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Abstract. One of the major parts in human-computer interface applica-
tions, such as face recognition and video-telephony, consists in the exact
localization of a face in an image.

Here, we propose to use hierarchical neural networks with local recurrent
connectivity to solve this task, even in presence of complex backgrounds,
difficult lighting, and noise. Our network is trained using a database
of gray-scale still images and manually determined eye coordinates. It
is able to produce reliable and accurate eye coordinates for unknown
images by iteratively refining an initial solution.

The performance of the proposed approach is evaluated against a large
test set. The fast network update allows for real-time operation.

1 Introduction

To make the interface between humans and computers more pleasant, computers
must adapt to the users. One important step for many adaptive applications,
like face recognition, lip reading, reading of the users emotional state, and video-
telephony is the localization of the user’s face in a captured image.

A recent survey on face detection can be found in [4]. Many localization
techniques rely on image motion or skin color which are not always available.
In [9] multiresolution window scanning in combination with a neural network is
used to detect faces in gray-scale static images. Such sequential search techniques
are computationally expensive. Many methods preprocess the data intensively
to extract facial features and match them with predefined models [5, 6].

In this paper, we present a method that uses a hierarchical neural network
with recurrent local connectivity to localize a face in gray-scale still images. The
network operates by iteratively refining an initial solution. We present images
directly to the network and train it to do the job.

2 Face Database and Preprocessing

To validate the performance of the proposed approach for learning face localiza-
tion, we use the BioID data base [5]. This database consists of 1521 images that
show 23 individuals in front of various complex office backgrounds with uncon-
trolled lighting. The persons differ in gender, age, and skin color. Some of them
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Fig. 1. Some face images from the BioID data set.

wear glasses or a beard. Since the face size, position, and view, as well as the
facial expression vary considerably, the dataset can be considered challenging.

Such real world conditions are the ones that show the limits of current local-
ization techniques. For instance, while the hybrid localization system described
in [5] correctly localizes 98.4% of the XM2VTS database [7] that has been pro-
duced under controlled conditions, the same system localizes only 91.8% of the
BiolID faces. Figure 1 shows some images from the dataset.

The gray-scale BioID images have a size of 384x 288 pixels. To reduce border
effects, we lowered the contrast towards the sides of the image. To limit the
amount, of data, the image is subsampled to 48x36, 24x 18, and 12x9 pixels as
shown in Fig. 2(b). In addition to the images, manually labeled eye positions
are available. Fig. 2(a) shows the marked eye positions for a sample image. We
produce a multi-resolutional Gaussian blob for each eye (see Fig. 2(b)).

3 Network Architecture

The preprocessed images are presented to a hierarchical neural network that is
structured as Neural Abstraction Pyramid [1]. As can be seen in Figure 3, the
network consists of four layers. Each layer contains excitatory and inhibitory
quantities. Each quantity is computed at a 2D-grid of locations by Y -units that
share a common weight template. The resolution of the layers decreases from Ly
(48%36) to Lo (12x9) by a factor of 2 in both dimensions. L3 has only one unit
per quantity. The number of quantities per layer increases when going from Lg
(442) to Ly (16+8). L3 contains 10 excitatory and 5 inhibitory quantities.

Subsampled
Image

Fig. 2. Preprocessing: (a) original image with marked eye positions; (b) eye positions
and subsampled framed image in three resolutions.
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Fig. 3. Sketch of the hierarchical network architecture with local recurrent connectivity.

The network’s connectivity is recurrent and local. Each unit receives input
from only a small window of units that correspond to similar locations in the
layer below (forward weighs), in the same layer (lateral weights) and from the
layer above (backward weights). Weights from excitatory units are non-negative.
Weights from inhibitory units are non-positive. Input weights can have any sign.

The excitatory units of Lo-Ls receive input from 4x4 windows of the quan-
tities one layer below. They look at 5x5 input units and at a 3x3 neighborhood
at the same layer. The backward weights have a window size of 2x2. Connec-
tions between Lo and the topmost L3 are different. Both, forward- and backward
weights have a 12x9 window size. Inhibitory quantities look only at 5x5 win-
dows of all excitatory quantities at the same layer. Of course, in L3 this reduces
to 1x1. The update step (¢ + 1) of a unit for quantity ¢ at position (z,y) in L,
is done as follows:
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L(4) is the set of links of the associated template i = T (z,q), and B(i) is the
template bias. (X (4,z),Y(j,v), Z(J,2), Q(j)) describe location and quantity of
the input for link j, and W(j) is its weight. The output function o(z) = In(1 +
e?%)/B is here a smooth approximation to the rectifying function max(0,z). In
addition, a start value V°(i) for initialization at ¢+ = 0 is needed for each template.

