Walking motion Control: theory and implementation

Pierre-Brice Wieber INRIA Grenoble

Who am I ?

- Master thesis on biped robots in 1997
- PhD thesis on biped robots in 2000
- My algorithms implemented in HRP-2, Nao and tested on other robots
- Never participated to any RoboCup

What are we going to see today ?

- Dynamics of legged locomotion
- Generation of dynamic walking motions
- Motion and force control
- Numerical implementation details

Milestones in legged robotics

- 1960s : Walking Truck (R. Mosher)
- 1970s : Waseda university (I. Kato)
- I 980s : Adaptive Suspension Vehicle (R. McGhee)
- 1980s : MIT LegLab (M. Raibert)
- 1996 : Honda P2 (K. Hirai, T. Takenaka...)

The walking truck

The adaptive suspension vehicle

MIT LegLab

The Honda P2

The dynamics of legged locomotion

Structure of the minimal coordinates

- Joint positions
- Position and orientation with respect to the environment

$$q = \begin{bmatrix} \hat{q} \\ x_0 \\ \theta_0 \end{bmatrix}$$

Structure of the Lagrangian dynamics $M(q)\left(\begin{bmatrix}\hat{q}\\\ddot{x}_{0}\\\ddot{a}_{-}\end{bmatrix}+\begin{bmatrix}0\\g\\0\end{bmatrix}\right)+n(q,\dot{q})=\begin{vmatrix}u\\0\\0\end{bmatrix}+\sum_{i}C_{i}(q)^{T}f_{i}$ $m\left(\ddot{c}+g\right)=\sum f_i$ $\dot{L} = \sum (p_i - c) \times f_i$ $L = \sum (x_k - c) \times m_k \dot{x}_k + I_k \omega_k$

And yet it moves

< | degree/step

Structure of the Lagrangian dynamics $M(q)\left(\begin{bmatrix}\hat{q}\\\ddot{x}_{0}\\\ddot{a}_{-}\end{bmatrix}+\begin{bmatrix}0\\g\\0\end{bmatrix}\right)+n(q,\dot{q})=\begin{vmatrix}u\\0\\0\end{bmatrix}+\sum_{i}C_{i}(q)^{T}f_{i}$ $m\left(\ddot{c}+g\right)=\sum f_i$ $\dot{L} = \sum (p_i - c) \times f_i$ $L = \sum (x_k - c) \times m_k \dot{x}_k + I_k \omega_k$

$$\frac{m c \times (\ddot{c} + g) + \dot{L}}{m(\ddot{c}^z + g^z)} = \frac{\sum_i p_i \times f_i}{\sum_i f_i^z}$$

$$c^{x,y} - \frac{c^z}{\ddot{c}^z + g^z} (\ddot{c}^{x,y} + g^{x,y}) + \frac{1}{m(\ddot{c}^z + g^z)} S\dot{L}^{x,y} = \frac{\sum_i f_i^z p_i^{x,y}}{\sum_i f_i^z}$$

$$c^{x,y} - \frac{c^z}{\ddot{c}^z + g^z} (\ddot{c}^{x,y} + g^{x,y}) + \frac{1}{m(\ddot{c}^z + g^z)} S\dot{L}^{x,y} = \frac{\sum_i f_i^z p_i^{x,y}}{\sum_i f_i^z}$$

$$\frac{c^z}{\ddot{c}^z + g^z} (\ddot{c}^{x,y} + g^{x,y}) = (c^{x,y} - z^{x,y}) + \frac{1}{m(\ddot{c}^z + g^z)} S\dot{L}^{x,y}$$

$$c^{x,y} - \frac{c^z}{\ddot{c}^z + g^z} (\ddot{c}^{x,y} + g^{x,y}) + \frac{1}{m(\ddot{c}^z + g^z)} S\dot{L}^{x,y} = \frac{\sum_i f_i^z p_i^{x,y}}{\sum_i f_i^z}$$

$$\frac{c^z}{\ddot{c}^z + g^z} (\ddot{c}^{x,y} + g^{x,y}) = (c^{x,y} - z^{x,y}) + \frac{1}{m(\ddot{c}^z + g^z)} S\dot{L}^{x,y}$$

