Motivation	Problem statement	Previous work	Method 00000000	Evaluation 000000000	Conclusion

Efficient 3D shape co-segmentation from single-view point clouds using appearance and isometry priors

Master thesis

Nikita Araslanov

Compute Science Institute VI University of Bonn

March 29, 2016

Motivation	Problem statement	Previous work	Method 000000000	Evaluation 000000000	Conclusion
Content	S				

1 Motivation

2 Problem statement

3 Previous work

4 Method

- Segmentation
- Model

5 Evaluation

- Experiment I
- Experiment II

6 Conclusion

Motivation	Problem statement	Previous work	Method 00000000	Evaluation 000000000	Conclusion
Motivatio	n				

Learning a new shape building upon knowledge acquired from similar shapes.

Many applications in robotics would profit from transfer of shape knowledge:

- determining grasping pose of unknown object having seen a similar one;
- human body tracking using a single body model;
- translating human body pose onto a (humanoid) robot for teleoperation or learning from demonstration.

Modelling as deformation with appropriate model:

- articulated objects;
- easily deformable objects from soft materials.

Motivation	Problem statement	Previous work	Method	Evaluation 000000000	Conclusion
Problen	n statement				

Co-segmentation problem:

- Given
 - union of the reference shape segments $S = \bigcup S_i$;
 - label mapping $\ell : S \to L$;
 - query shape $\mathcal{T} := \{t_i \mid t_i \in \mathbb{R}^3\}$ as a point cloud.
- *Task*: find segmentation $\bigcup T_i = T$ with a mapping $\ell^* : T \to L$ such that $\ell^*(T_j) = \ell(S_i)$ if and only if segments S_i and T_j represent semantically corresponding parts.

Motivation	Problem statement	Previous work	Method 00000000	Evaluation 000000000	Conclusion
Previou	s work				

Supervised: segment labels are provided

- Kalogerakis et al. (2010)¹.
- Kaick et al. (2011)².

Unsupervised: segmentation over an unlabelled object category

- Huang et al. (2011)³.
- Sidi et al. (2011)⁴.
- Meng et al. (2013)⁵.

¹Evangelos Kalogerakis, Aaron Hertzmann, and Karan Singh. "Learning 3D mesh segmentation and labeling". In: ACM Transactions on Graphics (TOG). vol. 29. 4. ACM. 2010, p. 102.

²Oliver van Kaick et al. "Prior knowledge for part correspondence". In: Computer Graphics Forum. Vol. 30. 2. Wiley Online Library. 2011, pp. 553–562.

³Qixing Huang, Vladlen Koltun, and Leonidas Guibas. "Joint shape segmentation with linear programming". In: ACM Transactions on Graphics (TOG). vol. 30. 6. ACM. 2011, p. 125.

⁴Oana Sidi et al. Unsupervised co-segmentation of a set of shapes via descriptor-space spectral clustering. Vol. 30. 6. ACM, 2011.

⁵Min Meng et al. "Unsupervised co-segmentation for 3D shapes using iterative multi-label optimization". In: Computer-Aided Design 45.2 (2013), pp. 312–320.

Motivation	Problem statement	Previous work	Method	Evaluation 000000000	Conclusion
Previou	s work: Supervi	ised			

- Kalogerakis et al. (2010)⁶.
- Kaick et al. (2011)⁷.

Main idea: Learn Conditional Random Field (CRF):

$$\mathsf{E}(\mathbf{x}) = \sum_{i} \phi(x_i) + \sum_{i,j} \phi(x_i, x_j),$$

where

- $\phi(x_i)$ models geometrical similarity of a single face by means of shape descriptors;
- $\phi(x_i, x_j)$ models segment boundaries.

Similarities:

- Shape descriptors (unary term);
- JointBoost classifier.

Differences:

- Inference (alpha expansion and alpha-beta swap).
- Pairwise features.

⁶Evangelos Kalogerakis, Aaron Hertzmann, and Karan Singh. "Learning 3D mesh segmentation and labeling". In: ACM Transactions on Graphics (TOG). vol. 29. 4. ACM. 2010, p. 102.

⁷Oliver van Kaick et al. "Prior knowledge for part correspondence". In: Computer Graphics Forum. Vol. 30. 2. Wiley Online Library. 2011, pp. 553–562.

