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Abstract

The reinforcement framework is a principled approach famag learning to act in an environment.
In the long run, reinforcement learning finds optimal p@gi However, a physical agent, such as a hu-
manoid robot, acting in the real world can perform only atedinumber of trails, and consequently has
only access to limited experience. With such limitatiohg, éxhaustive exploration of high-dimensional
state and action spaces is not feasible. One approach tdildnisma is to utilize experiences of other
agents by imitating their behavior. If the agents are seffity similar, this can speed-up learning dra-
matically.

We propose to give the learning agent access to the Q-vafwss experienced agent. The learner
combines them with its own Q-values in order to determing@dtécy. This should head-start learning.
We plan to evaluate the effects of this knowledge transfex iask derived from the RoboCup soccer
domain using a humanoid robot.

1 Introduction

Reinforcement learning (RL) offers principled methods &gents to improve upon their actions in a
reward-generating environment [17]. The framework undeg RL is that of Markov decision processes
(MDPs), which describe the effects of actions in a stochasivironment and the possible rewards at var-
ious environmental states. The goal of the agent is to maeitthie expected (discounted) future reward,
without knowing the MDP or the reward function in advance.

Both, model-based and model-free approaches exist to fitichalpolicies when agents are allowed
to act for unlimited time. The impressive power of RL has bdemonstrated in several simulated envi-
ronments (see e.g. [18]), where it is easy to run many trigds physical agents, such as humanoid robots
acting in the real world, it is much more difficult to gain exigmce. Hence, the exhaustive exploration of
high-dimensional state and action spaces is not feasilolea physical robot, it is essential to learn from
few trials in order to have some time left for exploitation.

Several methods have been proposed to speed-up RL. Amangatiechierarchical RL [4, 10], subtask
decomposition [6], and imitation.

Imitating experienced agents offers the possibility teelage their experiences in order to head-start
RL. Such a social learning allows overcoming the limitasiarf standard RL, where each agent has to
reinvent good policies.

Imitation learning is a well established concept in rob®tnd social sciences [1, 3, 5, 7, 8, 9, 11].
Several approaches already exist for the acceleration dRinitation. Behavior cloning [14, 20] transfers
the policy of the experienced agentto the learner. In initpligtation [13] the lerner observes state changes
of the experienced agent and infers the transition moddi@iinderlying MDP. This approach assumes
that the actions of the experienced agent are not observBiderational constraint technique [21] and LQ
controller induction [16] attempt to transfer the Q-valuepresenting expected discounted future rewards
for state-action pairs, from one agent to another.

While many of these techniques have been developed usifdytsgnplified settings, such as grid-
worlds, imitative RL has also been successfully applieé#brobots. For instance, Schaal [15] showed that
learning by demonstration can significantly speed up mbdskd RL in the case of teaching a robot arm
to balance a pole and pendulum-swing up. The techniquemegsby Ng et al. [12] learned a stochastic



model of the dynamics of a helicopter by applying supervisadning on a data set consisting of logged
commands of a human pilot and the resulting states of thedmr. Afterwards, they used Monte Carlo
sampling to approximate the optimal policy.

2 Value Transfer

Transferring Q-values offers the possibility for combipiexperience of one agent with the experience of
another agent. It assumes that both agents are sufficiemtikais act in the same world, and pursue the
same goals. Hence, they share a MR A, T, R), whereS denotes the set of stated, is the set of
possible actions]” : S x A — S describes the state changes caused by actionsRantl — R assigns
rewards to the states.

RL attempts to find a policy : S — A that maximizes the discounted rewads- , v'r;, wherer,
denotes the reward received at timend0 < + < 1 is the discount rate of future rewards.

One popular RL-algorithm is Q-learning [22]. The algorithmaintains a functiol)(s, a) that repre-
sents the expected discounted future reward when the fepagient takes actiom € A in states € S.
This value function is updated according to the rule

Qs,0) — (1= 0)Q(s,0) + a(r +~ argmaxQ(s', ),

whenever a new experien¢e, s, r, s') is made, where’ is the state reached after taking actiom state
s. The learning raté < « < 1 is chosen according to the stochasticity of the MDP.

