

Lab CudaVision Learning Vision Systems on Graphics Cards (MA-INF 4308)

Introduction Session

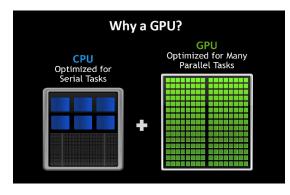
15.10.2021

PROF. SVEN BEHNKE, ANGEL VILLAR-CORRALES

Contact: villar@ais.uni-bonn.de

About Me

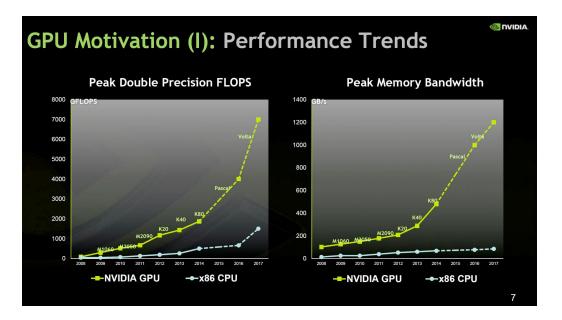
- PhD Candidate at AIS since 02.2021
- Before:
 - M. Sc. at University of Erlangen-Nuremberg
 - B. Sc. at University of Vigo (Spain)
- Research interests:
 - Self-supervised and Unsupervised Learning
 - Computer Vision
 - (Music) Information Retrieval

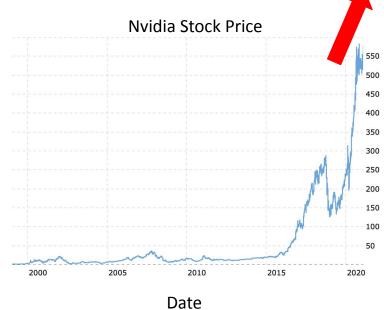


Motivation

Why Image Processing on GPUs?

- Image processing and analysis algorithms are inherently parallel:
 - Convolutions
 - Filtering
- Advancements on parallel computing devices: GPUs or TPUs
- Availability of programming interfaces: CUDA, OpenCL, ...


111	11111

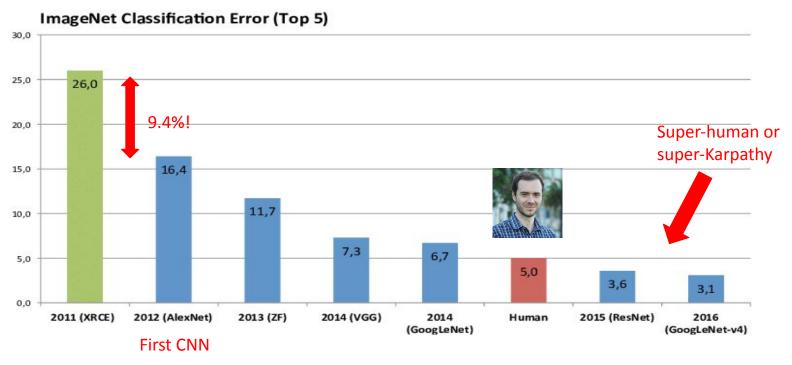

CPU	GPU
Central Processing Unit	Graphics Processing Unit
4-8 Cores	100s or 1000s of Cores
Low Latency	High Throughput
Good for Serial Processing	Good for Parallel Processing
Quickly Process Tasks That Require Interactivity	Breaks Jobs Into Separate Tasks To Process Simultaneously
Traditional Programming Are Written For CPU Sequential Execution	Requires Additional Software To Convert CPU Functions to GPU Functions for Parallel Execution

https://towardsdatascience.com/parallel-computing-upgrade-your-data-science-with-a-gpu-bba1cc007c24

