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Abstract. In this article, we describe the OCR and image processing algorithms used to read destination

addresses from non-standard letters (
ats) by Siemens postal automation system currently in use by the

Deutsche Post AG1.

We �rst describe the sorting machine, its OCR hardware and the sequence of image processing and

pattern recognition algorithms needed to solve the di�cult task of reading mail addresses, especially

handwritten ones. The article concentrates mainly on the two classi�ers used to recognize handprinted

digits. One of them is a complex time delayed neural network (TDNN) used to classify scaled digit-

features. The other classi�er extracts the structure of each digit and matches it to a number of prototypes.

Di�erent digits represented by the same graph are then discriminated by classi�ying some of the features

of the digit-graph with small neural networks.

We also describe some approaches for the segmentation of the digits in the ZIP code, so that the

resulting parts can be processed and evaluated by the classi�ers.

Keywords: Postal automation, address reading, neural networks, handprinted digit recognition.

1. Introduction

Optical character recognition (OCR) has reached

such a high quality level that reading postal ad-

dresses (especially ZIP codes) quickly became one

of the �rst industrial applications in this area.

The automatic sorting of so-called 'standard let-

ters' (with envelopes smaller than 11:5 � 23 cm

in Germany) is a problem on which companies

like AEG ElectroCom (now Siemens ElectroCom)

have been working since 1970. The work done

by J. Sch�urmann from the Daimler-Benz Research

Center in Ulm, Germany, has been reported in a

number of publications, the most important one

beeing [23]. Also N. Srihari from the CEDAR

Institute in Bu�alo has concentrated on these

kinds of problems (see e.g. the CEDAR homepage

www.cedar.bu�alo.edu or [10, 19]).

Sven Behnke
8

asdasd asd
 

asdasd asd
 

Sven Behnke
2000

asdasd asd
12(1-2):95-114 (2000)




2 P�ster, Behnke, Rojas

Please Insert Picture of the Letters

==> Picture 1 <==

Fig. 1. Some examples of non-standard letters (
ats).

However, so-called non-standard letters (in this

paper shortly called 
ats), constitute a large frac-

tion of the daily postal items to deliver and sort.

In Germany 
ats are larger than standard letters

but smaller than 35:3� 25:3� 2 cm. Sorting 
ats

is slightly more di�cult than sorting standard let-

ters, mainly because of two reasons. Firstly, the

adress block is not located in a speci�c region

(like in standard letters) and, secondly, the vari-

ety of handwriting that we �nd is certainly larger

than for standard letters. Writers have much more

room to be 'creative', so the shape and also the

size of writing may di�er markedly. Figure 1

shows some examples.

As the result of a worldwide competition in

1994, the German Deutsche Post AG (DPAG)

awarded Siemens AG a contract to install a pro-

totype of a 
at sorting machine (in German:

Gro�brief-Sortieranlage, abreviated in the sequel

as GSA2). This was an international premiere:

it was the �rst time, a country considered au-

tomating the entire 
at sorting process. At the

time of this writing 150 GSAs have been delivered

and installed in about 80 sorting centers all over

Germany. They sort millions of 
ats daily with a

GSA throughput up to 20,000 
ats per hour. More

than 85% of the adresses are found and read cor-

rectly by the machines with an error rate of less

than 1%. Those letters rejected by the GSA-OCR

system are sent to so called Video Coding Places

(VCPs) to be classi�ed by human experts using

a numeric keyboard. Assuming that about 15%

of the 
ats contain handwritten addresses, this

means that the recognition rates are 78% for hand-

written, and far over 90% for typewritten adresses.

Figure 2 shows a picture of a GSA postal sort-

ing machine. The envelopes are fed into the GSA

and are separated by four feeders (1). They are

transported on a conveyor belt (2) running at

about 2m/s. They go below the linescanning cam-

era (3), which captures a greyscale image of each

letter. While the letter is passed to the sorter (6),

the GSA-OCR (4) starts processing the image to

recognize the destination address. If no valid ad-

dress is found, the image is delivered to video cod-

ing places VCPs (5), where postal workers han-

dle it. If the ZIP code information can be au-

tomatically recognized or is entered by a human

operator, the letter is dropped in one of 200 mail-

boxes (7), each one covering di�erent ZIP code

ranges.

In order to solve the di�cult problem of au-

tomatically reading 
at mail adresses with such

high accuracy and at an average speed of 6


ats/second, several algorithms out of the image

processing, pattern recognition and neural net-

works �eld had to be used. Also new algorithms

were developed and special hardware was used.

In this article we discuss several of the GSA al-

gorithms, some of them roughly, and others, such

as the handprinted ZIP code classi�ers, more in

detail. Together they constitute a real world ap-

plication of 'applied intelligent algorithms'.

This article is organized as follows: In the

rest of this section, we give an overview on the

OCR-hardware used in the GSA and we then go
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Please Insert Picture of the GSA

==> Picture 2 <==
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Fig. 2. Siemens 
at sorting machine GSA installed in a DPAG sorting center.

through the sequence of subproblems that have

to be solved to complete the address identi�ca-

tion task. In section 2 we deal brie
y with the

the problem of �nding the addresses on a 
at (es-

pecially when the envelope contains much detail)

and then we explain how this address is segmented

into lines and words (section 3). Section 4 con-

tains the main part of this article. We �rst dis-

cuss the di�erent methods used to classify hand-

printed digits implemented in the GSA. Then we

address the more di�cult problem of segmenting

connected handprinted ZIP codes in single (poten-

tial) digits, we introduce our approach and discuss

how these algorithms interact with the digit classi-

�ers. Finally, in section 5 we describe how the ZIP

codes which we have read can be double-checked

and veri�ed.

Nota bene: Developing the GSA and its OCR

was a Siemens project involving many researchers

and developers from many Siemens divisions. The

development of some methods was done in colab-

oration with the Freie Universit�at Berlin, namely

the ones described in detail in this article.

1.1. Hardware of the GSA-OCR system

Together with the hardware components used

to control the GSA (the Siemens S5 Program-
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CNAPS 256 CNAPS 256

Fig. 3. Basic structure of the GSA-OCR computer.

able Controler) or the computers used for man-

ual coding of the rejected letters, the 'heart' of

the GSA is the GSA-OCR system running on the

so-called GSA-OCR computer. This GSA-OCR

computer is basically a conventional dual Pentium

computer with some additional hardware, mainly

three multiprocessor boards (Adaptive Solutions

CNAPS [1, 20]) and a special framegrabber board.

All the algorithms described below are run by this

system. Figure 3 shows the basic structure of

the GSA-OCR computer and �gure 4 that of the

CNAPS.

The CNAPS boards consists basically of 256 (or

128) very simple processor nodes (PNs) running in

SIMD mode. The PNs have a shared global mem-

ory (where the executable program is stored) and

also small 4K local memories [1, 20]. Due to the

SIMD structure and their simple PNs, the CNAPS

boards are used to process the time-consuming

image-processing or classi�cation tasks.

1.2. Solving the GSA-OCR subproblems

The problem of automatic postal sorting non-

standard-letters, as done by the GSA, is very com-

plex. It principally consists of the two main sub-

problems �nding the address on the letter and

then reading it. Both of these tasks include of

course many other subtasks.