Motivation	Problem statement	Previous work	Method	Evaluation 000000000	Conclusion
Method	: Overview				

Motivation	Problem statement	Previous work	Method	Evaluation	Conclusion
			• 0 0000000		
Segmentation					
_					
Pre-sea	mentation				

Based on the Constrained Planar Cuts segmentation⁸.

- Supervoxel segmentation
- 2 Construct edge cloud (induced by the edges of the supervoxels)
- Classify points concave/convex
- 4 Cut concave points with RANSAC

⁸Markus Schoeler, Jeremie Papon, and Florentin Wörgötter. "Constrained Planar Cuts-Object Partitioning for Point Clouds". In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015, pp. 5207–5215.

Nikita Araslanov University of Bonn

Motivation	Problem statement	Previous work	Method	Evaluation	Conclusion
			00000000		
Segmentation					
Pre-seg	mentation				

Issue:

Merging small segments to larger ones

Solution:

Merging in the order of decreasing concavity

Algorithm 1: Modified CPC algorithm

```
// Original CPC

...

Initialise EdgeQueue from VoxelClusters and EdgesCut;

while EdgeQueue \neq \emptyset do

(V_1, V_2) \leftarrow EdgeQueue.pop();

if Score(V_1, V_2) < ScoreThreshold or

|V_1| < SizeThreshold or |V_2| < SizeThreshold then

| MergeNodes (V_1, V_2), update EdgeQueue;

end

end
```

...

Motivation	Problem statement	Previous work	Method 0000000	Evaluation 000000000	Conclusion
Model					
Method	Model				

Two groups of deformations⁹:

- extrinsic \rightarrow shape part appearance;
- Intrinsic \rightarrow isometric.

Part appearance modelled by $p(\ell_i | T_i)$.

Degree of isometric distortion $p(\ell_i, \ell_j | \mathcal{T}_i, \mathcal{T}_j)$.

$$\begin{array}{ll} \underset{\ell}{\text{maximize}} & \prod_{i,j} p(\ell_i \mid \mathcal{T}_i) p(\ell_j \mid \mathcal{T}_j) p(\ell_i, \ell_j \mid \mathcal{T}_i, \mathcal{T}_j), \end{array}$$

⁹Alexander M Bronstein et al. "A Gromov-Hausdorff framework with diffusion geometry for topologically-robust non-rigid shape matching". In: International Journal of Computer Vision 89.2-3 (2010), pp. 266–286.

Nikita Araslanov University of Bonn

Motivation	Problem statement	Previous work	Method ○○○●○○○○○	Evaluation 000000000	Conclusion
Model					

Method: shape appearance

Feature encoding based on random sampling:

- Feature packet: a number of point clusters sampled from a sparse uniform grid (for each part and viewpoint);
- 2 Extract feature descriptors contained in each cluster;
- 3 Encode each cluster with Bag-of-Words or Fisher vector;
- 4 Average the vector encoding over all clusters in the packet.

Motivation	Problem statement	Previous work	Method ○○○○●○○○○	Evaluation 000000000	Conclusion
Model					
Bag-of-Wo	ords				

- **I** Extract feature descriptors $\mathbf{m}_{\ell,v,t}$ (SHOT) from each view v and part ℓ .
- **2** Fit Gaussian mixture model (GMM) $(w_k, \mu_k, \Sigma_k)_k$

3 Encode

$$f_{\mathsf{BoW}}^{(k)}(\rho_{\ell,\nu,i}) = \frac{w_k}{|\rho_{\ell,\nu,i}|} \sum_t \mathcal{N}(\mathbf{m}_{\ell,\nu,t}|\boldsymbol{\mu}_k,\boldsymbol{\Sigma}_k),$$

for each cluster $|\rho_{\ell,v,i}|$.

4 Vectorise each feature packet $\mathcal{P}_{\ell,v,i}$ by taking the average over the clusters it contains:

$$f_{\mathsf{BoW}}(\mathcal{P}_{\ell,\nu,i}) = \frac{1}{|\mathcal{P}_{\ell,\nu,i}|} \sum_{\rho_{\ell,\nu,i}} f_{\mathsf{BoW}}(\rho_{\ell,\nu,i}), \quad \rho_{\ell,\nu,i} \in \mathcal{P}_{\ell,\nu,i}$$

Train with an RBF-kernel SVM;

Motivation	Problem statement	Previous work	Method	Evaluation	Conclusion
			000000000	000000000	
Model					
Fisher v	ectors				