CPU vs. GPU Performance

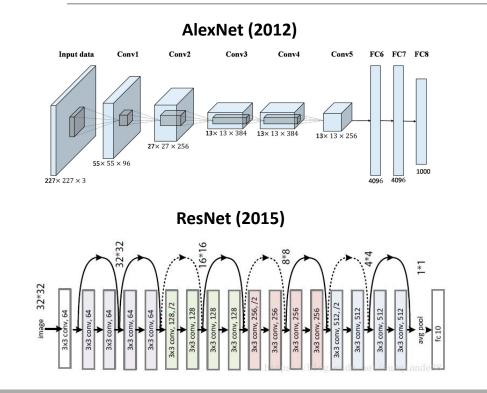
ImageNet Challenge

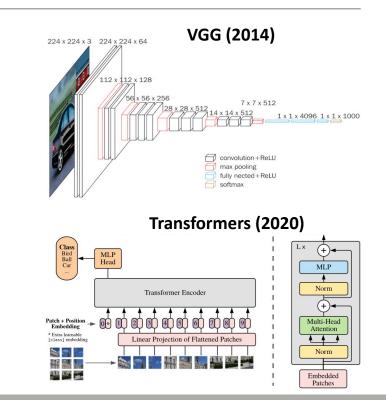
- ≈14 million natural images labelled into ≈1000 classes
- **2012:** Deep learning breakthrough by Krizhevsky et al. [1]


IM . GENET

mite	container ship	motor scooter	leopard
mite	container ship	motor scooter	leopard
black widow	lifeboat	go-kart	jaguar
cockroach	amphibian	moped	cheetah
tick	fireboat	bumper car	snow leopard
starfish	drilling platform	golfcart	Egyptian cat

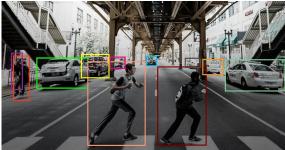
[1]Krizhevsky, A. et al.. "Imagenet classification with deep convolutional neural networks." Advances in neural information processing systems, 2012


ImageNet SOTA



https://devopedia.org/imagenet

Architectures



Applications in Vision

Object Detection

Human Pose Estimation

Semantic Segmentation

Image Synthesis

Deep Learning Users

Angel Villar-Corrales

In this Lab...

Angel Villar-Corrales

In this Lab...

- Implementing deep learning algorithms for visual pattern recognition
 - Python programming language
 - PyTorch framework
 - Deep learning basics
- 8 Lab sessions (30%) in 14 weeks
- Final project (70%) in lecture free period
 - Code/Results
 - Technical Report (6-10 pages)

Organization

- Meeting time: Biweekly 2 hours meeting, in-person
 - Discuss solution to previous assignment
 - Review some theory
 - Run sample code
 - Provide next assignment
 - Questions
- Room 0.057 accessible during working hours
- Accessible GPUs (Informatik ID):
 - 6 GPU servers (cuda7 cuda12) with GTX680 / 780 / 980
 - 4 Bigcuda (bigcuda1, 3, 4, 5) with GTX-Titan / GTX-Titan X / Tesla K20c
 - Free online resources (Google Colab/ Kaggle kernels)

Assignments

- Each session covers one topic
- Take-home assignment
 - Similar to what we do during the session
 - Due shortly before follow up session
- Assignments & project can be done in pairs
 - Highly recommended!
- Send me a mail with the name of your partner or tell me if you need one

Topics Covered

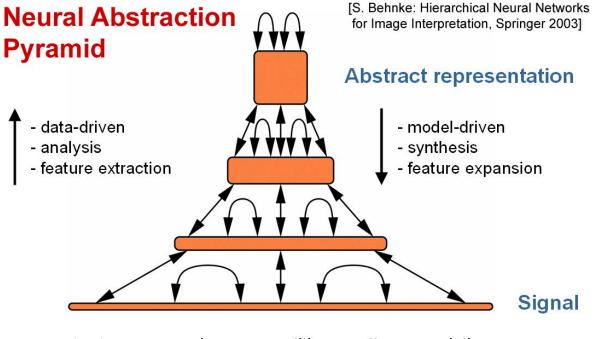
- 1. Python & PyTorch basics
- 2. Autograd, Fully Connected Neural Networks (FC or MLP)
- 3. Optimization & Convolutional Neural Networks (CNNs)
- 4. Popular architectures and transfer learning
- 5. Recurrent Neural Networks (RNNs & LSTM)
- 6. Autoencoders (AEs), Denoising and Variational AEs
- 7. Generative Adversarial Networks (GAN)
- 8. Deep Metric and Similarity Learning
- 9. Extra credit assignment (Optional)

