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Neural Abstraction Pyramid:

A hierarchical image understanding architecture
Sven Behnke and Ra�ul Rojas

Abstract|A hierarchical neural architecture for image in-

terpretation is proposed that is based on image pyramids

and cellular neural networks and that is inspired by the

principles of information processing found in the visual cor-

tex. Algorithms for this architecture are de�ned in terms

of local interactions of processing elements and utilize hor-

izontal as well as vertical feedback loops. The goal is to

transform a given image into a sequence of representations

with increasing level of abstraction and decreasing level of

detail. A �rst application, the binarization of handwriting,

has been implemented and shown to improve the acceptance

rate of an automatic ZIP-code recognition system without

decreasing its reliability.

Keywords|image interpretation, cellular neural networks,

hierarchy, image pyramids, horizontal and vertical feedback,

binarization.

I. Motivation

The goal oriented interpretation of visual stimuli is one of

the main tasks of the human brain. Humans extract most

of the information about the environment by active vision.

The image interpretation performance of the visual system

is impressive and exceeds by far the performance of todays

technical systems. Humans are, for example, able to recog-

nize faces in a fraction of a second, even if the recognition

task is complicated by a change of perspective, lighting,

facial expression, hair style or the aging of a person. These

abilities are even more remarkable when considering the

fact that the brain is composed of slow \processors", the

neurons, that are unreliable and inaccurate.

However, these de�cits are more than o�set by the visual

system's massively parallel architecture. Retina, corpus

geniculatum laterale, and visual cortex are composed of

neural layers that are connected locally. The layers form a

hierarchy of several abstraction levels where feedback links

are about as strong as feed-forward links.

In addition, the brain manages to focus the limited re-

sources to the relevant visual stimuli. This is done by a

mechanism, called attention control, driven by salient vi-

sual stimuli and the interpretation goal. The potential con-

tribution of the extracted information to the solution of the

task faced by the individual determines which visual stim-

uli are relevant in each situation.

If we were able to build technical systems that are ori-

ented on the biological information processing principles

present in the visual cortex, it should be possible to repro-

duce main features of the human visual perception, such

as robustness, speed, and the disambiguation of stimuli by
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the use of contextual information and heuristic assump-

tions. This would open a wide range of possibilities for the

application of information processing systems.

The remainder of the paper is organized as follows: In

the next section we review the traditional approach of im-

age interpretation as well as some e�orts to overcome its

limitations. The proposed Neural Abstraction Pyramid

architecture is presented and some algorithmic principles

that are based on this architecture are outlined in section

III. Section IV exempli�es the use of the architecture on

a simple application, the binarization of handwriting. Ex-

perimental results show that the proposed architecture can

improve the performance of a ZIP-code recognition system.

The paper concludes with a discussion of the results and

gives an outlook to further work.

II. Image Interpretation Systems

Traditional image interpretation systems have been used

for decades. Usually they go through the following steps:
� Preprocessing: Image processing operations, such as �l-

tering, edge detection, and histogram operations, are ap-

plied to improve the quality of the given image.

� Segmentation: The image is decomposed into homoge-

neous regions that should correspond to objects.

� Feature extraction: A number of characteristic measures,

such as Fourier coe�cients, moments, or structural fea-

tures, are computed for every object.

� Pattern recognition: Based on the extracted feature vec-

tor the object is assigned to a class.
Traditional image interpretation methods yield useful re-

sults if the interpretation task can be de�ned clearly and

the image acquisition is done in a stabile and controlled

environment. Examples for the successful application of

these systems are found e.g. in the areas of quality control

or recognition of printed text.

If the interpretation task can be speci�ed only in a fuzzy

way, or the images are acquired in a natural environment,

the de�cits of traditional systems become obvious. These

systems are mostly based on a feed-forward information

ow. The missing feedback prevents the systems from using

a larger context in order to resolve local ambiguities.

