
Learning Fae Loalizationusing Hierarhial Reurrent NetworksSven BehnkeFreie Universit�at Berlin, Institute of Computer SieneTakustr. 9, 14195 Berlin, Germanybehnke�inf.fu-berlin.de, www.inf.fu-berlin.de/�behnkeAbstrat. One of the major parts in human-omputer interfae applia-tions, suh as fae reognition and video-telephony, onsists in the exatloalization of a fae in an image.Here, we propose to use hierarhial neural networks with loal reurrentonnetivity to solve this task, even in presene of omplex bakgrounds,diÆult lighting, and noise. Our network is trained using a databaseof gray-sale still images and manually determined eye oordinates. Itis able to produe reliable and aurate eye oordinates for unknownimages by iteratively re�ning an initial solution.The performane of the proposed approah is evaluated against a largetest set. The fast network update allows for real-time operation.1 IntrodutionTo make the interfae between humans and omputers more pleasant, omputersmust adapt to the users. One important step for many adaptive appliations,like fae reognition, lip reading, reading of the users emotional state, and video-telephony is the loalization of the user's fae in a aptured image.A reent survey on fae detetion an be found in [4℄. Many loalizationtehniques rely on image motion or skin olor whih are not always available.In [9℄ multiresolution window sanning in ombination with a neural network isused to detet faes in gray-sale stati images. Suh sequential searh tehniquesare omputationally expensive. Many methods preproess the data intensivelyto extrat faial features and math them with prede�ned models [5, 6℄.In this paper, we present a method that uses a hierarhial neural networkwith reurrent loal onnetivity to loalize a fae in gray-sale still images. Thenetwork operates by iteratively re�ning an initial solution. We present imagesdiretly to the network and train it to do the job.2 Fae Database and PreproessingTo validate the performane of the proposed approah for learning fae loaliza-tion, we use the BioID data base [5℄. This database onsists of 1521 images thatshow 23 individuals in front of various omplex oÆe bakgrounds with unon-trolled lighting. The persons di�er in gender, age, and skin olor. Some of them
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Fig. 1. Some fae images from the BioID data set.wear glasses or a beard. Sine the fae size, position, and view, as well as thefaial expression vary onsiderably, the dataset an be onsidered hallenging.Suh real world onditions are the ones that show the limits of urrent loal-ization tehniques. For instane, while the hybrid loalization system desribedin [5℄ orretly loalizes 98.4% of the XM2VTS database [7℄ that has been pro-dued under ontrolled onditions, the same system loalizes only 91.8% of theBioID faes. Figure 1 shows some images from the dataset.The gray-sale BioID images have a size of 384�288 pixels. To redue bordere�ets, we lowered the ontrast towards the sides of the image. To limit theamount of data, the image is subsampled to 48�36, 24�18, and 12�9 pixels asshown in Fig. 2(b). In addition to the images, manually labeled eye positionsare available. Fig. 2(a) shows the marked eye positions for a sample image. Weprodue a multi-resolutional Gaussian blob for eah eye (see Fig. 2(b)).3 Network ArhitetureThe preproessed images are presented to a hierarhial neural network that isstrutured as Neural Abstration Pyramid [1℄. As an be seen in Figure 3, thenetwork onsists of four layers. Eah layer ontains exitatory and inhibitoryquantities. Eah quantity is omputed at a 2D-grid of loations byP-units thatshare a ommon weight template. The resolution of the layers dereases from L0(48�36) to L2 (12�9) by a fator of 2 in both dimensions. L3 has only one unitper quantity. The number of quantities per layer inreases when going from L0(4+2) to L2 (16+8). L3 ontains 10 exitatory and 5 inhibitory quantities.
(a) (b)Fig. 2. Preproessing: (a) original image with marked eye positions; (b) eye positionsand subsampled framed image in three resolutions.