Registration

• Please fill this form before 20.10 (select the time slots that work for you)

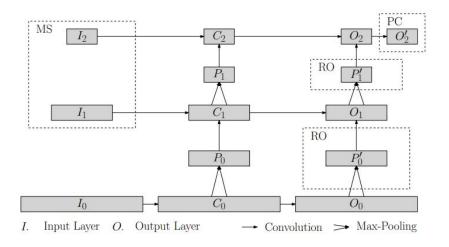
https://forms.gle/CP2PpHcDW7jbAmhW8

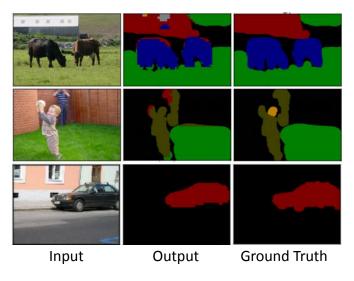
- Registration (contact me first):
 - Uni Bonn: in BASIS
 - Bonn-Rhein-Sieg & Others: Contact our secretary


	Monday	Τι	lesday	V	Vednesday	Thursday	Friday
9-11 or 10-12							
11-13 or 12-14							
13-15 or 14-16							
15-17							

Some of our research...

Neural Abstraction Pyramid




grouping - competition - pattern completion

Object-class Segmentation

Multi-scale CNN for RGB-pixel segmentation



[Schulz and Behnke. ESANN 2012]

Object Detection

- Bounding box object detection
- Novel structured loss function to directly maximize overlap of predicted and ground truth bounding boxes
- Evaluation on two difficult classes from Pascal VOC dataset

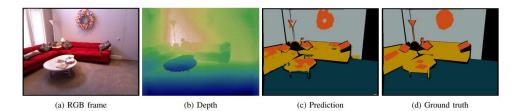


[Schulz and Behnke. ICANN 2014]

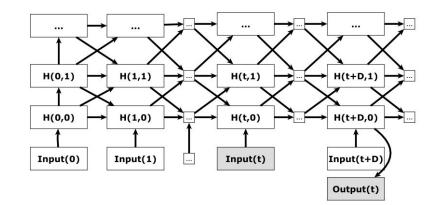
RGB-D Object Segmentation

Use of kinect-like sensors to obtain depth values

Method	floor	struct	furnit	prop	Class Avg.	Pixel Acc.
CW	84.6	70.3	58.7	52.9	66.6	65.4
CW+DN	87.7	70.8	57.0	53.6	67.3	65.5
CW+H	78.4	74.5	55.6	62.7	67.8	66.5
CW+DN+H	93.7	72.5	61.7	55.5	70.9	70.5
CW+DN+H+SP	91.8	74.1	59.4	63.4	72.2	71.9
CW+DN+H+CRF	93.5	80.2	66.4	54.9	73.7	73.4
Müller et al.[8]	94.9	78.9	71.1	42.7	71.9	72.3
Random Forest [8]	90.8	81.6	67.9	19.9	65.1	68.3
Couprie et al.[9]	87.3	86.1	45.3	35.5	63.6	64.5
Höft et al.[10]	77.9	65.4	55.9	49.9	62.3	62.0
Silberman [12]	68	59	70	42	59.7	58.6


CW is covering windows, H is height above ground, DN is depth normalized patch sizes. SP averaged within superpixels and SVM-reweighted. CRF is a conditional random field ow superpixels [8]. Structure class numbers are optimized for class accuracy.