Several attempts have been made to overcome these lim-

itations. One is the development of methods for the con-

trol of the system's attention. Such methods determine the

most relevant parts of an image and apply feature extrac-

tion and pattern recognition only to these. Some of these

methods generate saccades: the so called focus of attention

jumps from one interesting point to the next [1], [2]. Others

use image pyramids that contain the image in several res-

olutions [3], [4]. Interpretation starts here at the coarsest
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resolution. Hypotheses about the existence of certain im-

age features are generated at some locations of the coarsest

resolution and are veri�ed at more detailed resolutions.

Another approach is the cellular neural network (CNN)

[5] method. These networks are composed of identi-

cal processing units that are usually arranged in a two-

dimensional grid and are connected locally. Templates de-

termine, how the processing elements interact with their

neighbors. Within this framework powerful local operators

have been de�ned that can be used for example for image

improvement or segmentation. Among the algorithms that

are based on local horizontal interaction of processing ele-

ments are region-growing [6], anisotropic di�usion [7], and

relaxation labeling [8], [9]. One of the most attractive fea-

tures of the CNN paradigm is that the computations can

be carried out at high speed by arrays of very simple analog

processors.

Horizontal interaction between processing elements lim-

its the feedback of information to a single abstraction level.

Consequently, there exist some image interpretation ap-

proaches that use vertical interactions between processing

elements that are located at di�erent abstraction levels [10],

[11], [12]. Here, the information ow in the forward direc-

tion serves the detection of features, while the feedback is

used for the propagation of hypotheses from a more ab-

stract layer to a less abstract representation. By using this

vertical feedback loop it is for example possible to com-

plete broken contours of objects present in the image. It

is even possible to create virtual edges at locations where

no contrast exists. These results correspond to �ndings

about certain visual illusions that emerge e.g. by look-

ing at Kanizsa �gures [13]. However, most of the existing

models are limited to the interaction of only two levels of

abstraction.

III. Neural Abstraction Pyramid

The proposed hierarchical neural architecture for image

interpretation is based on the ideas of image pyramids and

cellular neural networks and is inspired by the principles

of information processing found in the visual cortex. Algo-

rithms for the proposed architecture are outlined that are

de�ned in terms of local interactions of processing elements

that utilize horizontal as well as vertical feedback loops.

The goal is to transform a given image into a sequence of

more and more abstract representations while the level of

detail decreases. Models that describe the potential image

content facilitate the adaptation of the system to a speci�c

application. An attention control focuses the limited re-

sources to the parts of the image that are relevant for the

interpretation task.

A. Architecture

The main features of the proposed architecture are:

� Pyramidal shape: The neural processing elements, called

nodes, are arranged horizontally in two dimensional layers

that are arranged vertically to form a pyramid. The bot-

tom layer has the size of the input image and the number

of nodes decreases by a factor of four at the next level.

less abstract representation

layer to be computed

more abstract representation

feedback links

lateral links

feed-forward links

Fig. 1. Sketch of the proposed Neural Abstraction Pyramid.

� Analog representation: The nodes of each layer form a

matrix and describe the image in a two dimensional repre-

sentation. The level of abstraction of these representations

increases with height, while the level of detail (spatial res-

olution) decreases. The bottom layer stores the given im-

age (a signal). Subsymbolic representations are present in

intermediate layers, while the highest layers contain de-

scriptions of the image content that could be almost called

symbolic. The representation consists of one or more quan-

tities. These are stored in matrices of state variables, that

can have a value from a �nite interval. The reliability of

such a value can be described by a con�dence parameter

while the importance of the knowledge of a certain state

variable's value for the correct interpretation of an image

can be expressed by a need parameter.

� Local interaction: Every node is connected to some

nodes from its local pyramidal neighborhood via directed

weighted links. The shared weights of all nodes in a layer

are described by a common template. If the interpretation

task requires the individual adaptation of weights, these are

changed according to a common adaptation template that

is restricted to use local information only. The following

classes of links are essential to the interaction:

{ Feed-forward links: They lead from a lower layer to

neighboring nodes of a higher layer and extract features.

The tree that is rooted in a node de�nes its receptive �eld.