Encode (FPFH):

$$G_{\boldsymbol{\mu}_{k}}(\rho_{\ell,\boldsymbol{\nu},i}) := \frac{\partial \log p(\rho_{\ell,\boldsymbol{\nu},i}|\lambda)}{\partial \boldsymbol{\mu}_{k}} = \frac{1}{|\rho_{\ell,\boldsymbol{\nu},i}|\sqrt{\omega_{k}}} \sum_{t=1}^{|\rho_{\ell,\boldsymbol{\nu},i}|} \gamma_{\ell,\boldsymbol{\nu},t}(k) \left(\frac{\mathbf{m}_{\ell,\boldsymbol{\nu},t} - \boldsymbol{\mu}_{k}}{\sigma_{k}}\right),$$

$$G_{\boldsymbol{\sigma}_{k}}(\rho_{\ell,\boldsymbol{v},i}) := \frac{\partial \log p(\rho_{\ell,\boldsymbol{v},i} \mid \lambda)}{\partial \boldsymbol{\sigma}_{k}} = \frac{1}{|\rho_{\ell,\boldsymbol{v},i}|\sqrt{2\omega_{k}}} \sum_{t=1}^{|\rho_{\ell,\boldsymbol{v},i}|} \gamma_{\ell,\boldsymbol{v},t}(k) \left(\frac{(\mathbf{m}_{\ell,\boldsymbol{v},t} - \boldsymbol{\mu}_{k})^{2}}{\sigma_{k}^{2}} - 1\right),$$

where

$$\gamma_{\ell,\nu,t}(k) = \frac{\omega_k u_k(\mathbf{m}_{\ell,\nu,t})}{\sum_{j=1}^K \omega_j u_j(\mathbf{m}_{\ell,\nu,t})}, \quad \mathbf{m}_{\ell,\nu,t} \in \rho_{\ell,\nu,j}.$$

2 Concatenate the gradients of each Gaussian centre:

$$\mathbf{f}_{\mathsf{FV}}(\rho_{\ell,\boldsymbol{v},i}) = (G_{\boldsymbol{\mu}_1}^{\mathsf{T}}(\rho_{\ell,\boldsymbol{v},i}), ..., G_{\boldsymbol{\mu}_{\mathsf{K}}}^{\mathsf{T}}(\rho_{\ell,\boldsymbol{v},i}), G_{\boldsymbol{\sigma}_1}^{\mathsf{T}}(\rho_{\ell,\boldsymbol{v},i}), ..., G_{\boldsymbol{\sigma}_{\mathsf{K}}}^{\mathsf{T}}(\rho_{\ell,\boldsymbol{v},i}))^{\mathsf{T}}.$$

3 Normalise¹⁰ with $f(z) = sign(z)|z|^{\alpha}$.

Train with a linear SVM;

¹⁰Florent Perronnin, Jorge Sánchez, and Thomas Mensink. "Improving the fisher kernel for large-scale image classification". In: Computer Vision–ECCV 2010. Springer, 2010, pp. 143–156.

Motivation	Problem statement	Previous work	Method	Evaluation	Conclusion
Model					
Method	: isometry prior				

Diffusion distance: $d_t^2(x, y) = \sum_i K^{2t}(\lambda_i)(\phi_i(x) - \phi_j(y))^2$, **Commute time distance:** $d_{CT}^2(x, y) = \sum_i \frac{1}{\lambda_i}(\phi_i(x) - \phi_j(y))^2$, where $\phi_i(\cdot)$ and λ_i are eigenfunctions and eigenvalues of the Laplace-Beltrami

operator¹¹.

(b) Geodesic (left) and commute time distance (right)

¹¹Jian Liang et al. "Geometric understanding of point clouds using laplace-beltrami operator". In: Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on. IEEE. 2012, pp. 214–221.

Motivation	Problem statement	Previous work	Method	Evaluation	Conclusion
			000000000	000000000	
Model					
Method	: isometry prior				

 $\textit{Idea:}\xspace$ model isometric distortion between shape parts with a distribution of diffusion distances 12

- extract CT distances between each pair of shape parts (including itself);
- fit Gaussian mixture model;
- for a new pre-segmented shape

$$p(\ell_{i\sim i'}, \ell_{j\sim j'} \mid D_{CT}(\mathcal{T}_i, \mathcal{T}_j)) = \frac{p(D_{CT}(\mathcal{T}_i, \mathcal{T}_j) \mid \ell_{i\sim i'}, \ell_{j\sim j'})}{\sum_{i'', j''} p(D_{CT}(\mathcal{T}_i, \mathcal{T}_j) \mid \ell_{i\sim i''}, \ell_{j\sim j''})}$$

4 CRF parameter λ : $\sigma' := (1 + \lambda)\sigma$ (learned using pre-segmentation).

¹²Michael M Bronstein and Alexander M Bronstein. "Shape recognition with spectral distances". In: IEEE Transactions on Pattern Analysis & Machine Intelligence 5 (2010), pp. 1065–1071.