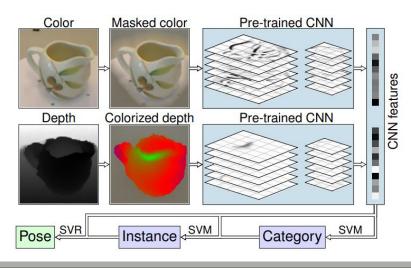
[Schulz, Höft and Behnke. ESANN 2015]



Object Segmentation from RGB-D Video

- Video processing with multi-scale Convolutional RNNs
- Iterative refinement through different time steps

	Clas	Average (%)					
Method	ground	struct	furnit	prop	Class	Pixel	
Unidirectional + SW	90.0	76.3	52.1	61.2	69.9	67.5	
Schulz et al. [20]	93.6	80.2	66.4	54.9	73.7	73.4	
Müller and Behnke [22]	94.9	78.9	79.7	55.1	71.9	72.3	
Stückler et al. [21]	90.8	81.6	67.9	19.9	65.0	68.3	
Couprie et al. [23]	87.3	86.1	45.3	35.5	63.5	64.5	
Höft et al. [19]	77.9	65.4	55.9	49.9	61.1	62.0	
Silberman et al. [17]	68	59	70	42	59.6	58.6	



[Pavel, Schulz, and Behnke. IJCNN 2015, Neural Networks 2017]

Computer Vision with Pretrained Features

- Object recognition and pose estimation
- Pretrained features from ImageNet
- Improved classification and estimation performance

Evaluation on the Washington RGB-D Objects dataset

	Category A	Accuracy (%)	Instance Accuracy (%)		
Method	RGB	RGB-D	RGB	RGB-D	
Lai et al. [12]	74.3 ± 3.3	81.9 ± 2.8	59.3	73.9	
Bo et al. [14]	82.4 ± 3.1	87.5 ± 2.9	92.1	92.8	
PHOW[18]	80.2 ± 1.8	5	62.8		
Ours	83.1 ± 2.0	89.4 ± 1.3	92.0	94.1	

[Schwarz, Schulz and Behnke. ICRA 2015]

Amazon Bin-Picking Challenge

- Picking a large variety of objects
- Placing them on a shelf or packing boxes
- NimbRo team came in 2nd
- Computer vision challenge

[Schwarz et al. ICRA 2017]

Angel Villar-Corrales

Object Capture and Scene Synthesys

- Capture data with a turn table
- Rendered realistic scenes

Object Detection and Segmentation

- RefineNet architecture [1]
- Trained on rendered data

mouse_traps conf: 0.921731

windex ′conf: 0.861246 q-tips_500

conf: 0.475015

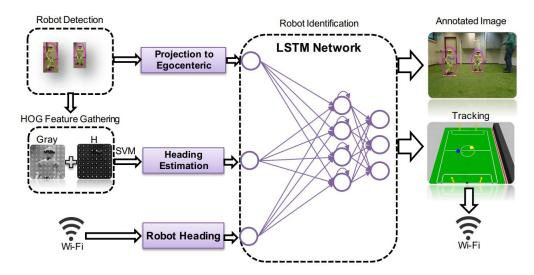
fiskars_scissors /conf: 0.831069

ice_cube_tray /conf: 0.976856

[1] Lin et al. CVPR 2016

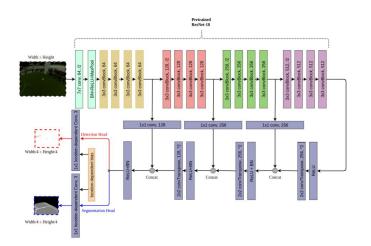
Soccer Robots

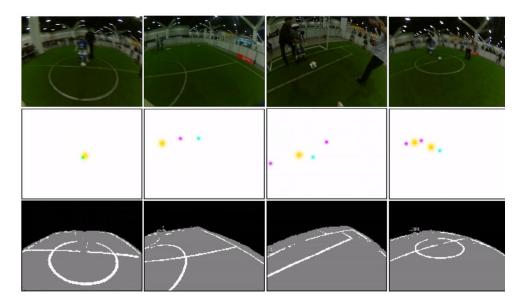
- NimbRo participates in humanoid soccer robot competitions (RoboCup)
- Challenging perception scenario