Since we can not be sure that a region of the

letter surface that looks like an address region

actually contains the address. These "potential

address regions" will further be called Areas Of

Interest, AOIs. The following list shows the se-

quence of subtasks that have to be solved to anal-

ize AOIs to �nally get the destination ZIP code

from the letter.

1. AOI determination,

2. AOI binarization,

3. line segmentation,

4. word segmentation,

5. character segmentation,

6. character classi�cation,

7. interpretation of the classi�cation results,

In - Bus

Command - Bus

Out - Bus

PN 0 PN 1 PN 256
Inter - PN - Bus

Sequencer

File-
Memory

Program-

Memory

Fig. 4. Basic structure of the Adaptive Solutions CNAPS SIMD computer.
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8. eventual alternative handwritten ZIP code

processing,

9. address veri�cation.

Note that the task sequence is not necessarily

strict. If it is noticed, in any step, that the AOI

examined by the GSA-OCR contains no valid ad-

dress, another can be checked. Also if, for exam-

ple, binarisation fails, it may be repeated with a

slightly modi�ed algorithm and so on.

This article concentrates on the recognition of

handwritten ZIP codes. Anyway these can not

be processed or veri�ed without solving the other

tasks of the AOI analysis as listet above. So

it is interesting, and also important, to under-

stand how these work and interact. Therefore

they will be outlined in the next two chapters,

although they are rather technical. Unfortunately

the methods used to solve the basic AOI anal-

ysis can only be outlined very roughly. They all,

but especially the line segmentation algorithm, are

protected by patents and very strict copyright re-

strictions, so they can not be published by the

authors.

All algorithms discussed below work using the

greyscale image of the letter, which is scanned

by a line camera at a resolution of about 150

dpi and which is encoded using 255 grey-levels (1

byte/pixel) .

2. Finding the address candidates on the

letter

This is the �rst hard problem to be solved. If you

have e.g. one of your monthly computer journals

at hand, or look t the picture of the catalouge

in �gure 1, you can see that �nding the address,

contained probably in a label placed somewhere

on the front page, is not so easy to do at �rst

sight. Contrary to standard letters, where the

address is almost always 'in the lower right cor-

ner', it can be anywhere on a 
at, even hidden in

some other text-blocks, like for example headlines.

The GSA-OCR �nds these addresses using neural

networks and geometrical (statistical) information

about 
at envelopes, as brie
y described in the

following.

During the scanning process, that is in real

time, the pixels of the incoming image are grouped

in square regions called superpixels. These super-

pixels (also some extracted spatial frequency fea-

tures) are now classi�ed using small neural net-

works. It is decided, if the superpixel belongs to

a region containing, for example, background, un-

structured noise, typewriting, handwriting or cor-

ners of a label. Some of these classes, like 'type-

writing' or 'handwriting' describe foreground fea-

tures, others like 'background' or 'noise' describe

backround ones.

In the second step, when all these features

have been computed, superpixels of the same fore-

ground type are clustered together by grouping

them into 'address shaped rectangles'. These rect-

angles, the potential AOIs, are then ranked by

taking into account some geometrical information.

So for example a handwritten address will be more

likely located in the lower right corner but not on

the upper left and so on. One (or more) AOIs

are selected to be processed further according to

this ranking. With the method outlined above

(parts of it, using di�erent features, are described

in more detail in [29, 30]), more than 95% of the

right addresses are the highest ranking AOI.

3. Locating the ZIP code in the address

Having located the address (rsp. an AOI) on the

letter, we have to make our way to the ZIP code

in order to �nally classify the main clue for the

destination of the letter. This is basically done

by the GSA-OCR as it is done by humans: the

address is divided �rst into lines and then into

words.

The �rst two steps are rather technical and

are handled by basic image processing algorithms.

First the background of the AOI is removed and

the foreground is set to 'black' (i.e. the image is

binarized); then connected foreground pixels are

grouped in so-called connected components. On

the basis of this information, the writing style

(handwritten or machine printed) is determined

and further segmentation of the AOI into lines and

words is performed.

3.1. Binarisation of the address block

The �rst step consists of converting the greyscale

image into a binarized one, i.e. an image contain-

ing only 'black' pixels (the foreground) and 'white'



6 P�ster, Behnke, Rojas

pixels (the background). The motivation is that

since the foreground (i.e. the writing) usually con-

tains all the information we need to read the letter,

we can have a much more compact description of

the picture.

Two assumptions are made to binarize the im-

age. The �rst one is that the interesting fore-

ground is darker than the unimportant back-

ground, i.e. the image pixels of the foreground

have higher values than those of the background.

The second asumption is that the picture (espe-

cially the background) has been more or less ho-

mogeneously illuminated, i.e. the variance of the

background pixels values is low. Under these as-

sumptions, binarisation of the image reduces to

choosing a threshold � and setting all pixels p(x; y)

of the image to

p(x; y) :=

�
1 if p(x; y) > �

0 else:

There are many ways to estimate such a thresh-

old � and some popular methods are described

in [19]. We can also avoid choosing a global thresh-

old � as suggested above, selecting instead a local

�(x; y) for each pixel p(x; y), depending on the val-

ues of the neighboring pixels. Local methods have

the advantage that they can deal with inhomoge-

neously illuminated surfaces, but they are com-

putationally expensive and are often sensitive to

some parameters (e.g. the estimated strokewidth

of the characters in the image) [19]. Since for the

application described the disadvantages overcome

the advantages, a global method was choosen.

The threshold estimation method implemented in

the GSA is based on the Otsu method described

in detail in [18, 17]. The pixels of the image are

separated into two classes (foreground and back-

ground) using linear discriminant analysis meth-

ods.

After having binarized the image a very com-

pact runlength representation is used. The idea

is not to represent each pixel of the image by its

value, but to group horizontal lines of black pix-

els (the runs) and represent these runs by their

starting- and ending position. This is a very com-

mon way to store binarized images. Choosing this

representation, it is very easy to �nd connecting

parts of foreground regions, the connected compo-

nents. Their connectedness give clues about where

on the AOI there could be text, characters, or

maybe gaps between them. Figure 5 shows one

handwritten and one machine printed AOI after

binarisation. The bounding boxes of its connected

components are also shown.

3.2. Segmenting the ZIP code into lines of text

This is surely the most di�cult problem in the ba-

sic AOI analysis. The problem is that it cannot

be assumed that lines are strictly horizontal. The

task becomes even more challanging in the case

of handwriting, were the lines may not be clearly

separated by white spaces. The algorithm used

to solve the line separation task is very robust,

even for AOIs rotated up to �10 degrees. It is

an iterative approach, where in the �rst steps cer-

tain connected components are regarded as initial

lines. To these, the rest of the components are

grouped until all of them are distributed to the

lines in the AOI. Figure 5 shows the �nal line seg-

mentation result of two examples.

Fig. 5. Final result of the line segmentation for two binarised AOIs.
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3.3. Determination of the AOIs writing style

The determination of the AOIs writing style

(handwritten or machine printed) is again done

on the basis of connected components information

and the information additionally available about

lines in the AOI. The discrimination is done to

be able to choose e.g. di�erent types of character

classi�ers, since a 'general digit classi�er' would

be much more complex and less reliable than a

special one for di�erent writing styles.

