
In Proceedings of Joint 13th International Conference on Artificial Neural Networks and 10th International Conference on Neural Information Processing
(ICANN/ICONIP 2003) – Istanbul, Turkey, pp. 306–309, June 2003.

Learning Iterative Binarization
using Hierarchical Recurrent Networks

Sven Behnke
International Computer Science Institute

1947 Center St., Berkeley, CA, 94704, USA
behnke@icsi.berkely.edu, www.icsi.berkely.edu/∼behnke

Abstract— In this paper the binarization of matrix codes is
investigated as an application of supervised learning of image
processing tasks using a recurrent version of the Neural Ab-
straction Pyramid.

The desired network output is computed using an adaptive
thresholding method for undegraded images. The network is
trained to iteratively produce the same output even when the
contrast is lowered and typical noise is added to the input.
The network discovers the structure of the codes and uses it
for binarization. This makes the recognition of degraded matrix
codes possible for which adaptive thresholding fails.

I. INTRODUCTION

Iterative image processing techniques have proven to be
useful for many tasks, including registration [8] and image
restoration [7]. However, they mainly used flat image models
with relatively few parameters, offering limited adaptability.

Neural networks are a popular tool for image processing
tasks [6]. They are used for feature extraction and pattern
recognition and to transform one image into another. When
training a network for such a task, e.g. for binarization, the
most costly part of the process is usually to obtain the desired
network outputs. The reason for this is that human experts are
needed to label the images.

To avoid such costs, I use here an existing algorithm that
suffices to process the not so difficult examples. In addition,
I make the same examples more difficult by degrading image
quality with typical noise. I train a hierarchical neural network
with local recurrent connectivity to reproduce the outputs not
only for the undegraded images, but for the degraded ones
as well. This is an efficient way to extend the domain of the
network beyond the one of the existing algorithm.

A similar approach to binarization has been recently pro-
posed by Wolf and Doermann [11]. They used flat Markov
random fields with cliques of 4×4 pixels to model the distri-
bution of text images and employed simulated annealing for
inference. Image degradation was done by JPEG compression.

The paper is organized as follows: The next section in-
troduces the data set, the algorithm for generating desired
outputs, as well as image degradation. Section III describes the
Neural Abstraction Pyramid architecture and the supervised
learning algorithm used. Finally, Section IV presents some
experimental results.

high-contrast address window variant low-contrast red ink variant

(a)

(b)

(c)
Fig. 1. Canada Post Data Matrix codes: (a) original images; (b) degraded
images; (c) output of adaptive thresholding for degraded images.

(a) (b) (c)
Fig. 2. Problems for binarization: (a) non-uniform lighting (with estimated
background); (b) vertical bright and dark lines; (c) high noise.

II. MATRIX CODE DATA SET

Two-dimensional codes are an extension to one-dimensional
bar codes. This paper deals with the binarization of Data
Matrix [1] codes. The code matrix contains dark and light
square data modules. It has a finder pattern of solid and dotted
lines. Data Matrix is designed with a fixed level of error
correction. Recognition is possible if less than one quarter
of the bits have been destroyed.

I used a database provided by Siemens ElectroCom. Gray-
scale images of size 216×216 show Data Matrix codes as
used by Canada Post. The matrix encodes the meter value,
the date of sending, the sender, and the addressee. There are
two code variants, shown in Fig. 1(a): 515 images contain a
high-contrast code visible through a letter’s address window
and 694 images show a low-contrast code that is printed with
red ink in the upper right corner of a letter.

Reading of the code requires to localize the symbol, to
binarize it, to locate finder patterns, to read the bits, to correct
for errors, and to validate the result. Here, the focus is on
the binarization step only. Because of noise, inhomogeneous
lighting, printing errors, and low-image contrast this problem
is challenging.

To produce the desired output for training the binarization
network, first the background intensity is estimated for each



Layer 0 (216x216) Layer 1 (108x108) Layer 2 (54x54) Layer 3 (27x27)

Output

Input

Fig. 3. Architecture of the network used for learning the binarization of
Data Matrix codes. The resolution of the layers decreases as the number of
feature arrays increases.

location of the code image and used to correct for the non-
uniform lighting (see Fig. 2(a)). Next, the intensity histogram
is computed and smoothed, until only one local minimum is
left. Finally, the contrast of the image is stretched linearly
around the threshold. As can be see in Fig. 1(c), most pixels
saturate to black and white. Only some pixels at module
borders have intermediate intensities, indicating uncertainty.

Closer inspection of the contrast stretched low-contrast
images reveals some problems, illustrated in Fig. 2(b,c). Most
problematic outputs are either due to printing errors (vertical
dark or bright lines) or due to noise caused by the paper
of the envelope. To address the problematic vertical lines, a
horizontal low-pass filter is applied to the low-contrast images
prior to thresholding.