{ Lateral links: They connect neighboring nodes of the

same layer and facilitate the consistent interpretation of the

given image by means of processes, such as region-growing,

relaxation labeling, and anisotropic di�usion.

{ Feedback links: They lead from a higher layer to a

neighboring node in a lower layer and are used for the

downward propagation of interpretation hypotheses.

� Discrete time computation: The update of a node's state

variables for the time step (t) depends only on the input

states at step (t � 1). The new value can be computed as

weighted sum of the input values that is passed through

an output function, such as a saturated linear function or

a sigmoidal. In addition, the con�dences and need val-

ues are updated as well. Inputs with high con�dence that

are easy to interpret lead to results with high con�dence

while ambiguous inputs or inputs with a low con�dence

produce outputs with low con�dence. High need values are

propagated in the opposite direction from a node via the

weighted input links to its input nodes. The computations

are performed in one of the following sequences:
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{ Layer by layer: All nodes of a layer are updated si-

multaneously. The layers are processed in a predetermined

sequence, e.g. from bottom to top.

{ Priority driven: The update sequence depends on the

presence of reliable inputs and the need of the results. Need

and the possible con�dence increase de�ne a priority. The

nodes with the highest priorities are updated �rst.

� Multiscale representation: Each quantity can be realized

as image pyramid, e.g. via smoothed subsampling.

B. Algorithms

Due to the high exibility of the proposed architecture a

number of well-known image interpretation methods can be

mapped e�ciently to the data structure. Many local image

processing operators, like linear �lters, can be implemented

by using only a single layer. Algorithms that have been

developed for image pyramids can be mapped particularly

well. They can work in a top-down as well as in a bottom-

up mode. Furthermore it's easily possible to implement

algorithms that are based on horizontal coupling of nodes.

The proposed architecture is not limited to the above

methods, but it has been designed to facilitate the devel-

opment of algorithms that utilize both horizontal and verti-

cal feedback loops. Such computational processes are to be

implemented in a way that honors the principles of Gestalt

psychology, e.g. proximity, continuity, closure, and sim-

plicity. To make this possible, it is necessary to specify for

each layer simple consistent representations that model the

objects potentially present in the image. The link weights

and update rules have to be designed such that they favor

simple and consistent representations against complicated

or inconsistent ones.

The image interpretation algorithms work iteratively. As

initialization the given image is fed into the bottom layer

and assigned high con�dence values. The top layer is ini-

tialized with high need values. In the course of computation

the con�dence values spread upwards while the need values

are propagated downwards. By using vertical and horizon-

tal feedback the image is interpreted �rst at locations where

little ambiguities about the interpretation exist. These par-

tial results are used in the following iterations to provide a

larger context for the interpretation of the more ambiguous

image parts.

The computation can be terminated if high con�dence

values are present at the top layer. Since at each step the

quantities constitute a valid representation of the image,

the termination may be done at any time, e.g. to meet real

time requirements. However, the interpretation quality is

expected to increase with the number of iterations.

In order to focus the system's limited resources to the

most relevant image locations an attention control mecha-

nism has been implemented on the basis of the con�dences

and need values. When using the priority driven update,

only the paths in the pyramid that have high con�dence

and are needed for interpretation are calculated. The use

of a multiscale representation allows to inspect the image

parts at the resolution that is appropriate for the task.

Initially, the representations and templates have to be

constructed manually. To simplify the modi�cation of al-

gorithms for a speci�c application, adaptation methods are

needed. When developing learning algorithms for the adap-

tation of templates to a speci�c task, it is important to

use only local information for the computation of weight

updates. In contrast, global optimization methods, such

as genetic algorithms and evolutionary techniques, can be

used to optimize a given algorithm.

IV. An Application: Binarization of Handwriting

A simple application is used to illustrate the use of the

proposed Neural Abstraction Pyramid architecture. The

task is to separate handwriting in the foreground, de�ned

by dark lines, from the paper, that constitutes the back-

ground. The gray level images used were provided by

Siemens AG and show scanned ZIP-codes from large size

letters (ats) that have to be sorted by the German postal

service. Since the envelopes of these letters are mostly

made of dark paper, the binarization task is nontrivial.

