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Abstract— This paper presents a real-time optimization-
based algorithm for mapping motion between two kinematically
dissimilar serial linkages, such as a human arm and a robot
arm. OCRA can be customized based on the target task to
weight end-effector orientation versus the configuration of the
central line of the arm, which we call the skeleton. A video-
watching study (N=70) demonstrated that when this algorithm
considers both the hand orientation and the arm skeleton, it
creates robot arm motions that users perceive to be highly
similar to those of the human operator, indicating OCRA would
be suitable for telerobotics and telepresence through avatars.

I. INTRODUCTION

Despite widespread scientific support for the health ben-
efits of exercise, physical inactivity is on the rise world-
wide [1]. While socially assistive robots have shown potential
as exercise coaches [2], they are currently far from being
usable in real-world scenarios, where they will need to be
able to adapt to changing user needs [3]. These robots typi-
cally leverage pre-programmed gesture-based interactions in
the form of demonstrations [4], [5], [6] to teach exercises
to their users. However, the motions and responses of the
robot can best be designed by exercise therapy experts
who are familiar with the needs and therapy objectives of
their patients. We believe that an intuitive teleoperation
system would facilitate the long-term personalization and
effectiveness of such exercise robots.

We are particularly interested in upper-body humanoid
robotic exercise coaches due to their ability to facilitate
social-physical human-robot interaction [7]. Additionally,
motion-capture-based teleoperation is known to be the most
effective and intuitive methodology to enable a human oper-
ator to teach gestures to a robot [8]. The so-called retargeting
problem has been studied extensively by both roboticists [9]
and animators [10]. Roboticists have created algorithms that
rely on inverse kinematics [11], [12], optimization [13], and
morphological adaptation between kinematic chains [14],
[15]. However, there exists a need for a system that not only
is easy to use for non-experts but also works in real time and
has been carefully evaluated [9]. Thus, through this paper,
we briefly explain and evaluate OCRA, our Optimization-
based Customizable Retargeting Algorithm for teleoperation.
We plan to release our code open-source with the final
publication associated with this project. OCRA is ROS1
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compatible and can easily be adapted to other robots with
minimal modifications to our code.

II. ALGORITHM

We created an optimization-based kinematic retargeting
algorithm that functions in real time. OCRA takes inspiration
from the method proposed by Tosun et al. [16] due to
its generalizability to arbitrary serial robots. However, that
method ignores end-effector orientation, matches the user
pose imperfectly, and does not function in real time. Our
algorithm requires only the current configurations of both the
input and output kinematic chains to perform retargeting.

Assuming the human arm has been appropriately scaled
and transformed so the shoulder joint coincides with the
robot’s first joint, OCRA minimizes the retargeting error
(ϵR), which is a weighted sum of the squared arm skeleton
error (ϵs) and the squared hand orientation error (ϵo):

ϵR = αϵ2s + βϵ2o. (1)

Each type of error (skeleton, orientation) is normalized
by the maximum possible value and is thus unitless. The
constant weights (α, β) are customized by the user before
teleoperation and are subject to the following constraints:

0 ≤ α ≤ 1, 0 ≤ β ≤ 1, α+ β = 1. (2)

At each time step, the algorithm’s goal is to find the robot
joint values that minimize (1) for the operator’s current
pose. The optimization employs Newton’s conjugate-gradient
method [17] and uses the previous time step’s solution as the
next initial guess. This approach functions well in real time,
achieving a mean update rate of 25.89 Hz on our system.

Arm Skeleton Error: This error term is a curve similar-
ity metric that measures how different the current configura-
tion of the source chain (human arm) is from that of the target
chain (robot arm) based on Fréchet’s distance [18], [19].
We define the arm skeleton error as the sum of the shortest
distances from each joint of the source kinematic chain to
the target chain and vice versa. Let si be the shortest positive
distance from the ith joint of the source chain to the closest
segment of the target chain, and let tj be the shortest distance
from the target chain’s joint j to the closest segment of the
source chain. The source chain has m joints, and the target
chain has n joints. To represent the maximum possible value,
the normalization factor, ℓ, is the sum of the cumulative sums
of the segment lengths of the source and target chains. The
normalized skeleton error can then be defined as follows:

ϵs =

∑m
i=1 si +

∑n
j=1 tj

ℓ
. (3)
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End-effector Orientation Error: The orientation of the
hand plays a vital role in both task-based teleoperation
and social interaction. Thus, we add a second metric that
quantifies errors in the orientation of the end-effector frame.
Since robot and motion-capture manufacturers choose end-
effector frames somewhat arbitrarily, we first define a custom
frame that is positioned and oriented in a suitable way on
each end-effector. For our application, it is in the middle
of the human’s palm and at the center of the robot’s palm,
which coincides with the base of the parallel jaw gripper. Let
qς and qτ be the quaternions representing the orientations of
the source and target end-effector frames, respectively. We
can then obtain the quaternion Qd = qς/qτ that represents
the orientation difference between the two frames. From Qd

we calculate the positive relative angle between these frames,
θd, using the axis-angle representation. This angle can have a
maximum value of π radians. Thus, normalized end-effector
orientation error is defined as ϵo = θd/π.

III. IMPLEMENTATION AND STUDY DESIGN

We tested OCRA on a Rethink Robotics Baxter Research
Robot [20] using human motion-capture data collected via
an Xsens Link [21]. Human perception of the motion of
others stems from our immense experience in performing
activities ourselves [22]. Thus, an intuitive teleoperation
system should create human-like motions. We conducted
a two-factor within-subjects study to discover how users
perceived robot motions created by OCRA (with different
weights) compared to those of the human operator.

70 online participants (age: M=35.4, SD=12.3) were pre-
sented with videos of two-armed human motion positioned
next to and synchronized with a corresponding Baxter robot
motion. They saw four exercise-related motions of differing
complexity, each rendered with four values for the arm-
skeleton weight: α = [0.001, 0.33, 0.67, 1.00]. Fig. 1 shows
sample images from the study, which was designed for an
online format following relevant guidelines [23]. Participants
rated how similar each robot motion was to the human mo-
tion on a visual analog scale from 0 (worst) to 100 (best) with
five standard labels ranging from “very different” to “very
similar”. Additionally, we posed final questions to identify
the participant’s reasoning for their ratings. We hypothesized
that retargeting that combines both types of errors will
outperform retargeting that considers only skeleton or only
orientation error (H1) and that the relative performance of
different weight sets will be consistent across motions (H2).
These hypotheses were tested via an aligned-rank-transform
two-way ANOVA [24].

IV. RESULTS

Selected results from the user study can be seen in
Fig. 2. Participants rated conditions having a substantial
combination of skeleton and orientation error to be signif-
icantly more similar to the human motion than the tested
conditions with purely orientation or purely skeleton error.
User comments also demonstrate that participants cared most
about the orientation of the robot’s hand and the shape of

Fig. 1. Sample screenshots of two movement videos shown in the study
for the α = 0.67 condition. The two-armed robot tries to match the human
operator’s hand orientations while prioritizing matching their arm skeletons.
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Fig. 2. Participant ratings for two of the movements shown in the
user study, each with four weights for skeleton error. Significant pairwise
differences between medians (the central bars in the boxes) are indicated
by lines with stars: ⋆ p < 0.05, ⋆ ⋆ ⋆ p < 0.001, and ⋆ ⋆ ⋆ ⋆ p < 0.0001.

its arm skeleton, rather than the position of the hand or the
smoothness of the motion. These observations support our
first hypothesis. Thus, skeleton error and orientation error
can indeed be considered suitable ingredients for creating
human-like robot motion from motion-capture data.

Interestingly, our second hypothesis (H2) was not fully
substantiated by our results (see Fig. 2). There were varia-
tions in participant ratings across the two presented motions,
which we attribute to their different complexity levels. Users
distinguished between α = 0.33 and α = 0.67 when the
motions were more elaborate, as seen in the dance sequence.

V. CONCLUSIONS

This workshop paper briefly presented OCRA, a customiz-
able algorithm to retarget human arm motion onto a robot
arm. A perceptual user experiment with videos showed that
our algorithm produces human-like motions for moderate
weight values. This algorithm is generalizable to all rigid
robots with revolute joints; it may need to be adapted to
work well with prismatic joints. Our next step is to evaluate
this teleoperation system via a real-time usability experiment.
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