The algorithm itself is very fast and highly re-

liable. The basic idea is, that obviously machine

printing is more 'regular' than handwriting. This

regularity is measured in di�erent features, possi-

ble ones are described in [11]. They use connected

component features like histograms showing the

heigth or width distribution of the components.

These features are then evaluated by a small clas-

si�er to get a descision. For the AOIs shown in

�gure 5 we get e.g. for the height histogram:

Num. of Heights Average

Machine AOI 5 3.7

Hand AOI 18 8.0

so the di�erences of this feature and the rsp. de-

scision are obvious.

3.4. Segmentation of the address lines into words

The word segmentation step is again done to be

able to choose special classi�ers or methods for

each type of word. So principally special digit

classi�ers or methods can be used to read ZIP the

code and special character classi�ers to read the

city name. The latter problem is of course more

di�cult for handwriting. Here completely di�er-

ent methods may have to be used, as described

below.

The decision is in this case rather simple, since

it is not attempted to handle the general word seg-

mentation problem. The main interest is to �nd a

ZIP code in the AOI (rsp. in a line), and since a

line in a valid German address in general contains

only two words, the task can be reformulated as:

Try to separate the line into two words, so that the

left one may be a ZIP code. Figure 6 shows how

the lower line of the AOIs in �gure 5 were sepa-

rated into ZIP code and cityname candidates.

The idea is that words are separated by gaps

which are larger than the gaps separating char-

acters within a word. Also the word left of the

potential word segmenting gap must have certain

features (e.g. a certain width/height ratio) to be a

ZIP code at all. So the algorithm is simply based

on the computation of some features for each gap

between two connected components (starting with

the largest one), like size of the gap, height/width

ratio of the resulting left word, the (potential) ZIP

code or height/width ratio of the resulting right

word, the (potential) city name.

4. Interpretation of handwritten ZIP

codes

This is the main section of this article. We now as-

sume to be faced with the isolated ZIP code block,

i.e. in Germany a text block containing �ve digits

(see �gure 14). We now want to segment this block

into its single digits and classify them. Since the

task is rather trivial for machine printing (as clas-

si�cation and segmentation of this kind of writing

is) we concentrate exclusively on the handwriting

problem in this section.

Fig. 6. Final result of the word segmentation (lower line) for two AOIs.
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We �rst describe the approaches we have devel-

oped to classify isolated handprinted digits, and

then describe two approaches for the much more

complex task of handprinted ZIP code segmenta-

tion.

4.1. Classifying isolated handprinted digits

The heart of any OCR processing system is a

high performance character classi�cation system,

since this is the place where the unstructured

pixel patterns get their 'meaning', i.e. they are

identi�ed as a '6' or an 'A'. J. Sch�urmann calls

this the "borderline between the subsymbolic and

symbolic world. The task of pattern classi�ca-

tion is throwing the bridge beween both worlds

{ generating symbols from subsymbolic observa-

tions" [23].

The performance of a classi�cation system can

be evaluated using criteria such as the size of

the alphabet which it recognizes, its reliability

or writer-independency. Since the methods de-

scribed up to here were designed to read hand-

printed ZIP codes, the problem reduces basically

to the recognition of the digits 0 to 9. On

the other hand, very high reliability and writer-

independency is required for this application. The

system has to deal with widely di�erent sizes and

slants, with di�erent shapes and width of the

strokes.

In the past many approaches have been sug-

gested to solve the problem of classifying single,

isolated digits. Some use as input for powerful

neural, polynomial or statistical classi�ers the (in

some sense) normalized pixel image of the digit

or some more abstract features. Other classi�erss

preprocess the image in order to obtain the struc-

ture of the digit and base their decision on these

features [13, 14].

No single approach is able to solve the prob-

lem perfectly, all methods have their particular

stengths and weaknesses. Pixel oriented methods,

for example, are able to tolerate structural defects

much better than structural methods, as long as

the main shape of the digit is retained. Structural

methods, on the other hand, perform better on

deformed digits having a typical structure.

To produce a system as writer independent and

reliable as possible, we decided to combine two

methods: a fast but reliable method which ana-

lyzes the structure of the digit, and in a second

step, a powerful but more computationally inten-

sive pixel oriented neural classi�er. Both meth-

ods are described in the following sections together

with remarks on the combination of the two clas-

si�ers.

4.1.1. The TDNN classi�er

The TDNN (Time Delayed Neural Network) clas-

si�er is a high performance neural classi�er, which

Fig. 7. Normalization of some digits slant and size.
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a) b)

Fig. 8. Locations of characteristica of the same digit depend on the writer.

takes the image of a binarized digit, scaled to a

�xed size, as its input. In a preprocessing step,

some of the digit's variance is removed. The most

important ones are the slant and size, as shown in

�gure 7. For better visualization, the digits were

all scaled to the same width.

The principal axis of the digit is estimated and

then the digit is sheared, so that his axis is vertical

after the transformation. Then the resulting digit

is scaled to a �xed size of 16 pixels height and

12 pixels width. After this process, the digit is

not binarized anymore, so-called pseudo-grey val-

ues occur.

Beside these variance, to be removed by prepro-

cessors, the system has to detect those characteris-

tic features of the digit, which also help us humans

to discriminate and 'classify' it. These features

may be in di�erent locations of the pixel-image,

due to nonlinear deformations, as suggested in �g-

ure 8.

These characteristic features may be shifted in

horizontal (�gure 8 a), vertical, or both directions

(�gure 8 b), depending on the writer, the digit and

the preprocessing of the digit.

TDNNs have shown to be successful in the gen-

eral problem of detecting distinct patterns inde-

pendently of their localisation in longer signals,

although they were originally introduced to solve

a speci�c speech recognition problem, namely the

recognition of distinct vowels in long speech sig-

nals [27]. Good results have been also obtained in

biochemical problems [22]. Because of these at-

tractive and typical features of TDNNs, produced

by their weight sharing receptive �elds and the in-

clusion of unit's activations of previous time-steps

into the current computations, we decided to use

a TDNN to scan the normalized pixel image of the

digit in order to perform a shift-invariant recogni-

tion.

The general architecture of a TDNNs is shown

in �gure 9 (for more details see e.g. [22]). Each

group of input nodes (called the receptive �elds

O1 = 

ON = 

O2 = 

Σ
Σ
Σ

O1(i)O1(i)

O2(i)O2(i)

ON(i)ON(i)

Input pattern in different time-steps

Shared weights

Shared weights

Output neurons

Receptive fields of
the input layer

Hidden neurons in
three time-steps

the hidden layer
Receptive fields of

Fig. 9. Receptive �elds with shared weights in di�erent layers of the TDNN.
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with shared weights) 'sees' only a small window

of the input stream, which 'marches' through the

windows one position in each time step. The out-

put of the hidden layer is also covered with recep-

tive windows using shared weights. The network's

output consists of the sum of squares of the dif-

ferent time steps of the output neurons. This has

the advantage, that small individual outputs tend

to become less important [22].