To make the codes more difficult to read, the images are
degraded in a way that induces typical binarization problems.
Degradation is done by adding vertical dark and bright lines,
adding a smoothly varying background level, lowering con-
trast, and adding pixel noise. Degradation for the low-contrast
code variant is less severe than for the high-contrast variant.
Fig. 1(b) shows some degraded images. Details of adaptive
thresholding and the degradation can be found in [3].

III. NETWORK ARCHITECTURE AND TRAINING

If one wants to develop a binarization method that outper-
forms adaptive thresholding, one has to utilize the structure
present in the data. More specifically, one can expect a method
to perform well that recognizes the Data Matrix modules and
assigns white or black to an entire module, and not to single
pixels. Of course, one could develop manually an algorithm
that works in this way, but I will demonstrate that it is possible
to solve the problem without the need to think about an
application-specific algorithm. The approach followed is to use
a general-purpose tool, the Neural Abstraction Pyramid [5],
[3], and to adapt it to the specific task by learning from input-
output examples. This architecture has been applied success-
fully to image reconstruction [2] and face localization [4].

The architecture of the binarization network is sketched in
Figure 3. It has four layers with an increasing number of

Layer 

Forward

k

Feature

Hypercolumn

Layer 

Feature

Backward

i

j

l

Lateral

i/2
j/2

Layer

2j
2i

projection

projection
projection

Hyper−neighborhood

cell
array

(l−1)

(l+1)

Fig. 4. A feature cell with its projections.

feature arrays and a decreasing resolution. Layer 0 contains the
input image and two additional feature arrays of size 216×216.
The number of feature arrays doubles, while their resolution is
halved when going to the next layer, until Layer 3 is reached,
where 16 feature arrays of size 27×27 are present. A two pixel
wide border surrounds the feature arrays. The activities of the
border cells are copied from feature cells using wrap-around.

Figure 4 magnifies one layer l of the pyramid. All feature
cells k that share the same location (i, j) within a layer form
a hypercolumn. A hypercolumn describes all aspects of the
corresponding image window in a distributed representation.
Neighboring hypercolumns define a hyper-neighborhood.

There is a local recurrent connectivity. Three types of
projections are used:

• Forward projections originate in the hyper-neighborhood
at the corresponding position in the next lower layer and
are used for feature extraction.

• Lateral projections stay within a layer. They me-
diate competition and cooperation within a hyper-
neighborhood and make the features consistent.

• Backward projections come from the corresponding
hyper-neighborhood of the next higher layer. They expand
abstract features to less abstract ones.

The feature cells in the Neural Abstraction Pyramid contain
simple processing elements that make a single value, the ac-
tivity, available to other cells. The activity of a cell represents
the strength of the associated feature at a certain position. It
is accessed via weighted links. The update of the activities
proceeds layer by layer in a bottom-up manner. The activity
at

ijkl ∈ R of a feature cell (ijkl) at time t is computed as
follows:

at
ijkl = σ(

Pkl∑

p=1

btp
ijkl + w0

kl); btp
ijkl =

Qp
kl∑

q=1

wpq
kl at∗

i∗j∗k∗l∗ .

(1)The cell computes a sum of its projection potentials b tp
ijkl ∈ R

and a bias value w0
kl that it is passed through the sigmoidal

transfer function σ = 1/(1+e−x). The use of such a nonlinear
function is crucial for the stability of the network dynamics.
When the activity of a cell is driven towards saturation, the
effective gain of the transfer function is reduced considerably.
This avoids the explosion of activity in the network. Fur-
thermore, the nonlinearity is needed to make decisions. Each



projection computes a weighted sum of activities a t∗
i∗j∗k∗l∗

with the weighting factors described by wpq
kl ∈ R.

Forward projections come from 4×4 windows of all feature
arrays in the layer below. Lateral projections originate from
the 5×5 hyper-neighborhood in the same layer and backward
projections access a single cell of all feature arrays in the layer
above. See [3] for a more formal description.

Weights are described by templates that are shared by all
cells of a feature array. For backward projections there are four
different template versions, corresponding to the four positions
that are mapped to a position in the next higher layer. The
network has a total of 11,910 different weights. Most of them
are located in the top layer, since the weights in the lower
layers are shared more often than the ones in the higher layers.

One important idea of the architecture is that each layer
maintains a complete image representation in an array of hy-
percolumns. The degree of abstraction of these representations
increases with height. At the bottom of the pyramid, features
correspond to local measurements of a signal, the image
intensity. Subsymbolic representations, like the responses of
edge detectors or the activities of complex cells are present
in the middle layers of the network. When moving upwards,
the feature cells respond to image windows of increasing size,
represent features of greater complexity, and are less variant
to image deformations.

