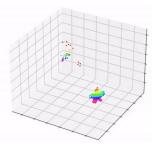
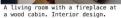


Seminar Vision Systems MA-INF 4208

11.07.2025

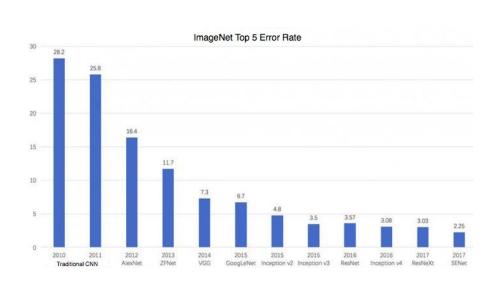

PROF. SVEN BEHNKE, ANGEL VILLAR-CORRALES

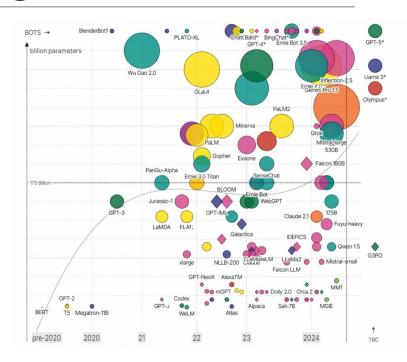
Contact: villar@ais.uni-bonn.de



The Age of Deep Learning

a blue Porsche 356 parked in front of a yellow brick wall.


Eiffel Tower, landscape photography



The Age of Deep Learning

The Age of Deep Learning

In this seminar...

- Acquire/improve ability to:
 - deal with scientific publications (e.g. papers)
 - write a scientific report
 - o present a scientific topic to an audience
 - engage technical topics

Important skills for Master Thesis!

In this seminar

- Discuss trending topics in deep learning and computer vision
- We will cover the following topics
 - 3D Deep Learning
 - Representation Learning from Images & Video
 - Advances in Neural Network Architectures
 - World Models

Seminar: Vision Systems MA-INF 4208

Prof. Dr. Sven Behnke, Angel Villar-Corrales

1 Paper List

1. 3D Deep Learning

- a) Wang, Jianyuan, et al. VGGT: Visual Geometry Grounded Transformer CVPR. 2025. Link
- Asim Mohammad, et al. MEt3R: Measuring Multi-View Consistency in Generated Images. CVPR. 2025. Link
- c) Li, Zhengqi, et al. MegaSaM: Accurate, Fast, and Robust Structure and Motion from Casual Dynamic Videos. CVPR. 2025. Link

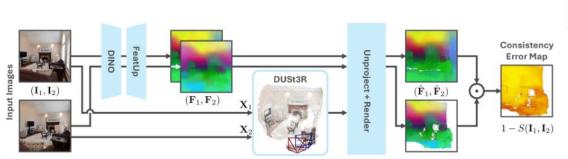
2. Representation Learning from Images & Video

- a) van Steenkiste, Sjoerd, et al. Moving Off-the-Grid: Scene-Grounded Video Representations. NeurIPS. 2024. Link
- b) Cijo, Jose, et al. DINOv2 Meets Text: A Unified Framework for Image- and Pixel-Level Vision-Language Alignment. CVPR. 2025. Link
- c) Tschannen, Michael, et al. SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features. ArXiv Preprint. 2025. Link

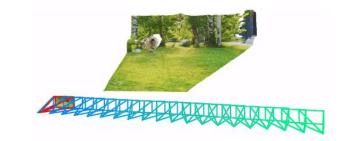
3. Advances in Neural Network Architectures

- a) Braso, Guillem, et al. Native Segmentation Vision Transformers. ArXiv Preprint. 2025. Link
- b) Assran, Mahmoud, et al. V-JEPA 2: Self-Supervised Video Models Enable Understanding, Prediction and Planning. ArXiv Preprint. 2025. Link
- c) Ma, Xin, et al. Latte: Latent Diffusion Transformer for Video Generation. TMLR. 2025. Link

4. World Models

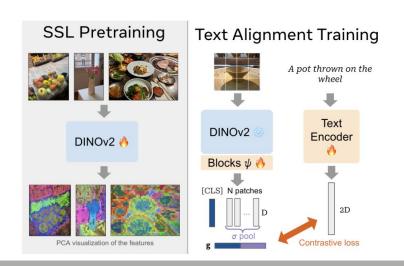

- a) Bar, Amir, et al. Navigation World Models. CVPR. 2025. Link
- b) Zhou, Gaoyue, et al. DINO-WM: World Models on Pre-trained Visual Features enable Zero-shot Planning, ICLR, 2025. Link
- c) Gao, Shenyuan, et al. AdaWorld: Learning Adaptable World Models with Latent Actions. ICML. 2025. Link