The input of the OCR-TDNN consists of the bi-

narized image of an isolated digit, scaled to a �xed

height PH=16 pixels and a �xed width PW=12

pixels. There are R1 receptive �elds, each one

'sees' R0 columns of the picture. These input win-

dows are sharing theire weights and are shifted

by a one column of the pixel-image. During the

recognition process the columns are moved from

left to right through the receptive �elds, i.e. a hor-

izontal scanning of the digit is performed. Best re-

sults have been obtained with �eld-sizesR0 � PW ,

e.g. R0 = 11 or R0 = 13. The number of time-

states should be limited to R1 � 5 because of the

computational complexity. Anyway best results

were obtained with R0 + R1 > PW , so the to-

tal input window should be larger than the digits

width. During the scanning, the image is never

moved out of the total input window, and the digit

is (virtually) enlarged with white columns left and

right to have a well de�ned input for each node of

all receptive �elds.

The hidden layer consists of NH hidden nodes

in R1 time-states. This is realized by connecting

each group of NH hidden nodes with the corre-

sponding input window.

The output layer of the network consists of 10

nodes, each one representing one class of the digits

'0' to '9', which are fully connected to all hidden

nodes. The output layer thus works without re-

ceptive �elds. This modi�cation of the standard

TDNN is motivated by two ideas. First of all, it

accelerates and simpli�es the learning algorithm

of the TDNN. Secondly, working in this manner,

the output layer gets a 'full view' over all time

states of all hidden nodes, which also signi�cantly

improves the networks performance. During the

discrete steps of the scanning process, the output

of the output neurons is monitored. The most

con�dent output is regarded as the �nal recogni-

tion, where results obtained from a more centered

position of the digit get a little higher scores.

Also experiments with vertical scannings were

performed, but with less impressing results. The

recognition rates improve a little, if the digit is

scanned in both directions, but not enough to jus-

tify the increasing computational complexity in

the very time critical letter sorting process [3].

The OCR-TDNN is trained using a simple on-

line gradient descent algorithm, similar to back-

propagation [20, 22]. The only di�erence is, that

during the weight-update step the corrections for

the di�erent receptive �elds have to be averaged

to guarantee the identity of the weights of the dif-

ferent receptive �elds. The TDNN is fully self-

trained using a backpropagation-like algorithm, so

the feature-extractors and the classi�cation layer

are automatically adapted to each other and to

the problem. Thus no 'expert knowledge' about

the classi�cation problem is needed and no ex-

tensive feature detecting preprocessing has to be

performed.

The performance of the TDNN classi�er was

evaluated on the NIST special database [12, 3].

The TDNN was trained using about 120.000 digits

and the tested on an independent validation set.

On this set, the TDNN reached maximum recog-

nition rates of up to 99.1% when substituting the

other 0.9% and rejecting none. The substitution

rate could be lowered to 0.1% when about 4.8%

of the digits were rejected.

4.1.2. Classifying digits using structural infor-

mation

The second classi�er implemented in the GSA-

OCR uses structural information for the recog-

nition of isolated hand-printed digits. This hy-

brid classi�er is described in more detail in [2].

Structural information and quantitative features

are extracted in a multi-stage process from the

digits pixel image. The goal is to preserve the in-

formation essential for recognition and to discard

unnecessary details. Figure 10 shows the stages of

the recognition process.

The preprocessing consists of a vectorization of

the digit. This produces a line-drawing which is

analyzed to construct a structural graph represen-

tation. The two-stage decision process matches

�rst the structure of the digit to a structural
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structural analysis classificationprototype matching

structural graphpixel-image line-drawing

vectorization

"9"

class labelfeature-vector

Fig. 10. Stages of the Structural Digit Recognition.

prototype whose associated neural classi�er has

been trained to distinguish digits that have the

same structure based on extracted quantitative

features.

Vectorization: The grey-level pixel-images of

isolated digits constitute the input to the vector-

ization routine. Vectorization is done in two steps

as illustrated in �gure 11: i) the pixel image is

preprocessed and a skeletonization operator is ap-

plied, ii) nodes are positioned and connected.

First a binarization threshold is used to remove

the background, preserving the grey-levels in the

foreground. The size of the image is scaled by

factors of two to �x them to a certain range (not

size). The resulting image should have width and

height between 30 and 70 Pixels. Then the line-

width (pen-thickness) of the digit is roughly es-

timated. Since too wide lines worsen the skele-

tonization process, the image is again scaled down,

if the line-width is too large. Finally a low-pass

�lter is applied to the image to ensure that pix-

els are the darker, the more central they are in

the lines and that each line cross-section has one

maximum only.

Skeletonization is used to reduce the line width

to approximately one pixel. Unlike morphologi-

cal methods which iteratively erode the lines, the

operator used here directly �nds a skeleton in the

middle of a line. The idea is to regard the stroke

as a 'mountain chain' and the respective skeleton

as the 'ridge'. The operator observes 3�3 pixel

regions to decide if the central pixel belongs to

the skeleton, by deciding if it has enough lighter

('lower') neighbors, i.e. if it belongs to the 'ridge'.

Pixel having grey-level zero (white) do not belong

to the skeleton, but to the background. For all

other pixels, the number c(x; y) of neighboring

pixels (8-neighborhood) having an equal or higher

grey-level is computed and if this number is less

than three the central pixel is added to the skele-

ton. The resulting skeletons can be seen in �g-

ure 11(b).

(a)

(b)

(c)

Fig. 11. Some digits: (a) background removed, (b) skeleton, (c) line-drawings.
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Now a vectorial representation is constructed.

Nodes are placed starting at peaks of the skeleton

(c(x; y) = 0). Then nodes are placed at pixels be-

longing to ridges (c(x; y) = 1 and c(x; y) = 2),

but with a minimum distance of two between

them. The nodes need to be connected to rep-

resent strokes. First, the connection structure of

the skeleton is reconstructed by inserting connec-

tions where 3�3 regions of nodes overlap or touch

on the skeleton.

In order to insert the few remaining connections

necessary to recover the original strokes, more

global information is needed. Connections are in-

serted according to the principles of Gestalt psy-

chology. The goal is to get lines exhibiting good

continuity, closure and simplicity. To achieve this,

candidates for new connections are determined

and are evaluated using a measure based on the

distance of the nodes to be connected, angles be-

tween connections, the grey-level of the pixels be-

tween the nodes, and topological information of

the connection graph. New connections are in-

serted, ordered according to this measure, until a

topology dependent threshold is reached. After all

connections have been inserted, the line drawing is

simpli�ed. The lines are smoothed and nodes are

taken out at locations of low curvature. Short lines

ending in junctions are eliminated and connected

junctions that are close together are merged to

form a crossing. The resulting line-drawings are

shown in �gure 11(c).

Structural analysis: The next step derives

a more abstract digit representation consisting of

strokes which are merged to form larger curves.

In order to reduce the variability of the input the

vertical principal axis and the size of the digits are

normalized.

A stroke is formed by several lines connected by

joints (nodes of degree two) which have a common

rotation direction and do not form sharp angles.

A stroke has an initial and an end node, such that

from the perspective of the initial node, the lines

rotate to the right only. Straight strokes run from

down to top. Starting from the nodes having a

degree other than two, a topological structure is

built by following the connecting lines. The length

of the segments and the rotation angle are accu-

mulated for each stroke. The strokes found touch

each other only at the initial or end nodes. The

contact points may represent junctions, crossings

or changes of rotation direction.