While the greedy policyr,(s) = argmax Q(s, a) is optimal when the Q-values are accurate, at the
beginning of the learning, nothing is known ab@l{ts, a). In e-greedy policies, random actions are chosen
with decreasing probability in order to explore the state-action space. In high-dinmraistate-action
spaces, such a random exploration takes exponentially Qnaglue initialization and reward-shaping are
equivalent ways [23] of providing extra hints to accele@téearning. These hints are based on potential
functions, which show the agent the direction to goal sta®esh functions are hard to provide if a good
policy is not already known.

We propose to give the learning agent access to the Q—v@l@ga) of an experienced agent in order to
head-start Q-learning. To weight the experiences of botimtsg we maintain counterss) for the learner
andé(s) for the experienced agent that keep track of the number it wifa states. An e-greedy imitative
policy can now be defined as

mi(s) = argmay (AQ(s,a) + (1 — NQ(s, a)), with A = ¢(s)/(1 4 c(s) + Bé(s)).

The imitation rate) < 5 < 1 depends on the similarity of the agents. With probability- ¢) the agent
choosesr;(s). Otherwise it performs a random action.

If the learner encounters a new statés{ = 0), it will imitate the experienced agent. The influence of
the learner’s Q-values increases the more often it encoaatstate, relative to the experienced agent. In
the long run, the influence of the experienced agent vanistrapletely. This is important to account for
differences between the learner and the experienced ag#imately, it allows the learner to exceed the
performance of the experienced agent.

3 Soccer Task

We plan to evaluate the effects of such an imitative policy fask from the RoboCup soccer domain, using
a humanoid robot.

Fig. 1(a) shows one of the robots we use for our research. diiat base, RoboSapien, was developed
by Tilden [19] for the toy market. It is driven by 7 DC motorsdapowered by batteries located in its
feet. The low center of mass makes RoboSapien very stableg thgee motors it can walk dynamically
with two speeds in sagittal direction and also turn on thé.spbe other four motors move its arms. The
original RoboSapien is controlled by the user with a rematetrol. We made it autonomous using a
camera-equipped Pocket PC [2].
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Figure 1: (a) Augmented RoboSapien. (b) Image captured RoimoSapien’s perspective while it was
walking with detected objects: goal (blue horizontal ragta), ball (orange circle), and markers (magenta
vertical rectangles). (c) Three two-dimenensional pridjes of the grid representing the probability distri-
bution of robot posesr, y, §). The green circle is drawn at the estimated robot location). The black
line represents its estimated orientatiorThe detected objects are drawn relative to the robot.

The only source of information about the environment of thieot is the wide-angle camera which
allows seeing the ball at the robot’s feet and the goal semelbusly (see Fig. 1(b)). The Pocket PC runs
higher-level behavior control, computer vision, selfdbzation (Fig. 1(c)), and wireless communication
and sends motion commands to the robot base via infraredmfoify the behavior control interface to the
robot base, we implemented parameterized motion functideswalking straight for a certain distance
or turning for a certain angle. To implement more complexavatrs, we use a finite state machine to
decompose complex tasks into subtasks. For example, theftasoring a goal consists of positioning the
robot behind the ball such that it faces the goal and than mga@wards the goal. The transitions between
the states are triggered based on visual input.

Initially, we want to apply imitative RL to the task of dribbg the ball into an empty goal. As experi-
enced agents we will use a human-controlled RoboSapienytan@mous RoboSapien controlled by our
hand-coded behaviors, and autonomous RoboSapiens wittvibekrained by RL.

To vary the complexity of the task, we will use different edtws of the state and action spaces. One
possibility to encode the state space is to discretizeivelabordinates (angle and distance) of the ball and
the goal, which are estimated by the computer vision modDiee possibility to encode the action space
is to discretize walk and turn commands, sent to the roboobtier option would be to use macro-actions,
such as moving behind the ball and walking towards the goal.

Rewards will be given for scored goals. We will also test tfieat of including the ball-goal distance
into the reward function.

4 Conclusions

We proposed to give a soccer-playing humanoid robot whith iacan RL framework access to the Q-
values of experienced robots. The learner will combine thétim its own Q-values in order to determine
its policy. This should head-start RL and hence allow forréay within the few trials which are possible
with real robots.

The proposed imitative policy is different from Q-valuetialization. Initial Q-values decay exponen-
tially fast whereas in the proposed policy state countersiaed to weight the Q-values of the learner and
the experienced agent.
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