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Fig. 3. Sketh of the hierarhial network arhiteture with loal reurrent onnetivity.The network's onnetivity is reurrent and loal. Eah unit reeives inputfrom only a small window of units that orrespond to similar loations in thelayer below (forward weighs), in the same layer (lateral weights) and from thelayer above (bakward weights). Weights from exitatory units are non-negative.Weights from inhibitory units are non-positive. Input weights an have any sign.The exitatory units of L0-L2 reeive input from 4�4 windows of the quan-tities one layer below. They look at 5�5 input units and at a 3�3 neighborhoodat the same layer. The bakward weights have a window size of 2�2. Conne-tions between L2 and the topmost L3 are di�erent. Both, forward- and bakwardweights have a 12�9 window size. Inhibitory quantities look only at 5�5 win-dows of all exitatory quantities at the same layer. Of ourse, in L3 this reduesto 1�1. The update step (t+ 1) of a unit for quantity q at position (x; y) in Lzis done as follows:vt+1x;y;z;q = � 24 Xj2L(i)W(j) vtX (j;x);Y(j;y);Z(j;z);Q(j) + B(i)35 : (1)L(i) is the set of links of the assoiated template i = T (z; q), and B(i) is thetemplate bias. (X (j; x);Y(j; y);Z(j; z);Q(j)) desribe loation and quantity ofthe input for link j, and W(j) is its weight. The output funtion �(x) = ln(1 +e�x)=� is here a smooth approximation to the retifying funtion max(0; x). Inaddition, a start value V0(i) for initialization at t = 0 is needed for eah template.4 Supervised TrainingTraining reurrent networks is diÆult due to the non-linear dynamis of thesystem. The bakpropagation through time algorithm (BPTT) [10℄ unfolds thenetwork in time and applies the bakpropagation idea to ompute the gradient



of an error funtion. For fae loalization, we present a stati input xk to thenetwork and train it to quikly produe the desired output yk.The network is updated for a �xed number T = 10 of iterations. The outputerror Ætk, the di�erene between the ativity of the output units vtk and the desiredoutput yk, is not only omputed at the end of the sequene, but after everyupdate step. In the error funtion we weight the squared di�erenes progressively,as the number of iterations t inreases:E = KXk=1 TXt=1 t kyk � vtkk2: (2)Minimizing the error funtion with gradient desent faes the problem thatthe gradient in reurrent networks either vanishes or grows exponentially in timedepending on the magnitude of gains in loops [3℄. Hene, it is very diÆult todetermine a learning onstant that allows for both stability and fast onvergene.For that reason, we deided to employ the RPROP algorithm [8℄, that main-tains a learning rate for eah weight and uses only the sign of the gradient todetermine the weight hange. We modify not only the weights in this way, butadapt the biases and start values as well. To aelerate the training, we initiallyworked with randomly hosen subsets of the training set, as desribed in [2℄.5 Experimental ResultsWe divided the BioID data set randomly into 1000 training images and 521 testexamples. Figure 4 shows the development of the trained network's output overtime when the test image from Fig. 2 is presented as input. One an see that theblobs signaling the loations of the eyes develop in a top-down fashion. After the�rst iteration they appear only in the lowest resolution. This oarse loalizationis used to bias the development of blobs in lower layers. After �ve iterations,the network's output is lose to the desired one. It does not hange signi�antlyduring the next iterations that take 22ms eah on a P4 1.7GHz PC.The generation of stable blobs is the typial behavior of the network. Toevaluate its performane, one has to estimate eye oordinates from the blobsand to ompute a quality measure by omparison with the given oordinates.We estimate the position of eah eye separately by �nding the output unitwith the highest ativity in the orresponding high resolution output. For allunits in a 7�7 window around it, we segment the units belonging to the blobby omparing their ativity with a threshold that inreases with greater dis-tane from the enter. The weighted mean loation of the segmented units is the
Fig. 4. Reall. Shown are the ativities of the network's output over time.