A set of strokes can be merged to curves to

reconstruct the way the digit was drawn. Two

strokes are connected and reduced to a curve only

if the rotation direction is preserved and the sec-

ond constitutes a good continuation of the �rst.

In this step we try to �nd long curves and the for-

mation of loops is forced. This is done by testing

for each common node of two strokes if the two

strokes can be merged into a single curve. If this

is the case, the candidate is evaluated using the

local rotation angle and the total length of the

curve. The mergers are performed starting with

the best candidates.

Sometimes, digitalization defects, noise or small

loops and embellishments of the handwritten dig-

its produce short curves which must be eliminated

before proceeding to recognize the digit. Using

some topological information and the length of the

curves it is decided whether it is bene�cial to elim-

inate them from the graph or not. This step sim-

pli�es the structural description. Figure 12 shows

some simpli�ed curve representations.

The set of curves found in the previous steps

is described now using a bipartite graph as can

be seen in �gure 13(a). Each curve is represented

by a node in the left layer of the graph. Nodes

in the right layer represent characteristic points

such as curve ends, junctions, crossings and turn-

ing points. The graphs edges are derived from the

Fig. 12. Curve representation of some digits. Large squares are located at the center of gravity of the curves. Curves run

from the middle-sized squares to the small squares.
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curve representation. Each curve is connected to

its characteristic points in the same order in which

they appear when following the curve. Each node

contains attributes, which summarize quantitative

information about the curves and points. The

curve nodes store the xy-coordinates of the center

of gravity of the curve, the accumulated rotation

angle, the length, and the distance of end and ini-

tial point relative to the total length of the curve.

The shape of the curve is summarized by the xy-

coordinates of six points distributed uniformly on

the curve. The point nodes are described by their

xy-coordinates.

Prototype matching: The attributed struc-

tural graph describes the essential features of the

digit to be recognized. Recognition is done in two

steps: i) the structural graph is matched to proto-

types that have been extracted from the training

set, ii) for each prototype there is a neural classi-

�er which is used to distinguish digits having the

same structure based on the extracted quantita-

tive features.

Two structural graphs are called isomorph, if

there exists a bijective mapping from the nodes

and edges of one graph to the ones of the other

graph. Curve nodes can only be assigned to curve

nodes and the order of the edges must be pre-

served. Curves that are almost straight can also

be mapped in inverted direction. The training

set is partitioned into maximal sets that have iso-

morphic structural graphs. Each partition corre-

sponds to a structural prototype for the matching

step, if the partition contains a signi�cant num-

ber of examples. These extracted typical struc-

tures represent not only perfect digits, but fre-

quent structural deviations as well.

To test for isomorphism �rst a necessary con-

dition is checked quickly. The number of curve

nodes and the number of point nodes of each de-

gree must match. If this holds, the curves of the

�rst graph are permuted and inverted, and the re-

sulting descriptions are matched with the descrip-

tion of the second graph. Sometimes more than

one match between the graphs is possible. In this

case all matches are used when partitioning the

training set, but only the �rst match is used for

recall. If the structural graph does not match any

prototype, it is simpli�ed by taking out the short-

est curve and is matched again. If there is still no

match, the digit is rejected.

Classi�cation: In some cases prototype

matching constitutes already a classi�cation de-

cision. There are prototypes that correspond al-

most only to examples from a single class, e.g.

perfect zeros or eights. Other prototypes repre-

sent digits from more than one class, e.g. sixes

and nines, �ves and nines, and fours and sevens

(see �gure 13(b)). The extracted quantitative fea-

tures are used to discriminate the digits that have

the same structure, but belong to di�erent classes.

Depending on the complexity of the structure the

feature vector that is presented to the classi�er

has a length ranging from 19 to 128. For each

structure a specialized neural classi�er is trained.

We use Cascade-Correlation [6] networks, since

they are able to adapt their architecture to the

di�culty of the problem. The sizes of the input

and output layers are determined by the length

of the feature vector and the number of classes.

Training starts with no hidden units. As train-

ing proceeds a cascade of hidden units is created.

(a)

(x,y,a,l,o,...)

(x,y,a,l,o,...)A

B

b

c

d

e

a (x,y)

(x,y)

(x,y)

(x,y)

(x,y)

curve nodes point nodes

(b)

Fig. 13. Attributed structural graph (a) and some assigned digits (b). The �rst two are typical, the others aren't.
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Training stops when the performance on a test set

does not improve any more. A number of trials is

performed and a reject criterion is varied to �nd

a good network.

Experimental Results: To validate the per-

formance of the described structural digit classi�-

cation system, again the well known NIST special

databases 1 and 3 have been used [12, 2, 3]. Un-

fortunately, the digits of this database have been

binarized, which makes intensive low-pass �lter-

ing necessary to prepare the images for the skele-

tonization operator.

About 500 structures have been extracted from

the training set, but only about 300 were frequent

enough to be used as prototypes. The recognition

results show that there is a tradeo� between re-

liability and recognition rate. A useful choice of

the reject criterion could be such that rejection

and substitution rates are equal. In this case the

structural classi�er has recognition rates of about

97.5% on the test set and about 96.8% on the val-

idation set.

These recognition rates by itself would not

justify the employment of the structural digit

recognition, but the combination with the TDNN

makes the hybrid system more reliable. Its dis-

tinctive features are its speed, its ability to rec-

ognize deformed digits and its high reliability for

higher reject rates. The throughput of the entire

classi�cation is about 500 characters/second on a

Pentium-II/266 system. It is able to classify de-

formed digits as long as the typical structure is

retained. Most substitutions occur due to struc-

tural defects of the digits and can be avoided when

allowing the classi�er to reject ambiguous digits.

For the NIST data set a substitution rate of only

0.19% is observed when rejecting 11.55% of the

digits.

4.1.3. Combining classi�ers

Now that we have two 'digit classifying experts',

we have the problem of combining their (eventu-

ally) con
icting decisions. There are several ways

to deal with such classi�er combinations [3, 23].

The two main alternatives are parallel and sequen-

tial combination.

For the parallel combination, both classi�ers are

run and their results are merged, usually by some

kind of voting mechanism or a small third clas-

si�er [3, 23]. This kind of combination usually

yields very low error rates, but has the disadvan-

tage that both classi�ers have to be run, which is

a very time consuming process and not neccessary

for 'easy to recognize' digits.

For the sequential combination, the simplest

and thus lesser time consuming classi�er C0 is run

�rst. If it recognizes the digit with high con�-

dence, we are done without having to ask the sec-

ond classi�er C1. If it C0 does not recognize the

digit, the more powerfull classi�er C1 is run and

the results of both are merged. The disadvantage

of this method is of course that any missclassi-

�cation done by C0 cannot be overruled by C1,

therefore we must ensure that C0 yields very low

error rates.

In our case, we decided to run the structural

classi�er �rst. It is very fast and it also yields very

low error rates. It also has the advantage that, due

to the structural analysis of its input pattern, it

is also able to tell if a pattern is 'far away from

being a digit' (e.g. segmentation alternatives, see

below). In these cases we can also avoid to run

the TDNN.

Combining the two classi�ers in such a way,

we were able to obtain recognition rates of about

97.5% with less than 0.1% substitution rate on the

NIST handprinted digits dataset, or a recognition

rate of 99.5% with 0.5% substitutions [12, 3]. This

is a signi�cant improvement over the recognition

rates yield by the two classi�ers alone.