Robot Tracking and Identification

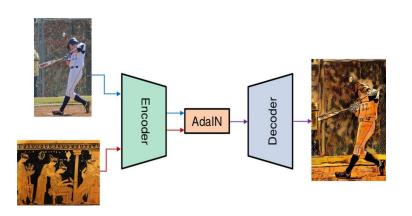
- Real time robot tracking
- Scalable and able to handle occlusions




[Farazi and Behnke. IROS 2017]

Scene Understanding

- End-to-end convolutional model
- Robot and ball detection
- Soccer field segmentation



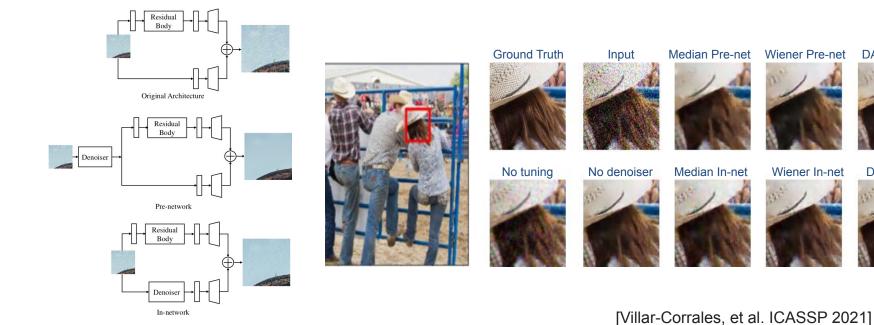
[Rodriguez et al. RoboCup 2019]

Style Transfer Learning

- Person detection and human pose estimation through style transfer learning
- Two stage pipeline to learn in challenging domains with few annotations

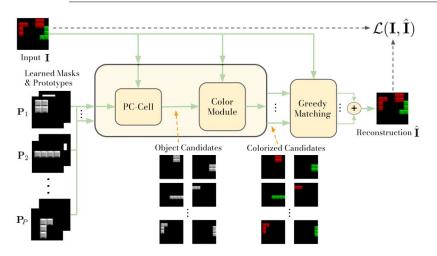
[Villar-Corrales, Mahdu, et al. 2020]

DAE Pre-net

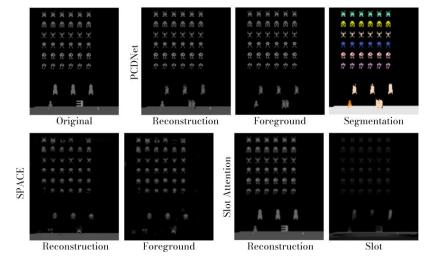

DAE In-net

Wiener Pre-net

Wiener In-net

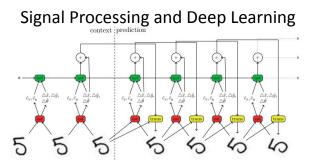

Denoising and Super-Resolution

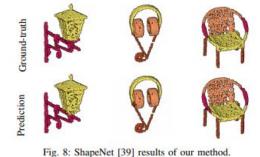
Architectural designs for joined denoising and super-resolution



Unsupervised Object-Centric Learning

Model	$ $ ARI (%) \uparrow $ $	$\mathbf{Params}\downarrow$	$Imgs/s \uparrow$	
Slot MLP [33]	35.1	-	-	
Slot Attention [33]	<u>99.5</u>	229,188	1.48	
ULID [37]	99.6	659,755	52.3	
IODINE [15]	99.2	408,036	11.5	
PCDNet (ours)	99.6	28,130	59.6	


[Villar-Corrales and Behnke. Under Review 2021]


And much more...

UAV Perception

3D Deep Learning

Scene Synthesis

Once Again...

Angel Villar-Corrales

Lab Vision Systems

35

Registration

• Please fill this form before 20.10 (select the time slots that work for you)

https://forms.gle/CP2PpHcDW7jbAmhW8

- Registration (contact me first):
 - Uni Bonn: in BASIS
 - Bonn-Rhein-Sieg & Others: Contact our secretary

	Monday	Τι	lesday	V	Vednesday	1	Thursday	Friday
9-11 or 10-12								
11-13 or 12-14								
13-15 or 14-16								
15-17								

Questions?

