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t. One of the major parts in human-
omputer interfa
e appli
a-tions, su
h as fa
e re
ognition and video-telephony, 
onsists in the exa
tlo
alization of a fa
e in an image.Here, we propose to use hierar
hi
al neural networks with lo
al re
urrent
onne
tivity to solve this task, even in presen
e of 
omplex ba
kgrounds,diÆ
ult lighting, and noise. Our network is trained using a databaseof gray-s
ale still images and manually determined eye 
oordinates. Itis able to produ
e reliable and a

urate eye 
oordinates for unknownimages by iteratively re�ning an initial solution.The performan
e of the proposed approa
h is evaluated against a largetest set. The fast network update allows for real-time operation.1 Introdu
tionTo make the interfa
e between humans and 
omputers more pleasant, 
omputersmust adapt to the users. One important step for many adaptive appli
ations,like fa
e re
ognition, lip reading, reading of the users emotional state, and video-telephony is the lo
alization of the user's fa
e in a 
aptured image.A re
ent survey on fa
e dete
tion 
an be found in [4℄. Many lo
alizationte
hniques rely on image motion or skin 
olor whi
h are not always available.In [9℄ multiresolution window s
anning in 
ombination with a neural network isused to dete
t fa
es in gray-s
ale stati
 images. Su
h sequential sear
h te
hniquesare 
omputationally expensive. Many methods prepro
ess the data intensivelyto extra
t fa
ial features and mat
h them with prede�ned models [5, 6℄.In this paper, we present a method that uses a hierar
hi
al neural networkwith re
urrent lo
al 
onne
tivity to lo
alize a fa
e in gray-s
ale still images. Thenetwork operates by iteratively re�ning an initial solution. We present imagesdire
tly to the network and train it to do the job.2 Fa
e Database and Prepro
essingTo validate the performan
e of the proposed approa
h for learning fa
e lo
aliza-tion, we use the BioID data base [5℄. This database 
onsists of 1521 images thatshow 23 individuals in front of various 
omplex oÆ
e ba
kgrounds with un
on-trolled lighting. The persons di�er in gender, age, and skin 
olor. Some of them
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Fig. 1. Some fa
e images from the BioID data set.wear glasses or a beard. Sin
e the fa
e size, position, and view, as well as thefa
ial expression vary 
onsiderably, the dataset 
an be 
onsidered 
hallenging.Su
h real world 
onditions are the ones that show the limits of 
urrent lo
al-ization te
hniques. For instan
e, while the hybrid lo
alization system des
ribedin [5℄ 
orre
tly lo
alizes 98.4% of the XM2VTS database [7℄ that has been pro-du
ed under 
ontrolled 
onditions, the same system lo
alizes only 91.8% of theBioID fa
es. Figure 1 shows some images from the dataset.The gray-s
ale BioID images have a size of 384�288 pixels. To redu
e bordere�e
ts, we lowered the 
ontrast towards the sides of the image. To limit theamount of data, the image is subsampled to 48�36, 24�18, and 12�9 pixels asshown in Fig. 2(b). In addition to the images, manually labeled eye positionsare available. Fig. 2(a) shows the marked eye positions for a sample image. Weprodu
e a multi-resolutional Gaussian blob for ea
h eye (see Fig. 2(b)).3 Network Ar
hite
tureThe prepro
essed images are presented to a hierar
hi
al neural network that isstru
tured as Neural Abstra
tion Pyramid [1℄. As 
an be seen in Figure 3, thenetwork 
onsists of four layers. Ea
h layer 
ontains ex
itatory and inhibitoryquantities. Ea
h quantity is 
omputed at a 2D-grid of lo
ations byP-units thatshare a 
ommon weight template. The resolution of the layers de
reases from L0(48�36) to L2 (12�9) by a fa
tor of 2 in both dimensions. L3 has only one unitper quantity. The number of quantities per layer in
reases when going from L0(4+2) to L2 (16+8). L3 
ontains 10 ex
itatory and 5 inhibitory quantities.
(a) (b)Fig. 2. Prepro
essing: (a) original image with marked eye positions; (b) eye positionsand subsampled framed image in three resolutions.
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Fig. 3. Sket
h of the hierar
hi
al network ar
hite
ture with lo
al re
urrent 
onne
tivity.The network's 
onne
tivity is re
urrent and lo
al. Ea
h unit re
eives inputfrom only a small window of units that 
orrespond to similar lo
ations in thelayer below (forward weighs), in the same layer (lateral weights) and from thelayer above (ba
kward weights). Weights from ex
itatory units are non-negative.Weights from inhibitory units are non-positive. Input weights 
an have any sign.The ex
itatory units of L0-L2 re
eive input from 4�4 windows of the quan-tities one layer below. They look at 5�5 input units and at a 3�3 neighborhoodat the same layer. The ba
kward weights have a window size of 2�2. Conne
-tions between L2 and the topmost L3 are di�erent. Both, forward- and ba
kwardweights have a 12�9 window size. Inhibitory quantities look only at 5�5 win-dows of all ex
itatory quantities at the same layer. Of 
ourse, in L3 this redu
esto 1�1. The update step (t+ 1) of a unit for quantity q at position (x; y) in Lzis done as follows:vt+1x;y;z;q = � 24 Xj2L(i)W(j) vtX (j;x);Y(j;y);Z(j;z);Q(j) + B(i)35 : (1)L(i) is the set of links of the asso
iated template i = T (z; q), and B(i) is thetemplate bias. (X (j; x);Y(j; y);Z(j; z);Q(j)) des
ribe lo
ation and quantity ofthe input for link j, and W(j) is its weight. The output fun
tion �(x) = ln(1 +e�x)=� is here a smooth approximation to the re
tifying fun
tion max(0; x). Inaddition, a start value V0(i) for initialization at t = 0 is needed for ea
h template.4 Supervised TrainingTraining re
urrent networks is diÆ
ult due to the non-linear dynami
s of thesystem. The ba
kpropagation through time algorithm (BPTT) [10℄ unfolds thenetwork in time and applies the ba
kpropagation idea to 
ompute the gradient