In practice, where also 'non-digit patterns' are

present, resulting from segmentation trials or

wrong AOIs, the TDNN is run and this happens

only in one �fth of all classi�er calls. This ensures

signi�cant speed with high reliability.

4.2. Separating connected digits in a ZIP block

The main problem of interpreting handwritten

ZIP codes is, of course, that in practice the image

extracted from a scanned letter will not appear as

�ve separated digits. This is due to the limited

resolution of 150 dpi or is caused to binarisation

problems, or because the writer did not separate

the digits at all, as shown in �gure 14.

In the subtasks solved so far, e.g. line- and word

segmentation, segmentation decisions of di�erent

kinds had to be made. But in these cases, there
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Fig. 14. Some examples of ZIP codes extracted from 
at mail pieces.

were only few doubts, e.g. very often there is only

one possible segmentation gap between a ZIP code

block and the cityname. Only in very few am-

bigous cases (assuming the AOI handled actually

contains an address) we have to revise our �rst

alternative and check a second one.

The character segmentation task is much more

complex. If we observe ourselves when reading a

highly connected digit- or character string we will

notice that our 'segmentation decision' is always

doublechecked. We think of some strokes as be-

longing to a certain character and if this strokes

then really form a valid character, and so do the

strokes right and left of the recognized one, we

will accept our decision. Otherwise, if something

seems odd, we revise our decision and 're-group'

the stroke. This is nothing but a permanent it-

eration between a classifying and segmentation

state. Nothing else is done by the GSA-OCR sys-

tem. The only di�erence is that the generation

and evaluation of the segmentation alternatives is

not neccessarily done in iterations, as we will see

below.

As for the classi�ers, we have again two tools

for ZIP code segmentation. The �rst one is an-

alyzing the binarized ZIP code block taking into

account the connected component- and runlength

information. Possible segmentation alternatives

are found and organized in a segmentation tree.

The resulting alternatives are then evaluated by

the classifying system and the best path is taken

as the result.

The second method converts the ZIP code block

into a set of vectors as described in section 4.1.2.

Then the vectors are grouped into clusters form-

ing the potential digits, where ambigous strokes

may belong to more than one cluster. The alter-

natives are again evaluated by the classi�er and

the best combination is taken as the result. Both

approaches will be described in the following sec-

tions. Other approaches to solve this problem can

e.g. be found in [5, 25].

4.2.1. Building and evaluating a segmentation

tree

The �rst problem in building the segmentation

tree is the estimation of the possible segmentation

points. These are more or less found by analyz-

ing the outlines of the di�erent connected compo-

nents [5, 7, 8, 9].

The �rst assumption made, is that a single digit

does not consist of more than one connected com-

ponent. Exceptions are e.g. '5' or '4', which some-

times consist of two unconnected strokes. These

are then grouped using special heuristics, which

are also able to handle special binarisation prob-

lems.

The determination of the ZIP code blocks possi-

ble segmentation points is now done by analysing

the components shape as shown in �gure 15 and

explained in [5, 7, 8, 9].

The di�erent components are regarded as a pri-

ori separated, so we are only interested in further

splitting each of the two components. Starting

at the top (the bottom) we follow the contour

and search for paths which go as much down (up)

through the digit block as possible. This means,

we are looking for local maxima and minima in the

component contour. In our example these are the
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Fig. 15. The di�erent possible segmentation paths for an example ZIP code block.

top-minima A for the �rst, and B, C andD for the

second component rsp. the bottom-maxima A for

the �rst, and B and C for the second component.

Now these di�erent maxima and minima are

combined to potential segmentation points by

merging those top- and bottom-paths which 'al-

most meet each other'. This is called "Hit-and-

De
ection Strategy [5]". The constraint is, that

not all combinations are regarded as valid segmen-

tation paths, they have to have certain properties.

So more vertical paths are preferred, or paths cut-

ting through as less as possible black pixels and so

on.

In our example we have (from top-minima

to bottom-maxima) the following possible 'legal'

cuts:

1. Component:

(a) A$ A.

2. Component:

(a) B $ B and

(b) D $ C.

Fig. 16. All possible segmentation paths for an example ZIP code block.
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So we have one possible segmentation point for

the �rst and two for the second component. Since

we (at this state) cannot know, which segmenta-

tion points are right or wrong or su�cient and

which maybe even split digits in half, we have to

examine all eight possible segmentation alterna-

tives. This means building a tree as shown in �g-

ure 16.

These alternative segmentation paths are now

evaluated by the digit classi�er which has to exam-

ine all nine resulting 'snippets' (potential digits).

The total score of one of the segmentation paths

is the product of all the single classi�er scores of

its member snippets. So paths containing snip-

pets which the classi�er rejects by giving it a very

low con�dence get very small total scores. It keeps

the path containing as much as possible 'recogniz-

able snippets' (i.e. well-segmented digits), in our

example Path H.

Whether the path with the maximum score is

�nally believed to be a valid ZIP code or not de-

pends (besides on its score) on certain other con-

siderations which will be explained later in sec-

tion 5.

4.2.2. Separating digits using structural informa-

tion

The second system used to separate the digits of

a given ZIP-code works using structural informa-

tion. It consists of the stages: i) preprocessing, ii)

structural segmentation, iii) classi�cation of iso-

lated digits, and iv) combination of the single digit

results into a ZIP-code. The system starts with

the leftmost digit and uses the classi�cation re-

sults to determine which segmentation alternative

is evaluated next. Therefore, the segmentation

process is recognition oriented.

Preprocessing: The preprocessing of the

pixel-images that contain scanned ZIP-codes is

very similar to the preprocessing of single dig-

its for structural recognition described in section

4.1.2. After the background has been removed

from the ZIP-code image (see �gure 17(a)), it is

scaled, smoothed, and skeletonized (b). A line-

drawing (c) is produced that is analyzed to con-

struct a stroke-representation (d).

The normalization now di�ers from the digit-

normalization. Here the image is sheared verti-

cally in such a way that the horizontal principal

axis becomes exactly horizontal. Also size normal-

ization uses a di�erent box for the scaling. The

simpli�cation of the stroke-representation takes

into account that some of the ZIP-codes have been

underlined. It removes long strokes at the bottom

of the digit-block.

In addition to the horizontal slope normaliza-

tion we also apply a vertical slant correction,

shown in �gure 17(e). Since the digits have not

been isolated yet, we can not estimate the ver-

tical axis of the single digits. Therefore, we es-

timate the slant of the digit-block by computing

the length of its parallel projections to the hor-

izontal axis for di�erent projection angles that

vary around the vertical. If the projection angle

matches the digit slant, the length of the projec-

tion (shadow) is minimal. This gives us a slant-

estimate that is used to put the digits upright with

a horizontal shear.

Preprocessing produces a cleaned representa-

tion of the digit-block. Most of the noise has been

removed, some connected digits have been sepa-

rated and most broken lines have been completed.

If adjacent digits touch, they do so only at the

ends of strokes.