Histogram based thresholding techniques are among the

most popular binarization methods described in the lit-

erature [14]. If the gray level histogram of the image

is bimodal, the two peaks correspond to the background

and the foreground, respectively. One can search for a lo-

cal minimum in the smoothed histogram between the two

peaks and use the corresponding gray value as a thresh-

old for binarization. The main advantage of these meth-

ods is their low computational cost. On the other hand,

histogram based methods fail, if a gray level gradient is

present in the image, e.g. due to inhomogeneous illumi-

nation or reections. Furthermore, the limitations of the

histogram based methods become visible when lines are

broken or strong noise is present in the image. Since they

are not able to remove spot noise or to complete broken

lines, the automatic ZIP-code recognition is complicated

(see �gures 9 and 10).

Here, we present a more powerful binarization method

that is based on the Neural Abstraction Pyramid archi-

tecture. The idea is to detect and represent the lines

and to assign their corresponding pixels to the foreground.

The main assumption is: \Foreground is, where a line is

present". The fact that lines in handwriting usually exhibit

good continuity can be exploited.

Three levels of abstraction seem to be task relevant:

� Level 0: gray values, foreground/background separation

� Level 1: edges in four orientations

� Level 2: lines in four orientations

These levels of abstraction correspond to the layers of

the pyramid. Note that edge elements cover 2 � 2 pix-

els, while line elements correspond to 4 � 4 pixels of the

original image. In addition, some of the quantities are im-

plemented as image pyramids. In these cases subsampled

and smoothed versions are stored in the higher layers of

the pyramid. The distribution of the representations in

the pyramid is depicted in �gures 2 and 5.

Currently, only a single value is used for the representa-

tion of a quantity. These values are interpreted as con�-

dences about the presence of a certain feature at the corre-
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Gray

layer 0

layer 1

Front Back

a

b

c
d

e

f

see detailed figure

Edge(.)

Line(.)

layer 2

layer 3

layer 4

Fig. 2. Sketch of the binarization application. The distribution of
the quantities in the pyramid is shown as well as the link pattern.

(a) Gray (x, y, .):
z z+1 z+2 z+3 z+4

8 -2 -2 -2 -2

(b) Front (x, y, .):
z+1 z+2

0.2 0.2
(c) SumEdges (x, y, z+1): 2
(d) Back (x, y, z): -2
bias: -0.1

Fig. 3. Template Front. All Links to input values and the template
bias are shown. For each link the input quantity, the relative
input coordinates and the link weight are speci�ed.

sponding image position. The update of the values v(x;y;z;q)
at position (x; y; z) for quantity q is done as follows:

v
t+1
(x;y;z;q)

= �

2
4 X
j2L(i)

W(j)vt(X (j;x);Y(j;y);Z(j;z);Q(j)) + B(i)

3
5 :

i = T (q; z) is the template that is associated with the quan-

tity q at layer z, L(i) is the set of links of that template, and

B(i) is the template bias. (X (j; x);Y(j; y);Z(j; z);Q(j))

describe location and quantity of the input value for link

j, andW(j) is the link weight. The output function �(:) is

here a saturation function that limits the values to the in-

terval [0; 1). The values are stored with a precision of 8 bits

and initialized to zero. The interaction of the quantities is

described by templates:
� Gray value: The original gray values of the given image

are stored in quantity Gray of layer 0. The layers 1 to 4

contain subsampled and smoothed versions.

� Foreground and background: The di�erences between the

levels of the Gray pyramid indicate the presence of contrast
of a certain scale in the image. We are interested in the

high frequency portions of these contrasts that correspond

to the image details. The template Front computes the im-
age details that are darker than their surround (see �gure

3) while Back contains the image details that are brighter

than their surround (see �gure 4). Note that the templates

relate the Gray value of a pixel not directly to surrounding

pixels, but to the upper nodes in the Gray pyramid (a, e).
Thus, the immediate neighborhood of a node is inspected

more closely than the more distant surrounding. Both tem-

plates have links that facilitate a region-growing process by

excitatory feedback from upper levels (b, f) in order to pro-
duce active regions that have smooth borders. In addition,

(e) Gray (x, y, .):
z z+1 z+2 z+3 z+4

-8 2 2 2 2

(f) Back (x, y, .):
z z+1 z+2

0.2 0.2 0.2
bias: 0.1

Fig. 4. Template Back.