The Neural Abstraction Pyramid has been designed for the
iterative interpretation of images. The refinement of initial
image interpretations through local recurrent interactions of
simple processing elements that are arranged in a hierarchy
is the central idea of the architecture. Such a refinement is
needed to resolve ambiguities. The interpretation of ambiguous
stimuli is postponed until reliably detected features are avail-
able as context. Horizontal and vertical feedback loops allow
contextual influences between neighboring image locations
and between adjacent layers, respectively. Information flow is
asymmetric: reliable features bias the unreliable ones. Iterative
image interpretation has the features of an anytime algorithm.
Usable partial interpretations are available very early. They are
completed as the processing proceeds.

The 515 high / 694 low - contrast images were partitioned
randomly into 334/467 training images and 181/227 test ex-
amples. For each example, one degraded version was added to
the sets. The undegraded Data Matrix images as well as their
degraded versions are presented to the network without any
preprocessing. One of the feature arrays in the bottom layer
is used as network output. The target values that are used as
desired output for the supervised training are computed using
the adaptive thresholding method for the undegraded images.
The network is trained to iteratively produce them not only
for the original images, but for the degraded versions of these
images as well.

Two networks are randomly initialized and trained for ten
iterations with a linearly increasing weight on the squared
error using backpropagation through time [10] and RPROP [9].
Such a combination has been found to allow for fast and stable
supervised learning in hierarchical recurrent networks [3].

Fig. 5. Recall of network trained for binarization of Data Matrix codes.
The development of the feature activities at Layer 0 is shown for one of the
degraded test examples.

IV. EXPERIMENTAL RESULTS

After training, the networks are able to iteratively solve the
binarization task. The lower layers represent the cell structure
of the code, while the higher layers represent the background
level and the local black-and-white ratio.

The network performs an iterative refinement of an initial
solution, with most changes occurring in the first few iter-
ations. The activities of the two Layer 0 feature arrays are
displayed in Fig. 5. In the first iterations, the non-uniform
background level causes the upper part of the code to have
higher activity than the lower part. This inhomogeneity is
removed during refinement. Furthermore, the output is driven
from intermediate gray values that signal uncertainty towards
black and white, as typical for the desired output.

In the hidden feature array a representation of the code
structure emerges. Bright areas of the input image are broken
into a discrete number of modules. For each bright module
an activity blob rises and remains stable. Adjacent blobs are
connected either vertically or horizontally, depending on the
prominent local orientation of the corresponding bright area.
If such a local orientation cannot be determined, e.g. in bright
areas that have a larger width as well as a larger height, the
blobs form a loosely connected matrix. The blobs inhibit the
output feature cells. Hence, the network has learned that the
output of a code module must be coherent. This suppresses
thin vertical lines and pixel noise.

To understand the emergence of the blobs, one can analyze
the contributions made by individual projections. Weak input
projections detect contrast at the upper and right border of a
bright area. The contributions of lateral projections shape the
blobs through a center-center excitation and a center-surround
inhibition. Here, the typical blob distance of about four pixels
is enforced. Finally, the backward projections excite or inhibit
entire areas, not discrete blobs. Thus, at Layer 1 a coarser
representation of black and white areas must exist.

Figure 6(a) displays the average squared output changes
over time. In the first iterations, the output changes consid-
erably. The changes decrease quickly until iteration 10 and
remain low afterwards. Thus, the network dynamics is stable
even when iterating twice as long as it has been trained for. In
the figure one can also observe that the average error decreases
rapidly during the first iterations. It reaches a minimum at
about iteration 8 and increases again slowly. Hence, the
network’s attractors are not identical to the desired outputs.



(a)

10

100

1000

10000

0 2 4 6 8 10 12 14 16 18 20

sq
ua

re
d 

de
lta

 o
ut

iteration

high contrast
low contrast

0
500

1000
1500
2000
2500
3000
3500
4000
4500

0 2 4 6 8 10 12 14 16 18 20

sq
ua

re
d 

ou
tp

ut
 e

rr
or

iteration

high contrast
low contrast

(b)

0

.25

.5

.75

1

0 500 1000 1500 2000

re
co

gn
iti

on
 e

rr
or

squared output error

degraded
original

Fig. 6. Recall of iterative binarization: (a) performance over time; (b)
recognition error vs. squared output error for high-contrast examples.

high contrast:

a.t. i.b.

degr. .176 .094

orig. .0203 .0193

low contrast:

a.t. i.b.

degr. .3895 .0190

orig. .0289 .0195

0

.25

.5

.75

1

0 .25 .5 .75 1

ad
ap

tiv
e 

th
re

sh
ol

di
ng

iterative binarization

degraded
original

0

.25

.5

.75

1

0 .25 .5 .75 1

ad
ap

tiv
e 

th
re

sh
ol

di
ng

iterative binarization

degraded
original

Fig. 7. Data Matrix test set recognition error distributions and averages.