Structural segmentation: Now the strokes

have to be grouped as digits. We take into account

that German ZIP-codes are composed of exactly

�ve digits. The idea is to run an iterative clus-

tering process that assigns each stroke to one of

�ve centroids. Clustering is based on the weighted

LBG-method [16]. Here, we use a customized dis-

tance function between a stroke si and a centroid

dj :

�(si; dj) := jcenter x(si)� �j j

+�1 &j + �2 di�erent component(si; dj);

where center x(si) is the x-coordinate of the cen-

ter of gravity of si, �j is the x-coordinate of dj , &j is

the sum of the length of all strokes that have been

assigned to dj , and di�erent component(si; dj) in-

dicates with a value of one that si is not member

of the connected component of strokes that has

been assigned to dj . The distance is based on the

x-di�erences between strokes and centroids. The

parameters �1 and �2 control the in
uence of the

fairness component and the connectivity compo-

nent, respectively.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Fig. 17. Preprocessing and segmentation of digit-blocks: (a) background removed, (b) skeleton, (c) line-drawing with

estimated horizontal axis, (d) stroke-representation, (e) upright with shadow, (f) clustering initialized, (g) �nal assignment

of strokes to centroids.
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The projection of the digit-block to the horizon-

tal axis is used to initialize the centroid positions,

as can be seen in �gure 17(f). If the shadow is

composed of exactly �ve components (the opti-

mal case), one centroid is placed in the middle of

each component. If there are only four compo-

nents (two digits touch), two centroids are placed

in the largest component.For other numbers of

components, the centroids are distributed regu-

larly with slightly larger distances on the left side

of the block, since people tend to write the �rst

digits of a ZIP-code larger than the last ones.

The following clustering process works itera-

tively in EM-manner. In each step the positions

of the centroids are estimated based on the assign-

ment of strokes and the assignment of strokes is

updated based on the positions of the centroids.

The clustering is terminated, if the centroid posi-

tions do not change any more or a maximal num-

ber of iterations has been exceeded.

The assignment of strokes uses the distance

function �(si; dj). Each stroke is assigned to the

centroid that has the minimum distance, as indi-

cated by solid lines in �gure 17(e, f). If the sec-

ond best centroid is not farther away than twice

the minimal distance, a secondary assignment is

done (indicated by dotted lines). The existence of

secondary assignments signals the uncertainty of

the algorithm about the correct segmentation.

The new centroid positions are a weighted av-

erage of the x-coordinates of the assigned strokes

centers. The weighting factor is the stroke length.

The update of the centroid positions is damped to

avoid oscillations. It can happen during clustering

that a centroid does not get any strokes assigned.

In such a case the centroid with the largest as-

signed stroke length is split by placing the empty

centroid next to it.

Digit classi�cation: The results of the struc-

tural segmentation are the primary and secondary

stroke assignments, as indicated in �gure 17(g)

and �gure 18. Now the digits need to be cut out of

the digit-block to be presented to a digit classi�er.

Up to three separation proposals are produced for

each centroid:

� Primary separation: All strokes that are pri-

marily assigned to the centroid.
� Secondary separation: All strokes that are pri-

marily or secondarily assigned to the centroid.
� Third separation: All strokes that are primar-

ily assigned to the centroid and that have no

secondary assignment to some other centroid.

Note that not all three proposals need to exist and

that some proposals might be identical.

The separation proposals are generated in this

order, starting with the leftmost digit, and are

presented to the digit classi�er. If this classi�er

accepts the digit, then the process moves on to

the next digit. If the classi�er rejects a separation

proposal, the next separation proposal is gener-

ated and is again presented to the classi�er until

it accepts the digit or all three proposals have been

generated. If more than one separation was tried,

the classi�er outputs are combined to achieve a

consistent interpretation.

(a) (b)

1st digit:

2nd digit:

Primary Secondary Third

separation separation separation

Fig. 18. Separation proposals: (a) Assignment of strokes to centroids. Primary assignments are shown as solid grey lines,

secondary assignments are shown as dashed lines. (b) All possible separation proposals.
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For the digit recognition we use the combined

structural and TDNN classi�er system that has

been described in section 4.1. The preprocess-

ing for the structural classi�er is reduced to a

slant and size normalization of the digit and the

merging of strokes to curves. For the TDNN-

preprocessing, the strokes are traversed with a pen

of the estimated line width. This produces a mask

which is used to cut the digit out of the pixel im-

age, as illustrated in �gure 19.

Combination of the classi�er outputs: The

digit recognition system produces for each digit

the two best classes with assigned con�dence val-

ues. Furthermore, a reject suggestion is produced

for each digit. Now we combine these results to

get the ZIP-code. For the �rst proposal the best

classes from the �ve digits are simply concate-

nated. For the second ZIP-code proposal we re-

place the best class with the second best class at

the position where the largest ambiguity about

the correct classi�cation of the digit exists. This

is indicated by the largest con�dence for a second

best digit class. The con�dence for the ZIP-code

is the product of all used digits con�dences. The

ZIP-code is rejected, if this con�dence falls below

a threshold or some digits are rejected.

Experimental results: The performance of

the structural ZIP-code recognition has been eval-

uated using a database of 5137 isolated German

ZIP-codes. One indication for the e�ectiveness of

the structural segmentation is the fact that the

segmentation is unambiguous for about 70% of the

blocks. No secondary stroke assignments exist in

these cases and exactly �ve primary digit cuts are

presented to the classi�er. In those cases in which

secondary stroke assignments indicate ambiguity

about the correct segmentation, additional sepa-

rations need to be considered only, if the primary

cut is rejected. The average number of 5.12 cuts

per block indicates that this is frequently not the

case. In most cases the digit recognition is done

using only the structural classi�er. Only for about

1.33 digits per block the TDNN-classi�er is con-

sulted.

The structural segmentation method is quite

fast, since it does the preprocessing for the struc-

tural digit recognition. The throughput of the en-

tire recognition system is about 30 blocks/second

on a Pentium-II/266. The most time consuming

tasks are slant normalization of the blocks and the

classi�cation with a TDNN.

4.2.3. Combining the di�erent segmentation

states

We can combine di�erent classi�er outputs (as

shown in section 4.1.3 and we can now as well

combine the two segmentation results. This is also

done in a sequential manner, for performance rea-

sons.

First of all, the segmentation tree is built and

evaluated as explained in section 4.2.1. If a valid

and acceptable result is found, we take it and are

�nished. If not, the structural segmentation is

run. If we get a valid and acceptable result this

time, we take it and are �nished now.

If both segmentation approaches fail, we try to

combine their results. This is done for those cases

where the results suggest, that the problem was

rather the classi�cation of the snippets than the

segmentation itself. Due to the di�erent prepro-

cessing and classi�er combination in the di�erent

segmentation tools, we might get di�erent result

which complement each other. So a combination

(a) (b) (c) (d) (e) (f)

Fig. 19. Cutting digits from the pixel-image and preprocessing for the TDNN: (a) stroke-representation, (b) corresponding

smoothed pixel-image, (c) mask, (d) cut and binarized digit, (e) slant corrected digit, (f) scaled digit.
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of the results is only performed, if none of the seg-

mentation tools completely refuses to segment the

image into �ve digits and both results do not di�er

in more than two digits. Then a combined result

is produced by choosing those digits which had, in

the di�erent results, the highest con�dence. Two

examples are given below

Result Con�dences

Seg. Tree 90700 1.0;1.0;1.0;0.1;0.2;

Structural Seg. 90768 0.9;0.5;0.2;1.0;1.0;

Combination 90768 1.0;1.0;1.0;1.0;1.0;

Seg. Tree 90700 1.0;1.0;1.0;0.1;0.2;

Structural Seg. 00768 1.0;1.0;1.0;1.0;1.0;

Combination REJECT -.-;-.-;-.-;-.-;-.-;

The restriction of not �xing more than two un-

certain digits is done to avoid to 'interprete' ZIP

codes into e.g. non digit blocks, only because of

possible individual classi�er weaknesses and so get

a failsort.