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Fig. 5. Loalization performane: (a) perentage of examples having small deye for theproposed method (TRN, TST) and for the hybrid system (Hausdor�+MLP)[5℄; (b)rejeting the least on�dent examples lowers the number of misloalizations.estimated eye position. After transforming these eye positions into the originaloordinate system, we ompute a sale independent relative error measure as sug-gested in [5℄: deye = max(dl; dr)=jjCl � Crjj, where dl and dr are the distanesof the estimated eye positions to the given oordinates Cl and Cr. A relativedistane deye < 0:25 is onsidered a suessful loalization, sine deye = 0:25orresponds approximately to the half width of an eye.Figure 5(a) shows the network's loalization performane for the trainingset (TRN) and the test set (TST) in omparison to the data taken from [5℄(Hausdor�+MLP). All training examples have been loalized suessfully. Theperformane on the test set is similar. Only 1.5% of the test examples have notbeen loalized aurately enough. Compare this to the 8.2% misloalizations ofthe referene system.A detailed analysis of the network's output for the misloalizations showedthat in these ases the output deviates from the one-blob-per-eye pattern. Itan happen that no blob or that several blobs are present for an eye. By om-paring the ativity of a segmented blob to a threshold and to the total ativitya on�dene measure is omputed for eah eye. Both are ombined to a singleon�dene. In Figure 5(b) one an see that rejeting the least on�dent testexamples lowers the number of misloalizations rapidly. When rejeting 3.1% of
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Fig. 6. Performane over time: (a) average distane deye; (b) sum of squared hangesin the network's output.



the images, only one misloalization is left. The average loalization error of theaepted examples is deye = 0:06. That is well within the area of the iris andorresponds to the auray of the given oordinates.Figure 6 illustrates the network's performane over time. The average errordeye drops rapidly within the �rst �ve iterations and stays low afterwards. Thehanges in the network's output are large during the �rst iterations and dereaseeven when updated longer than the ten steps it has been trained for.6 ConlusionsIn this paper we presented an approah to fae loalization that is based ona hierarhial neural network with loal reurrent onnetivity. The network istrained to solve this task even in the presene of omplex bakgrounds, diÆultlighting, and noise through iterative re�nement.We evaluate the network's performane on the BioID data set. It omparesfavorably to a hybrid referene system that uses a Hausdor� shape mathingapproah in ombination to a multi layer pereptron.The proposed method is not limited to gray-sale images. The extension toolor is straight forward. Sine the network works iteratively, and one iterationtakes only a few milliseonds, it would also be possible to use it for real-timefae traking by presenting image sequenes instead of stati images.Referenes1. S. Behnke and R. Rojas. Neural Abstration Pyramid: A hierarhial image un-derstanding arhiteture. In Pro. IJCNN'98{Anhorage, pages 820{825, 1998.2. Sven Behnke. Learning iterative image reonstrution in the Neural AbstrationPyramid. International Journal on Computational Intelligene and Appliations,Speial Issue on Neural Networks at IJCAI-2001, 1(4):427{438, 2001.3. Y. Bengio, P. Simard, and P. Frasoni. Learning long-term dependenies withgradient desent is diÆult. IEEE Trans. on Neural Networks, 5(2):157{166, 1994.4. Erik Hjelmas and Boon Kee Low. Fae detetion: A survey. Computer Vision andImage Understanding, 83:236{274, 2001.5. O. Jesorsky, K. J. Kirhberg, and R. W. Frishholz. Robust fae detetion usingthe Hausdor� distane. In Third Int. Conf. on Audio- and Video-based BiometriPerson Authentiation, Halmstad, Sweden, pages 90{95. Springer, 2001.6. D. Maio and D. Maltoni. Real-time fae loalization on gray-sale stati images.Pattern Reognition, 33:1525{1539, 2000.7. K. Messer, J. Matas, J. Kittler, J. Luettin, and G. Maitre. XM2VTSDB: Theextended M2VTS database. In Seond Int. Conf. on Audio and Video-based Bio-metri Person Authentiation, pages 72{77, 1999.8. Martin Riedmiller and Heinrih Braun. A diret adaptive method for faster bak-propagation learning: The RPROP algorithm. In Proeedings of the InternationalConferene on Neural Networks { San Franiso, CA, pages 586{591. IEEE, 1993.9. H. A. Rowley, S. Baluja, and T. Kanade. Neural network based fae detetion.IEEE Trans. Pattern Analysis and Mahine Intelligene, 20:23{38, 1998.10. R. Williams and J. Peng. An eÆient gradient-based algorithm for on-line trainingof reurrent network trajetories. Neural Computation, 2(4):491{501, 1990.