of an error fun
tion. For fa
e lo
alization, we present a stati
 input xk to thenetwork and train it to qui
kly produ
e the desired output yk.The network is updated for a �xed number T = 10 of iterations. The outputerror Ætk, the di�eren
e between the a
tivity of the output units vtk and the desiredoutput yk, is not only 
omputed at the end of the sequen
e, but after everyupdate step. In the error fun
tion we weight the squared di�eren
es progressively,as the number of iterations t in
reases:E = KXk=1 TXt=1 t kyk � vtkk2: (2)Minimizing the error fun
tion with gradient des
ent fa
es the problem thatthe gradient in re
urrent networks either vanishes or grows exponentially in timedepending on the magnitude of gains in loops [3℄. Hen
e, it is very diÆ
ult todetermine a learning 
onstant that allows for both stability and fast 
onvergen
e.For that reason, we de
ided to employ the RPROP algorithm [8℄, that main-tains a learning rate for ea
h weight and uses only the sign of the gradient todetermine the weight 
hange. We modify not only the weights in this way, butadapt the biases and start values as well. To a

elerate the training, we initiallyworked with randomly 
hosen subsets of the training set, as des
ribed in [2℄.5 Experimental ResultsWe divided the BioID data set randomly into 1000 training images and 521 testexamples. Figure 4 shows the development of the trained network's output overtime when the test image from Fig. 2 is presented as input. One 
an see that theblobs signaling the lo
ations of the eyes develop in a top-down fashion. After the�rst iteration they appear only in the lowest resolution. This 
oarse lo
alizationis used to bias the development of blobs in lower layers. After �ve iterations,the network's output is 
lose to the desired one. It does not 
hange signi�
antlyduring the next iterations that take 22ms ea
h on a P4 1.7GHz PC.The generation of stable blobs is the typi
al behavior of the network. Toevaluate its performan
e, one has to estimate eye 
oordinates from the blobsand to 
ompute a quality measure by 
omparison with the given 
oordinates.We estimate the position of ea
h eye separately by �nding the output unitwith the highest a
tivity in the 
orresponding high resolution output. For allunits in a 7�7 window around it, we segment the units belonging to the blobby 
omparing their a
tivity with a threshold that in
reases with greater dis-tan
e from the 
enter. The weighted mean lo
ation of the segmented units is the
Fig. 4. Re
all. Shown are the a
tivities of the network's output over time.
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Fig. 5. Lo
alization performan
e: (a) per
entage of examples having small deye for theproposed method (TRN, TST) and for the hybrid system (Hausdor�+MLP)[5℄; (b)reje
ting the least 
on�dent examples lowers the number of mislo
alizations.estimated eye position. After transforming these eye positions into the original
oordinate system, we 
ompute a s
ale independent relative error measure as sug-gested in [5℄: deye = max(dl; dr)=jjCl � Crjj, where dl and dr are the distan
esof the estimated eye positions to the given 
oordinates Cl and Cr. A relativedistan
e deye < 0:25 is 
onsidered a su

essful lo
alization, sin
e deye = 0:25
orresponds approximately to the half width of an eye.Figure 5(a) shows the network's lo
alization performan
e for the trainingset (TRN) and the test set (TST) in 
omparison to the data taken from [5℄(Hausdor�+MLP). All training examples have been lo
alized su

essfully. Theperforman
e on the test set is similar. Only 1.5% of the test examples have notbeen lo
alized a

urately enough. Compare this to the 8.2% mislo
alizations ofthe referen
e system.A detailed analysis of the network's output for the mislo
alizations showedthat in these 
ases the output deviates from the one-blob-per-eye pattern. It
an happen that no blob or that several blobs are present for an eye. By 
om-paring the a
tivity of a segmented blob to a threshold and to the total a
tivitya 
on�den
e measure is 
omputed for ea
h eye. Both are 
ombined to a single
on�den
e. In Figure 5(b) one 
an see that reje
ting the least 
on�dent testexamples lowers the number of mislo
alizations rapidly. When reje
ting 3.1% of
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Fig. 6. Performan
e over time: (a) average distan
e deye; (b) sum of squared 
hangesin the network's output.



the images, only one mislo
alization is left. The average lo
alization error of thea

epted examples is deye = 0:06. That is well within the area of the iris and
orresponds to the a

ura
y of the given 
oordinates.Figure 6 illustrates the network's performan
e over time. The average errordeye drops rapidly within the �rst �ve iterations and stays low afterwards. The
hanges in the network's output are large during the �rst iterations and de
reaseeven when updated longer than the ten steps it has been trained for.6 Con
lusionsIn this paper we presented an approa
h to fa
e lo
alization that is based ona hierar
hi
al neural network with lo
al re
urrent 
onne
tivity. The network istrained to solve this task even in the presen
e of 
omplex ba
kgrounds, diÆ
ultlighting, and noise through iterative re�nement.We evaluate the network's performan
e on the BioID data set. It 
omparesfavorably to a hybrid referen
e system that uses a Hausdor� shape mat
hingapproa
h in 
ombination to a multi layer per
eptron.The proposed method is not limited to gray-s
ale images. The extension to
olor is straight forward. Sin
e the network works iteratively, and one iterationtakes only a few millise
onds, it would also be possible to use it for real-timefa
e tra
king by presenting image sequen
es instead of stati
 images.Referen
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