Motivation	Problem statement	Previous work	Method	Evaluation 000000000	Conclusion
Model					
Method	· CBF				

Re-formulate the objective:

$$\underset{\ell}{\text{minimize}} \quad -\sum_{i} \log p(\ell_i \mid \mathcal{T}_i) - \sum_{i,j} \log p(\ell_i, \ell_j \mid \mathcal{T}_i, \mathcal{T}_j).$$

Features:

- Complete graph;
- Moderate size (max. 30 nodes).

Inference with A*:

- Convergence to a global optimum (with an admissible heuristic);
- More efficient than belief propagation¹³.

Nikita Araslanov University of Bonn

3D shape co-segmentation

¹⁴Martin Bergtholdt et al. "A study of parts-based object class detection using complete graphs". In: International Journal of Computer Vision 87.1-2 (2010), pp. 93–117.

Motivation	Problem statement	Previous work	Method 00000000	Evaluation •00000000	Conclusion
Experiment I					
Experime	ent I: Dataset				

Dataset: Labelled Princeton Segmentation Benchmark¹⁵.

- 19 (15 selected) categories derived from Princeton Segmentation Benchmark¹⁶.
- Manual ground-truth labelling based on average human segmentation.

Generating random views

- uniform grid on a sphere;
- valid if at least 20% of each the shape part visible;
- select at most 8 viewpoints with maximum spread.

¹⁵Evangelos Kalogerakis, Aaron Hertzmann, and Karan Singh. "Learning 3D mesh segmentation and labeling". In: ACM Transactions on Graphics (TOG). vol. 29. 4. ACM. 2010, p. 102.

¹⁶Xiaobai Chen, Aleksey Golovinskiy, and Thomas Funkhouser. "A benchmark for 3D mesh segmentation". In: ACM Transactions on Graphics (TOG). vol. 28. 3. ACM. 2009, p. 73.

Motivation	Problem statement	Previous work	Method 000000000	Evaluation 00000000	Conclusion
Experiment I					
Experin	nent I: Criteria				

- Accuracy: % of area labelled correctly.
- **Hamming distance**: the average of the missing rate and false alarm rate:

$$R_m(\mathcal{S},\mathcal{T}) = \frac{D_H(\mathcal{S} \Rightarrow \mathcal{T})}{\|\mathcal{T}\|} \quad R_f(\mathcal{S},\mathcal{T}) = \frac{D_H(\mathcal{T} \Rightarrow \mathcal{S})}{\|\mathcal{S}\|},$$

where $D_H(S \Rightarrow T) := \sum_{S_i \sim T_j} \|T_j \setminus S_i\|$ is the Directional Hamming Distance.

- **Rand index**: the likelihood that a pair of faces is either in the same or different segments in two segmentations: $R = {\binom{N}{2}}^{-1}(a+b)$, where
 - the number of pairs of faces a in the same segment;
 - the number of pairs of faces *b* in different segments.
- Local Consistency Error (LCE):

$$LCE(\mathcal{S},\mathcal{T}) = \frac{1}{N} \sum_{i} \min \{E_i(\mathcal{S},\mathcal{T}), E_i(\mathcal{T},\mathcal{S})\}.$$

Global Consistency Error (GCE):

$$GCE(\mathcal{S},\mathcal{T}) = \frac{1}{N}\min\left\{\sum_{i}E_{i}(\mathcal{S},\mathcal{T}),\sum_{i}E_{i}(\mathcal{T},\mathcal{S})\right\}$$

Motivation	Problem statement	Previous work	Method 00000000	Evaluation 000000000	Conclusion
Experiment I					
Experim	nent I: Results				

