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Abstract— Force feedback is a crucial component to improve
the accuracy and transparency in telemanipulation. Unfor-
tunately, attached tools distort the measured forces of the
force sensor. Thus, a compensation of the static and dynamic
forces and torques is desired to estimate the robot’s actual
interactions with the environment. Due to the inaccuracy of
model-based approaches, this paper presents a model-free
approach to estimate the 6D forces and torques resulting from
an attached tool to compensate the measurement of the force-
torque sensor. We use a deep neural network to achieve this
and compare multiple combinations of neuron numbers and
inputs with an already existing approach. Experiments on a
real telemanipulation setup show that the proposed algorithm
has a higher accuracy with mean Euclidean errors of only
[0.7307±0.4974]N in force and [0.031±0.02]Nm in torque. The
low computation time of 0.12 ms makes it suitable for real-time
applications such as telemanipulation.

I. INTRODUCTION

Bilateral telemanipulation received a lot of attention within
the last decades [1]. Usually, a force sensor is mounted
between the end effector and the used tool to measure
the interaction force [2]. This increase of transparency is
especially used in telemedicine to improve the safety and
performance of the operation [3], [4]. Unfortunately, the
sensor does not directly measure the interaction force but the
sum of the interaction forces and the force resulting from the
attached tool. Thus, it is necessary to compensate the tool
force to guarantee accurate force feedback.
In this paper, we present a deep neural network (DNN)
to estimate forces and torques induced by the tool. This
enables to extract the interaction force from the measurement
of the sensor. Further, we tested this approach on a real
telemanipulation setup and compared it to the approach
presented in [5] that we extended so that it also contains the
torques. We also compared it to a model-based approach. The
experiments show that our approach results in more accurate
estimations while having a lower computation time.

II. RELATED WORK

Conventionally, the exerted forces from the tool are com-
pensated using dynamic tool identification approaches such
as presented in [6] and [7]. Unfortunately, the accuracy of
these widely used model-based techniques is limited due
to the lack of specific dynamic models [2]. Thus, model-
free approaches using machine learning techniques gained
more attention during the last years. The authors of [2]
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and [8] present a multi-layer neural network to estimate the
gravitational forces of the tool depending on the end effector
orientation. They expand this approach in [5] by considering
also the Cartesian velocities and accelerations and by using a
deep convolutional neural network (DCNN). A dropout layer
is used to increase noise robustness, reduce computation time
and enhance stability.
Our approach differs from the present ones since we expand
the algorithm from [5] to estimate not only the three-
dimensional forces but also the torques generated by the tool.
Further, we present a DNN based on real training data and
compare the results of both architectures. We first use the
the inputs presented in [5] but also reduce the input vector to
the minimum needed values. Moreover, we define a suitable
choice of the parameters to achieve a satisfying result and
finally compare these results with a model-based approach.

III. METHODOLOGY

We shortly describe the applied deep convolutional neural
network introduced in [5] for the sake of clarity and present
our extensions on this approach. Furthermore, our DNN
architecture is introduced to compensate the tool forces.

A. Deep Convolutional Neural Network

Su et al. present a deep neural network to compute the
three-dimensional force resulting from the used tool that
is measured by the mounted force sensor and distorts the
measurement [5]. They use four convolutional modules, each
with a 2D convolutional layer, a Rectified Linear Unit func-
tion and a batch normalization layer. A dropout layer is used
to reduce overfitting as well as the computation time. Finally,
a fully connection layer computes the three-dimensional
force. The input XXX = [θθθ ,VVV P,VVV θ ,AAAP,AAAθ ] consists of the euler
angles θθθ of the end effector, the six-dimensional velocity
VVV P, VVV θ and acceleration AAAP, AAAθ .

They use the Homogeneous matrix to further improve the
results of the convolutional network. The final input matrix
is given with

XXX∗ =
[
XXX ,XXX − X̄XX , X̃XX , |XXX |,XXX2] (1)

and X̃XX = XXX−X̄XX
σ(XXX) with X̄XX and σ(XXX) being the average and

variance of XXX , respectively [5].
We extend the output of this approach to also contain
the torques produced by the tool which enables a 6D
dynamic tool compensation. The resulting output is FFF =
[ fx, fy, fz,τx,τy,τz]. We use a final linear layer with 32
neurons and removed the batch normalization and dropout
layers since they did not perform well with our data.
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TABLE I
EXPERIMENTAL RESULTS OF THE TEST MOTION AND THE COMPUTATION TIMES OVER 4000 RANDOM SAMPLES.

Network Architectur Forces Torques Computation Time
Name Input n ∆̄F [N] σ(∆F) [N] ∆Fmax [N] ∆̄τ [Nm] σ(∆τ) [Nm] ∆τmax [Nm] t̄c [ms] σ(tc) [ms]
DCNN XXX∗ - 1.2834 0.8978 6.0388 0.0383 0.0291 0.2510 0.4295 0.2179

DNN

X̃XX
16 0.6964 0.5040 3.5715 0.0332 0.0215 0.1319 0.1241 0.0547
32 0.8140 0.5484 4.1347 0.0295 0.0197 0.1486 0.1210 0.0543

X̃XX
′

8 0.7307 0.4974 3.7051 0.0310 0.0200 0.1587 0.1200 0.0562
16 0.6853 0.5026 3.7069 0.0343 0.0239 0.1640 0.1244 0.0658
32 0.7825 0.5312 4.2771 0.0342 0.0240 0.2386 0.1250 0.0660

B. Deep Neural Network

Our DNN consists of three fully connected layers with
the output FFF for the 6D tool compensation. As the in-
put, we compare the full input XXX with the reduced input
XXX

′
= [θθθ ,VVV θ ,AAAP,AAAθ ].
We decided to ignore the translatoric velocities since they

have no direct impact on the force of the tool. Note that this
assumption is only valid while neglecting the air resistance.
The final input is the mean adjusted representation X̃XX and
X̃XX

′
. Further, we vary the amount of used neurons to find an

ideal balance between accuracy and computation time.