4 Supervised Training

Training recurrent networks is difficult due to the non-linear dynamics of the
system. The backpropagation through time algorithm (BPTT) [10] unfolds the
network in time and applies the backpropagation idea to compute the gradient



of an error function. For face localization, we present a static input xj, to the
network and train it to quickly produce the desired output yy-

The network is updated for a fixed number T' = 10 of iterations. The output
error 6}, the difference between the activity of the output units vi and the desired
output yy, is not only computed at the end of the sequence, but after every
update step. In the error function we weight the squared differences progressively,
as the number of iterations ¢ increases:
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Minimizing the error function with gradient descent faces the problem that
the gradient in recurrent networks either vanishes or grows exponentially in time
depending on the magnitude of gains in loops [3]. Hence, it is very difficult to
determine a learning constant that allows for both stability and fast convergence.
For that reason, we decided to employ the RPROP algorithm [8], that main-
tains a learning rate for each weight and uses only the sign of the gradient to
determine the weight change. We modify not only the weights in this way, but
adapt the biases and start values as well. To accelerate the training, we initially

worked with randomly chosen subsets of the training set, as described in [2].

5 Experimental Results

We divided the BioID data set randomly into 1000 training images and 521 test
examples. Figure 4 shows the development of the trained network’s output over
time when the test image from Fig. 2 is presented as input. One can see that the
blobs signaling the locations of the eyes develop in a top-down fashion. After the
first iteration they appear only in the lowest resolution. This coarse localization
is used to bias the development of blobs in lower layers. After five iterations,
the network’s output is close to the desired one. It does not change significantly
during the next iterations that take 22ms each on a P4 1.7GHz PC.

The generation of stable blobs is the typical behavior of the network. To
evaluate its performance, one has to estimate eye coordinates from the blobs
and to compute a quality measure by comparison with the given coordinates.

We estimate the position of each eye separately by finding the output unit
with the highest activity in the corresponding high resolution output. For all
units in a 7x7 window around it, we segment the units belonging to the blob
by comparing their activity with a threshold that increases with greater dis-
tance from the center. The weighted mean location of the segmented units is the
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Fig. 4. Recall. Shown are the activities of the network’s output over time.
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Fig. 5. Localization performance: (a) percentage of examples having small dey. for the
proposed method (TRN, TST) and for the hybrid system (Hausdorff+MLP)[5]; (b)
rejecting the least confident examples lowers the number of mislocalizations.

estimated eye position. After transforming these eye positions into the original
coordinate system, we compute a scale independent relative error measure as sug-
gested in [5]: deye = max(d;,d;)/||Ci — Cr||, where d; and d, are the distances
of the estimated eye positions to the given coordinates C; and C,. A relative
distance deye < 0.25 is considered a successful localization, since dgye = 0.25
corresponds approximately to the half width of an eye.

Figure 5(a) shows the network’s localization performance for the training
set (TRN) and the test set (TST) in comparison to the data taken from [5]
(Hausdorff+MLP). All training examples have been localized successfully. The
performance on the test set is similar. Only 1.5% of the test examples have not
been localized accurately enough. Compare this to the 8.2% mislocalizations of
the reference system.

A detailed analysis of the network’s output for the mislocalizations showed
that in these cases the output deviates from the one-blob-per-eye pattern. It
can happen that no blob or that several blobs are present for an eye. By com-
paring the activity of a segmented blob to a threshold and to the total activity
a confidence measure is computed for each eye. Both are combined to a single
confidence. In Figure 5(b) one can see that rejecting the least confident test
examples lowers the number of mislocalizations rapidly. When rejecting 3.1% of
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Fig. 6. Performance over time: (a) average distance deye; (b) sum of squared changes
in the network’s output.



the images, only one mislocalization is left. The average localization error of the
accepted examples is deye = 0.06. That is well within the area of the iris and
corresponds to the accuracy of the given coordinates.

Figure 6 illustrates the network’s performance over time. The average error
deye drops rapidly within the first five iterations and stays low afterwards. The
changes in the network’s output are large during the first iterations and decrease
even when updated longer than the ten steps it has been trained for.

6 Conclusions

In this paper we presented an approach to face localization that is based on
a hierarchical neural network with local recurrent connectivity. The network is
trained to solve this task even in the presence of complex backgrounds, difficult
lighting, and noise through iterative refinement.

We evaluate the network’s performance on the BiolD data set. It compares
favorably to a hybrid reference system that uses a Hausdorff shape matching
approach in combination to a multi layer perceptron.

The proposed method is not limited to gray-scale images. The extension to
color is straight forward. Since the network works iteratively, and one iteration
takes only a few milliseconds, it would also be possible to use it for real-time
face tracking by presenting image sequences instead of static images.
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