Paper List: https://www.ais.uni-bonn.de/SS/SeminarVision/PaperList.pdf



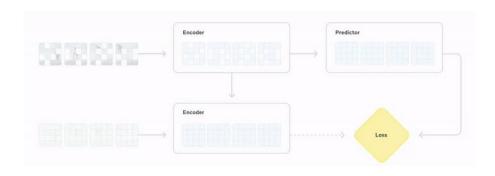
3D Deep Learning

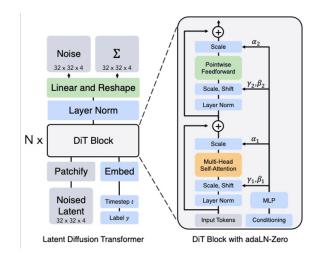
- Learning 3D-aware representations of a scene given a set of posed images
- Applications such as:
 - Novel View Synthesis
 - Evaluating 3D consistency
 - Structure-from-Motion



Representation Learning from Images & Video

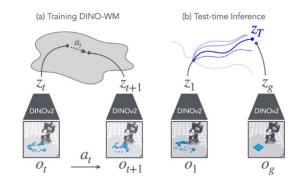
- Learning representations from video data without annotations
- Applications such as:
 - Representation learning
 - Image-Language Grounding

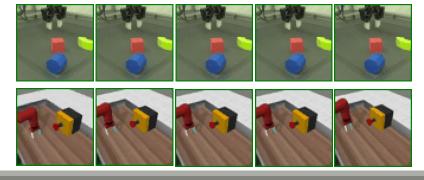




Advances in Neural Network Architectures

- Novel neural network architectures
 - Image segmentation with transformers
 - Self-supervised learning
 - Diffusion Transformers





World Models

- Models that learn to simulate environments and predict future possible outcomes
- Applications such as:
 - Navigation
 - Planning
 - Controllable video generation

Get a Spot and Select your Topic

- Fill the following <u>form</u> no later than 14.07.2025
 - Your name & email
 - Matriculation number
 - Your three preferred papers
- Based on this form, I will and assign seminar spots and papers to review on Monday 18.07.2025
- Upon my confirmation:
 - Register in BASIS
 - Start working on your paper

BASIS Registration opened until 07.08.2025!

Deliverables (preliminary dates)

- Presentation: Thursday 25.09.2025
 - 30 min presentation
 - 15 min discussion
- Report: Thursday 02.10.2025 (will be one week after presentations)
 - LaTeX template
 - 8-12 pages
 - Brief but readable and informative
 - BibTex citations

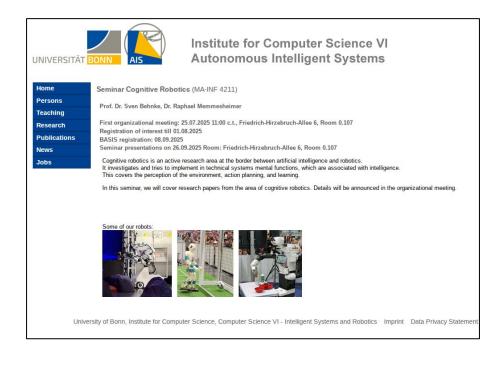
Arrange a meeting with me ≈1 week before the presentation to check the preliminary materials for the presentation and report.

Report

- Well structured:
 - Abstract
 - Introduction, methods, results, conclusion, ...
 - Tables and figures
 - Correct citations
- Your own scientific opinion:
 - What are the weak points of the paper?
 - What is missing?
 - Are comparisons fair and believable?
 - Possible future steps?

We don't want a copy of the paper!

Grading


- 66.7%: Presentation
 - Quality of the presentation slides
 - Presentation skills
 - Ability to answer questions
- 33.3%: Report
 - Overall quality of the report
 - Critical thinking and own discussion
 - Understanding of the concept

Seminar Alternative

Seminar Cognitive Robotics: Link

- Same seminar format
- Papers more robotics related:
 - Grasping and Manipulation
 - Robot vision & perception
 - > SLAM
 - Planning and Navigation
- ➤ Introductory meeting on **25.07.202**

Questions?