This is not surprising, since the network has been trained
to produce the desired output only for ten iterations. When
iterated further, the dynamics evolves into stable attractors that
resemble the module structure of the Data Matrix codes. If one
wanted to produce a longer decrease of the average difference
to the desired output, one could always train the network
for more iterations. This has not been done here, since ten
iterations seem to be sufficient to solve the binarization task.

For all examples, the output of adaptive thresholding as
well as the one of iterative binarization has been presented
to a Data Matrix recognition engine. For the low-contrast
codes, the engine was queried a second time with different
parameters when an example was rejected in the first run. The
engine produces for each recognized example the percentage
of error correction used. This value will be referred to as
recognition error. It is set to one if an example could not be
recognized at all. The desired outputs are not necessarily the
ideal outputs, but only approximations to the best recognizable
ones. This can be observed in Fig. 6(b). Thus, a deviation from
the desired outputs does not necessarily indicate a decrease in
output quality, as measured in recognition performance.

In Fig. 7 the recognition error of adaptive thresholding and
the iterative binarization method is compared for the test sets.
The performance of the two methods is not much different
for the original images, since the networks have been trained
to resemble the behavior of adaptive thresholding for such
images. In contrast, for most degraded images the recognition

error is lower when using the iterative binarization method
than when adaptive thresholding is used. Here, the use of
iterative binarization substantially lowers the need for error
correction. This yields higher recognition rates. While 37%
of the degraded low-contrast codes binarized with adaptive
thresholding could not be recognized, all of these images could
be recognized when binarized iteratively. This considerably
extends the applicability of matrix code recognition systems
to low-quality images.

V. CONCLUSIONS

It was shown that a non-trivial image processing task can be
learned by an instantiation of the Neural Abstraction Pyramid
architecture. An adaptive thresholding method was developed
that is able to successfully binarize high-contrast images of
Data Matrix codes. Its results were used as desired output for
a Neural Abstraction Pyramid that was trained to iteratively
produce them not only for the original images, but also for
degraded versions of them.

The network learns to recognize the module structure of the
Data Matrix and to use it for binarization. The performance of
both methods was evaluated using a recognition system. For
the high contrast code variant the trained network performs
as well as adaptive thresholding for the original images,
but outperforms it for degraded images. For the low-contrast
red ink variant of the Data Matrix codes, the advantage of
iterative binarization is more obvious. It performs better than
adaptive thresholding for the original images and outperforms
it dramatically for the degraded images.

Future work could apply the proposed approach to more
complex image processing problems, such as the segmentation
of natural scenes.

REFERENCES

[1] AIM, Inc. ISS Data Matrix. BC11, ANSI/AIM, 1995.
[2] Sven Behnke. Learning iterative image reconstruction in the Neural

Abstraction Pyramid. International Journal of Computational Intelli-
gence and Applications, Special Issue on Neural Networks at IJCAI-
2001, 1(4):427–438, 2001.

[3] Sven Behnke. Hierarchical neural networks for image interpretation.
Dissertation thesis, Freie Universität Berlin, 2002.

[4] Sven Behnke. Learning face localization using hierarchical recurrent
networks. In Proceedings of ICANN 2002, volume 2415 of LNCS, pages
1319–1324, 2002.

[5] Sven Behnke and Raúl Rojas. Neural Abstraction Pyramid: A hierarchi-
cal image understanding architecture. In Proceedings IJCNN’98, pages
820–825, 1998.

[6] Michael Egmont-Petersen, Dick de Ridder, and Heinz Handels. Image
processing with neural networks - a review. Pattern Recognition,
35(10):2279–2301, 2002.

[7] D. Geman and S. Geman. Stochastic relaxation, Gibbs distributions, and
Bayesian restoration of images. IEEE Transactions on PAMI, 6(6):721–
741, 1984.

[8] B. D. Lucas and T. Kanade. An iterative image registration technique
with an application in stereo vision. In Proceedings of IJCAI’81, pages
674–679, 1981.

[9] M. Riedmiller and H. Braun. A direct adaptive method for faster
backpropagation learning: The RPROP algorithm. In Proceedings of
ICNN’93, pages 586–591, 1993.

[10] Paul J. Werbos. Backpropagation through time: What it does and how
to do it. Proceedings of the IEEE, 78(10):1550–1560, 1990.

[11] C. Wolf and D. Doermann. Binarization of low quality text using a
Markov random field model. In Proceeding of ICPR 2002, volume 2,
pages 160–163, 2002.