IV. EXPERIMENTS

We use a real telemanipulation setup to generate our
training data and to conduct our experiments. It consists
of a Haption Virtuose 6D input device as the leader and a
F6D100-50 force-torque sensor attached on a Franka Emika
Panda robot as the follower. We implemented our algorithms
in C++ using Torch for the neural network and ROS2 for the
telemanipulation system. All processes run on a Linux real-
time kernel using a Intel(R) Core(TM) i7-7700 with 3.60
GHz and 16 GB RAM.
We used 46417 samples for the training (10 % for the valida-
tion set) and a test motion that consists of 4670 samples. The
sampling frequency was 10 ms and all data were unfiltered.
Further, we trained our DNN with different amount of
neurons. We used 8, 16 and 32 neurons for the reduced
input X̃XX

′
and 16 and 32 with X̃XX for comparison. Finally, we

evaluated the computation time of each network over 4000
random samples using the stated hardware configuration.

V. RESULTS

Fig. 1 shows the orientation of the tool and the resulting
velocities during the test motion. This motion contains a va-
riety of orientations with many different acceleration patterns
in translation and rotation. Table I shows the results of each
neural net with the errors during the test motion as well
as the computation time of the 4000 random samples. The
errors ∆F and ∆τ describe the Euclidean error of the three-
dimensional force and torque, respectively. n describes the
amount of neurons for each layer within the net.

In general, accuracy and computation time of the DNN
are better compared to the DCNN. The accuracy and com-
putation time within the different versions of the DNN are
quite similar. A proper choice of the network depends on the
requirements of the system. A combintation of good force

Fig. 1. Orientation and translatoric and angular velocity of the test motion
to validate the trained networks.

and torque compensation together with very low computation
times is achieved by the DNN without the translatoric
velocity and 8 used neurons for each layer.

Finally, we compute the inertial parameters of the tool ap-
plying the approach presented in [9]. With these parameters,
we receive mean Euclidean errors of [1.4049± 0.75]N and
[0.0362±0.255]Nm in force and torque for the test motion,
which show a higher force error compared to our DNN.

VI. CONCLUSIONS
This work provides a model-free approach to compensate

the force and torque distortion generated by a tool, mounted
on a moving force-torque sensor. Thus, we expand an already
proposed approach to include the measured torques. Further,
we implement a simple deep neural network to achieve the
same goal. We tested multiple input combinations and com-
pared our results. The best results are received using a DNN
with three layers, 8 neurons each and an input containing the
tool orientation, the angular velocity and the 6D Cartesian
acceleration. The norm of the errors are [0.7307±0.4974]N
and [0.031±0.02]Nm and the maximum errors are 3.7051 N
and 0.1587 Nm, respectively. The computation time of this
approach was 0.12 ms on average which makes it very
suitable for real-time applications such as telemanipulation.
Further work aims at developing a similar approach for a
flexible tool such as a robotic hand or a three-finger gripper.
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[4] A. Naceri, J. Elsner, M. Tröbinger, H. Sadeghian, L. Johannsmeier,
F. Voigt, X. Chen, D. Macari, C. Jähne, M. Berlet, J. Fuchtmann, L.
Figueredo, H. Feußner, D. Wilhelm and S. Haddadin, “Tactile Robotic
Telemedicine for Safe Remote Diagnostics in Times of Corona:
System Design, Feasibility and Usability Study,” in IEEE Robotics and
Automation Letters, vol. 7, no. 4, pp. 10296–10303, October 2022.

[5] H. Su, W. Qi, C. Yang, J. Sandoval, G. Ferrigno and E. D. Momi,
“Deep Neural Network Approach in Robot Tool Dynamics Identifi-
cation for Bilateral Teleoperation,” in IEEE Robotics and Automation
Letters, vol. 5, no. 2, pp. 2943–2949, April 2020.

[6] C. M. Oddo, P. Valdastri, L. Beccai, S. Roccella, M. C. Carrozza and P.
Dario, “Investigation on calibration methods for multi-axis, linear and
redundant force sensors,” in Measurement Science and Technology,
vol. 18, no. 3, January 2007.

[7] J. Wu, J. Wang and Z. You, “An overview of dynamic parameter
identification of robots,” in Robotics and Computer-Integrated Manu-
facturing, vol. 26, no. 5, pp. 414–419, 2010.

[8] H. Su, C. Yang, H. Mdeihly, A. Rizzo, G. Ferrigno and E. De Momi,
“Neural Network Enhanced Robot Tool Identification and Calibration
for Bilateral Teleoperation,” in IEEE Access, vol. 7, pp. 122041–
122051, August 2019.

[9] W. Khalil, M. Gautier and P. Lemoine, “Identification of the payload
inertial parameters of industrial manipulators,” in Proceedings 2007
IEEE International Conference on Robotics and Automation, pp.
4943–4948, April 2007.