Front receives inhibitory input from Back (c) and excitatory
input from SumEdges (d). These links strengthen responses
that are supported by detected edges and remove the noisy

ones that are in the background.

� Edges: The edge representation is distributed across

four quantities Edge({), Edge(j), Edge(/), and Edge(n) that
correspond to oriented edges. In addition, a quantity

SumEdges represents the sum of all four orientations and a

quantity MultiEdges signals the existence of more than one

edge at the same location (see �gure 7). Figure 6 shows as

an example the template for the computation of the hori-

zontal edges. The links perform the following functions:

{ Edge detection: The template looks at two levels of the

Front values (g, h) in order to detect edges.

{ Cooperation with edges of similar orientation: Excita-

tory links from edge elements that would form a good con-

tinuation (i, j, k) support such con�gurations.

{ Cooperation with lines of the same orientation: An

excitatory link from the corresponding line element (m)
strengthens edges that are supported by a line of the same

orientation.

{ Competition with edges at the same position: Inhibitive

input from MultiEdges (n) and SumEdges (l) prevents mul-
tiple edge responses for the same position and constrains

the edges to a width of about one node.

� Lines: The line representation is in the same way dis-

tributed across four quantities. Again, the sum and in-

dicators for multiple lines are computed. The horizontal

line template is shown in �gure 8. The links perform the

following functions:

{ Line detection: The template receives excitation from

edges that have the same (q) or a similar (r, s) orientation.
{ Cooperation with lines of similar orientation: Lines

that form a good continuation strengthen each other via

excitatory links (t, u, v).
{ Competition with lines at the same position: Multiple

line responses are inhibited by the correspondingMultiLines
detectors (x). Finally, lines are constrained to a width of

about one node via negative feedback from SumLines to

positions that are orthogonal to the line orientation (w).

For each iteration the templates are evaluated from bot-

tom to top. Note that in the �rst iteration the links from

higher layers do not contribute to the result. Figures 9

and 10 show the computation after one, two, and �ve iter-

ations for some ZIP-codes. It can be seen that most lines

are detected initially, but some of the Front responses are
caused by noise and some lines are broken. In the course of

the computation the relevant Front responses, supported by
detected edges and lines, are strengthened and completed

while the noise responses are suppressed.

It is di�cult to asses the quality of the binarization with-



BEHNKE AND ROJAS: NEURAL ABSTRACTION PYRAMID, IJCNN'98 5

Edge(-) Edge(|) Edge(/) Edge(\) SumEdges MultiEdges

Line(-) Line(|) Line(/) Line(\) SumLines MultiLines
Front 1
Front 2

Front 0

layer 2

layer 1

g h

j
k

i

l

m

n

o

p

q r
 s

t u v w x

Fig. 5. Detail of the binarization application.

(g) Front (., ., z):

x-1 x x+1

y-1 -1 -1 -1
y 2 2 2

y+1 -1 -1 -1

(h) Front (., ., z+1):

x-1 x+1

y-1 -0.5 -0.5
y 1 1

y+1 -0.5 -0.5

9>>>>>>>=
>>>>>>>;

(i) Edge({) (., ., z):

x-1 x+1

y-1 0.125 0.125
y 0.25 0.25

y+1 0.125 0.125

(j) Edge(/) (., ., z):

x-1 x+1

y-1 0.25
y 0.125 0.125

y+1 0.25

(k) Edge(n) (., ., z):

x-1 x+1

y-1 0.25
y 0.125 0.125

y+1 0.25

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

(l) SumEdges (x, ., z):
y-1 y+1

-0.25 -0.25
(m) Line({) (x, y, z+1): 0.5
(n) MultiEdges (x, y, z): -0.5
bias: -2.0

Fig. 6. Template Edge({).