5. ZIP code veri�cation

In the previous sections we have shown how, from

a given AOI, the digit block containing the ZIP

code can be extracted and how �nally this block

can be interpreted. The �nal question is, how

other information on the letter can be used to

make sure that the 'ZIP copde read is the ZIP

code ment', so we have to verify the result. We

have basically three kinds of information to an-

swer this question.

The �rst information is the score or con�dence

with which the segmentation tool has recognized

the ZIP block and its single digits. The lower this

con�dence is, the more likely we have made an

error and should reject the letter, unless we can

exploit more detailed information (see below).

The second information is, if the zipcode recog-

nized actually exists or not. In germany, out of the

possible 100.000 zip codes (�ve digits) only about

49.000 do exist at all, due to the method the re-

gions of the country and states were mapped onto

postal regions.

The third, most important information about

the destination address (besides the ZIP code) is

of course the cityname written on the letter. How

it can be read using special approaches is brie
y

described below. The name of the city has to �t

with the ZIP code (i.e. the pair must exist in a

special postal database), otherwise we have pos-

sibly made an error processing the AOI. In some

cases (especially an if few digits were only weakly

recogniced) we can '�x' the total result by com-

bining cityname and ZIP code results.

5.1. Reading handwritten citynames using Hid-

den Markov Models

The problem of reading handwritten city names is

highly complex, and the 'segmentation and clas-

si�cation approaches' described above for the ZIP

code often fail for this task. The number of pos-

sible segmentation possibilities explodes and iso-

lated characters, or potential ones, are often too

ambigous when taken just for themselves. There-

fore other, probably segmentation-free approaches

have to be used, which take into account contex-

tual information. Usually Hidden Markov Models

(HMMs), known from speech processing, are used.

For a general description of HMMs see [21].

The use of HMMs for the handwriting recog-

nition problem has been proposed by several au-

thors [28, 24, 4]. The basic idea is always sim-

ilar. Over the normalized (i.e. binarized, slant

corrected, etc.) image of the city name a window

of usually a �xed number of columns is displaced

and a feature vector fi is extracted.

During the HMM training, the possible feature

vectors are �rst reduced by clustering them using

a vector quantization approach (LVQ). Each clus-

ter is represented by a prototype, which is stored

in a codebook. Then HMMs have to be trained,

either for parts of the city name (characters, sy-

lables, trigrams) or for the whole word. For the

actual version of the GSA-OCR, models of single

characters are trained, using the Baum-Welch al-

gorithm [21, 24].

To simplify the actual HMM recognition step,

information already available about the ZIP code

is exploited. It has been already classi�ed, with

possible some uncertain digits in it. A ZIP code

with one uncertain digit has a maximum of ten

alternatives, which lead to a list of maximum ten

citynames cn0; : : : ; cn9. The problem thus reduces
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from a 'free recognition' of the city name to match-

ing it to one of the cni names in the list. From the

citynames cni, corresponding HMMs HMM(cni)

are produced as a chain of the models of the char-

acter in cni. Then also a feature vector fi are

extracted from the cityname to recognize as de-

scribed for the training. These are than mapped

to the codebook to obtain the prototype ci repre-

senting fi. Then all the resulting city name mod-

els HMM(cni) are evaluated with the sequence of

these codebook vectors ci using the Viterbi algo-

rithm [21, 24]. The one which matches best (above

a certain threshold) is the result.

6. Conclusion

In this article we have described the OCR system

implemented in the Siemens 
at reading system

SICALIS FSS - C200, GSA for short3. The GSA

is a real world application of neural and image pro-

cessing algorithms; the machine sorts millions of

non-standard letters every week in about 80 sort-

ing centers all over Germany with signi�cant speed

and recognition rates.

We gave a brief description of how addresses

are found on the envelopes and how these ad-

dresses are analyzed to �nally get to the ZIP code

block. We especially concentrated on the problem

of reading and segmenting handwritten ZIP codes.

Two methods were described for classifying hand-

printed digits, and two methods to segment the

ZIP code block into its single digits.

The �nal classi�er is a combination of a pixelo-

riented method, the neural TDNN classi�er, and

a structure analyzing method. Both o�er some

advantages and disadvantages. With the neural

approach, very high recognition rates can be ob-

tained using very little prior knowledge. After

the usual preconditioning (binarization, upright-

ing and scaling to �xed size), feature extraction

and classi�cation is done automatically by the

TDNN learning algorithm. This requires, on the

other hand, more computational e�ort than the

structural approach.

The structural approach is based on extensive

preprocessing of the digit to be recognized. The

image is �rst skeletonized and then converted to

a graph of strokes, which is then matched against

a set of prototype graps extracted from a training

set. Di�erent digits resulting in the same graph

are then discriminated using quantitative features

of the graph used as input to small neural net-

works. This structural approach exploits of course

extensive prior knowledge about digits and the

way they 'could have been' written. This leads

to signi�cant recognition speed and very low error

rates, since only digits exhibiting a typical struc-

ture are recognized. The drawback is, of course,

the much larger e�ort involved in building and

training the classi�er. The recognition rates are

also sligthly lower than those of the TDNN.

The same hybrid approach was used for the seg-

mentation algorithms. We have a pixel oriented

method, which analyzes binarized connected com-

ponents and a second structural approach used as

backup. In both tasks (classi�cation and segmen-

tation) the two used orthogonal approaches com-

plement each other strongly. The advantage is

obvious for the classi�ers: The bulk of the digits

which are carefully written and thus possess a typ-

ical structure are fast and reliable recognized by

the structural method. When in doubt, the digits

are rejected and are recognized by the powerful

TDNN, which relies more on the 'general appear-

ance' of the digits image, not on structural similar-

ities. When used in combination, more than 99%

of the NIST digits can be recognized correctly.

Also segmentation states complement each

other. If the 'free' segmentation (i.e. the num-

ber of digits to separate is undetermined), done

by analysis of the components outlines, fails, the

structural segmentation is called. Again its or-

thogonal vectorization approach and also its more

strict segmentation goal (strictly dividing the ZIP

code into �ve clusters) as well as the eventual prior

knowledge will very likely complete the task.

This paper has thus shown that a complex clas-

si�cation task can be better solved by using a hy-

brid approach: when two or more classi�ers base

their decision on di�erent sets of features, they

can be combined to produce a more reliable sys-

tem. This hybrid approach is followed consistently

in the non-standard letter sorting machine GSA

designed and built by Siemens.
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Notes

1. The system described was ordered, developed and in-

stalled three years before the aquisition of ElectroCom

GmBH (SEC) by Siemens. It is not identical with the

SEC OCR.

2. The o�cial name is SICALIS FSS-C200, see also note

above

3. See also note 1 above.
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