights
E(i)
I(i)

Best Stimuli

Figure 4: Line templates. Four horizontal templates have
been chosen.

Figure 5: Stroke templates. Shown are the eight best stimuli
of eight templates that detect horizontal lines.

orientations are detected (see Figure 4).

• Strokes: Larger line segments that have a specific orien-
tation and a specific curvature are detected at layer tree
(Figure 5). Detectors for line endings and specific paral-
lel lines emerge also.

• Curves: The feature detectors at layer four react to typ-
ical large substructures of digits, such as curves, cross-
ings, junctions, etc. (compare to Figure 6).

• Digits: The templates at the topmost layer see the entire
digit. Consequently, detectors for typical digit shapes
emerge (shown in Fig. 7). The left side of the figure dis-
plays templates that react best to digits from a specific
class. The right side shows templates that are stimulated
by digits from multiple classes. They seem to focus on
some aspect of the digit, such as the presence of a verti-
cal line or a characteristic curve.

The emerging templates do not represent all possible combi-
nations of substructures, but only the typical ones. The fre-
quent combinations are represented by multiple similar tem-
plates with great detail. When going up in the hierarchy of
representations, the correlation of template activities with the
digit class increases. This is remarkable, since no class infor-
mation has been presented to the system so far.

We investigate now the usefulness of the feature detectors
for digit recognition. First, we construct only two layers of
the pyramid that include lateral and feedback weights. For
each example we update the activities six times and input the
topmost layer to a classifier. Table 2 shows the performance

Figure 6: Curve templates. Shown are the eight best stimuli
of the 16 first templates.

Figure 7: Digit templates. Shown are the eight best stimuli.
For the left column templates have been chosen that corre-
spond to a single class. The right column shows templates
that focus on some other aspect of a digit.

of a KNN classifier and two feed-forward neural networks
(FFNN) that have been trained with backpropagation using
the digit’s gray values and the extracted lines as features. One
can see that the performance of the neural networks is better
for the more abstract features. Furthermore, the digits can be
classified from the Lines representation by a network without
hidden units, while the same network did not converge during
training on the Gray representation.

In the second experiment, we feed the top four layers of
the feed-forward pyramid into a 1920-128-10 FFNN to clas-
sify the digits. After 120 epochs of online-training with a
learning rate of η = 0.01 we observe a zero-reject substitu-
tion rate of 1.65% on the test set and of 1.49% on the vali-
dation set. Table 3 shows the results for different numbers of
hidden units, as well as for a network without hidden units
and a KNN classifier. These rates compares favorably to the

features Gray Lines
classifier TST VAL TST VAL

KNN 15 2.98 2.87 4.53 4.36
FFNN 1024 − 10 no convergence 2.04 2.14
FFNN 1024 − 64 − 10 2.49 2.65 1.90 2.04

Table 2: Zero-reject substitution rates of different classifiers.

results published in [1] for the same data set. We can also
reject ambiguous digits by looking at the two best classes.
The substitution rate drops to 0.55% when 2.52% of the val-
idation set are rejected and to 0.21% for 7.9% rejects. Fig-
ure 8 shows the substitution-reject curve of this classifier,
compared to the structural classifier and the TDNN classi-
fier from [1]. Clearly, the classifier that used the features ex-
tracted by the Neural Abstraction Pyramid performs about as
well as the combination of the other two classifiers. The fig-
ure also shows the results when the new classifier is combined
sequentially [2] with the other two. Now the zero-reject sub-
stitution rate drops to 1.17%. The substitution rate can be re-
duced to 0.30% with 3.60% and to 0.11% with 9.20% rejects.
These results are the best we know for this dataset.

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 7 8 9

%
 S

ub
st

itu
tio

n

% Reject

Structural Classifier
TDNN Classifier

Neural Abstraction Pyramid
TDNN+Structural

Pyramid+TDNN+Struct

Figure 8: Performance of different digit classifiers.

classifier TST VAL

KNN 15 3.59 3.64
FFNN 1920 − 10 1.71 1.66
FFNN 1920 − 32 − 10 1.71 1.73
FFNN 1920 − 64 − 10 1.67 1.68
FFNN 1920 − 128 − 10 1.65 1.49

Table 3: Zero-reject substitution rates of different classifiers
that input the upper four layers of the feed-forward pyramid.

5 Discussion

This paper presented an unsupervised learning algorithm for
the construction of the weights in the Neural Abstraction
Pyramid. We applied the algorithm to a dataset of handwrit-
ten digits to produce increasingly abstract digit representa-
tions. The emerging feature detectors are meaningful and can

be interpreted in terms of detected combinations of digit sub-
structures. This leads to a hierarchical image description that
is distributed and sparse. When looking at the best stimuli for
the feature detectors, one can see that these are not similar
in terms of their pixel image, but in terms of their recursive
decomposition to substructures. The pyramidal digit repre-
sentation becomes increasingly invariant against distortions
when going up in the hierarchy.

The features extracted facilitate the recognition of the dig-
its. When used as input to an FFNN-classifier the recognition
performance observed was very satisfactory. It outperforms
any single classifier that has been tested on that dataset and
is about as good as the combination of the TDNN and the
structural digit recognizer. When combined with these two
classifiers, the recognition performance improves further.

We also tested methods for the design of the lateral and
vertical connectivity in the pyramid. These links provide a
large context to interpret ambiguous image parts at low cost.

We want to investigate these effects in greater detail in the
future. Furthermore, we plan to apply the Neural Abstrac-
tion Pyramid approach to more complex image interpretation
problems like face recognition and object segmentation.

References

[1] S. Behnke, M. Pfister, and R. Rojas. Recognition of hand-
written digits using structural information. In Proceed-
ings ICNN’97, volume. 3, pages 1391–1396, 1997.

[2] S. Behnke, M. Pfister, and R. Rojas. A study on the com-
bination of classifiers for handwritten digit recognition.
In Proceedings NN’98, pages 39–46, 1998.

[3] S. Behnke and R. Rojas. Neural abstraction pyramid: A
hierarchical image understanding architecture. In Pro-
ceedings IJCNN’98, volume 2, pages 820–825, 1998.

[4] V. Cantoni and M. Ferretti. Pyramidal Architectures for
Computer Vision. Advances in computer vision and ma-
chine intelligence. Plenum Press, New York, 1994.

[5] L. O. Chua and T. Roska. The CNN paradigm. Transac-
tions on Circuits and Systems, 40(3):147–156, 1993.

[6] P. J. Grother and G. T. Candela. Comparison of hand-
printed digit classifiers. NISTIR 5209, NIST, 1993.

[7] Donald Hebb. The Organization of Behaviour. John Wi-
ley, New York, 1949.

[8] H.K. Sardana, M.F. Daemi, and M.K. Ibrahim. Global de-
scription of edge patterns using moments. Pattern Recog-
nition, 27(1):109–118, 1994.

[9] C.L. Wilson. Evaluation of character recognition sys-
tems. In Neural Networks for Signal Processing III –
New York, pages 485–496. IEEE, 1993.