(o) . (x, y, z):
Edge({) Edge(j) Edge(/) Edge(n)

1 1 1 1

(p) MultiEdges (x, y, z): 0.5
bias: -1

Fig. 7. Template MultiEdges.

out considering the system that uses the binarized images

as input. Therefore, we investigated how the performance

of a ZIP-code recognition system that is already used in

a large scale real world application can be improved by a

more powerful binarization.

A set of 503 images has been selected from a database of

4134 �ve digit ZIP-code images in the following way. The

images were binarized using a histogram based threshold-

ing technique. Then, a recognition system [15] was run to

determine the ZIP-code. If that system rejected the im-

age for the reason of low con�dence, but the con�dence

was above a threshold, the image was selected. Thus, the

selected images are di�cult to recognize, but there is still

hope to determine the correct ZIP-code. If the original sys-

tem would have accepted these images, 289 of them would

have been substitutions (di�ering from the true ZIP-code

at least at one position). The selected images are then bi-

narized using the proposed method and again presented to

(q) Edge({) (., y, z):
x-1 x x+1

2 2 2

(r) Edge(/) (., ., z):

x-1 x+1

y-1 1
y+1 1

(s) Edge(n) (., ., z):

x-1 x+1

y-1 1
y+1 1

9>>>>>>>>=
>>>>>>>>;

(t) Line({) (., ., z):

x-1 x+1

y-1 0.125 0.125
y 0.25 0.25

y+1 0.125 0.125

(u) Line(/) (., ., z):

x-1 x+1

y-1 0.25
y 0.125 0.125

y+1 0.25

(v) Line(n) (., ., z):

x-1 x+1

y-1 0.25
y 0.125 0.125

y+1 0.25

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

(w) SumLines (x, ., z):
y-1 y+1

-0.5 -0.5

(x) MultiLines (x, y, z): -0.5
bias: -1.25

Fig. 8. Template Line({).

the recognition system. If the system accepts the image

and the ZIP-code for the second run corresponds either to

the best or to the second best ZIP-code from the �rst run,

the image is accepted. Otherwise, the image is rejected.

The original system had an acceptance rate of 84.56% with

1.17% of the accepted ZIP-codes being substitutions. With

the described modi�cation 169 images were additionally ac-

cepted, while only one of these was substituted. Thus, the

overall acceptance rate improved to 88.65% without de-

creasing the reliability of the system.

V. Discussion

In this paper a hierarchical neural architecture for image

interpretation has been proposed. One of the main features

of the architecture is the transformation of the given im-

age to a sequence of representations with increasing level

of abstraction and decreasing level of detail. When going

from the bottom of the pyramid to the top, the seman-

tic content of the representations changes from \where"

toward \what". Due to the reduced spatial resolutions in

the higher layers, local interactions between processing ele-

ments correspond to the use of contextual information from

a large area in the original image. The architecture is ade-

quate for algorithms that utilize both horizontal and verti-
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(a)

(b)

(c)

Fig. 9. Binarization of a handwritten ZIP-code: (a) quantities from
left to right: after one, two, and �ve iterations; bottom to top:
Front, SumEdges, and SumLines, (b) after �ve iterations from left
to right: ({), (j), (/), and (n); bottom to top: Edge(.), Line(.),
(c) after �ve iterations Back, Front, the original image, and the
image where the background has been removed by thresholding.

cal feedback loops for cooperation and competition between

representations.

A �rst application, the binarization of handwriting, has

been implemented and has been shown to be perform well

on images in which other methods fail.

So far, the templates have been designed manually, and

no attention control has been implemented. We plan to

implement learning algorithms and priority driven update

for the binarization application in the near future.

This paper is part of on-going work in which the Neural

Abstraction Pyramid will be used for more complex tasks,

like the detection of regions of interest in letters and the

recognition of handwriting. For these complex applications

more than three layers of abstraction will be needed to

represent the image content.
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