Category	van Kaick et al.	Kalogerakis et al.	BoW	BoW+ISO	FV	FV+ISO
Ant	58.8	58.9	66.2	65.6	77.7	74.1
Airplane	62.7	62.0	59.2	57.0	64.0	60.0
Bird	58.1	57.0	57.4	52.0	58.5	53.6
Chair	59.6	59.6	60.6	56.7	60.2	55.5
Cup	81.6	81.8	90.0	87.6	88.7	87.5
Fish	84.2	84.4	72.1	71.7	78.4	77.7
Fourleg	60.1	59.4	51.1	48.1	54.9	50.6
Hand	52.2	52.7	53.4	46.8	56.0	49.6
Human	41.3	41.6	35.8	34.2	43.7	40.4
Mech	81.3	81.7	82.4	84.4	84.1	84.6
Octopus	82.0	82.8	76.5	75.0	69.6	69.8
Plier	33.7	32.5	70.5	57.3	71.9	58.8
Table	71.6	70.9	88.9	87.5	85.4	84.1
Teddy	71.9	71.1	64.5	69.4	76.4	77.0
Vase	64.3	65.5	70.6	65.3	70.3	63.8
Average	64.2	64.1	66.6	63.9	69.3	65.8

Figure : Average accuracy on the LPSB dataset used in Experiment I (in percent)

Motivation	Problem statement	Previous work	Method 00000000	Evaluation	Conclusion
Experiment I					
Experin	nent I: Results				

Figure : The average performance of different co-segmentation algorithms for all categories used in Experiment I

Motivation	Problem statement	Previous work	Method 000000000	Evaluation 000000000	Conclusion
Experiment I					
Experim	ent I: Results				

Motivation	Problem statement	Previous work	Method 000000000	Evaluation	Conclusion
Experiment II					
Experin	nent II: Setup				

Experiment with real point cloud data recorded with ASUS Xtion sensor.

- Comparison of FV with the method of van Kaick et al. (2011)¹⁷.
- Given:
 - manually labelled watercan (from partial views);
- Query:
 - single views of the same watercan (new sequence);
 - 2 single views of a different watercan.

¹⁷Oliver van Kaick et al. "Prior knowledge for part correspondence". In: Computer Graphics Forum. Vol. 30. 2. Wiley Online Library. 2011, pp. 553–562.

Nikita Araslanov University of Bonn

3D shape co-segmentation

Motivation	Problem stateme	nt Previous work	Method 00000000	Evaluation	Conclusion
Experiment II					
_ ·		L. (4)			

Experiment II: Results (1)

Figure : Test sequence with the same query shape as the reference. Top row: van Kaick et al.; Bottom row: Ours (FV).

Motivation	Problem stater	nent	Previous work	Method 000000000	Evaluation ○○○○○○●○	Conclusion
Experiment II						
_						

Experiment II: Results (2)

Figure : Test sequence with a novel query shape. Top row: van Kaick et al.; Bottom row: Ours (FV).

Motivation	Problem statement	Previous work	Method 000000000	Evaluation	Conclusion
Experiment II					
Experim	ent II: Results	(3)			

	van Kaick et al.	FV
Training	259.6	581.0
Learning CRF	506.5	-
Total	766.1	581.0
Pre-segmentation	-	34.2
Inference	290.15	16.1
Total	290.15	50.3

Figure : Average time per object pair in Experiment II (in seconds)

- Hardware: Intel Core i7, 8GB RAM.
- C++ implementation, OpenMP for face- and pointwise operations (e.g. normal estimation).
- Feature computation is included in the "Inference" step.
- FV is almost x6 times faster.

Motivation	Problem statement	Previous work	Method 00000000	Evaluation 000000000	Conclusion
Limitati	ons & Future wo	ork			

Limitations:

- weak link between pre-segmentation and inference
 - pre-segmentation provides an upper-bound on overall performance.
- concavity is not the only cue of the segment boundaries and it can be occluded in partial views.
- limited use of the proposed isometry prior.

Future work:

- Improvement of the context features (isometric distortion):
 - Other Laplace-Beltrami approximations exist for point clouds.
 - Diffusion distance can be approximated with Euclidean distance and a Gaussian kernel.
- Other feature encoding schemes, such as spatial sensitive Bag-of-Words, may improve the performance.

Motivation	Problem statement	Previous work	Method 00000000	Evaluation 000000000	Conclusion
Conclus	sions				

- new co-segmentation approach;
- can be applied to single frames of point clouds captured with RGB-D sensor;
- does not require a complete model
 - be learned from a sequence of partial views).
- efficient inference with strong optimality guarantees.

Thank you!