Walking horizontally

$$\frac{c^z}{\ddot{c}^z + g^z}(\ddot{c}^{x,y} + g^{x,y}) = (c^{x,y} - z^{x,y}) + \frac{1}{m(\ddot{c}^z + g^z)}S\dot{L}^{x,y}$$

$$c^{x,y} - \frac{c^z}{g^z}\ddot{c}^{x,y} = z^{x,y}$$

Not just a «Linear Inverted Pendulum Model»

The dynamics of falling

$$a^T(c^{x,y}(t) - c^{x,y}(t_0)) \ge \frac{a^T \dot{c}^{x,y}(t_0)}{\omega} \sinh\left(\omega(t - t_0)\right)$$

The dynamics of falling

$$a^{T}(c^{x,y}(t) - c^{x,y}(t_0)) \ge \frac{a^{T}\dot{c}^{x,y}(t_0)}{\omega} \sinh\left(\omega(t - t_0)\right)$$

The Capture Point

$$\xi = c + \frac{1}{\omega}\dot{c}$$

$$\dot{c} = \omega(\xi - c)$$

$$\dot{\xi}^{x,y} = \omega(\xi^{x,y} - z^{x,y})$$

The Capture Point

Generation of dynamic walking motions

Early offline schemes

- Trajectory optimization
- Artificial synergy synthesis & ZMP approach

$$\frac{c^z}{\ddot{c}^z + g^z}(\ddot{c}^{x,y} + g^{x,y}) = (c^{x,y} - z^{x,y}) + \frac{1}{m(\ddot{c}^z + g^z)}S\dot{L}^{x,y}$$

• Templates & anchors

Online motion generation

• Necessary for reactivity

• How to make sure you are stable in the long term?

Optimal and Model Predictive Control

Optimal feedback

$$x_{k+1} = f(x_k, u_k)$$

$$V^*(x_0) = \min_{u_0,...} \sum_{0}^{\infty} l(x_k, u_k)$$

- u₀^{*}(x₀) is asymptotically stabilizing if the system is controllable
- $V^*(x_0)$ as Lyapunov function

Terminal constraint

• Keerthi 1988 JOTA $V_N^*(x_0) = \min_{u_0,...} \sum_{0}^{N-1} l(x_k, u_k)$ with $x_N = 0$

$$V_N^*(x_0) \ge V_{N+1}^*(x_0) \ge \dots \ge V^*(x_0)$$

 $V_N^*(x_0) \ge l(x_0, u_0^*) + V_N^*(f(x_0, u_0^*))$

• $V_N^*(x_0)$ as Lyapunov function

Feasibility is sufficient

• Alamir 1999 EJC

find u_0, \ldots such that $x_N = 0$

• Compute a new plan only in case of a diverging perturbation

Horizon long enough

• Alamir 1995 A

$$V_N^*(x_0) = \min_{u_0,...} \sum_{0}^{N-1} l(x_k, u_k)$$

 $V_N^*(x_0) = l(x_0, u_0^*) + V_N^*(f(x_0, u_0^*)) - l(x'_N, u''_N)$

$$\forall N \ge N_{\varepsilon}, \ l(x'_N, {u^*}'_N) < \varepsilon$$

 You can do without <u>explicit</u> terminal cost and constraint with a horizon long enough

Predefined footsteps, Capturability constraint

$$\frac{\sum m_i (\ddot{c}_i^z + g^z) c_i^{x,y} - m_i c_i^z \, \ddot{c}_i^{x,y}}{\sum m_i (\ddot{c}_i^z + g^z)} \longrightarrow z_{ref}^{x,y}$$

• Must always be able to stop within 2 steps.
Waseda University

2006 WABIAN-2R Walking Experiment

Walking with heel-contact and toe-off motion Forward : 0.50[m/step], 0.96[s/step]

TUM Johnny/Lola

$$\frac{\sum m_i (\ddot{c}_i^z + g^z) c_i^{x,y} - m_i c_i^z \, \ddot{c}_i^{x,y}}{\sum m_i (\ddot{c}_i^z + g^z)} \approx z_{ref}^{x,y}$$

$$c^{x,y}(t + \Delta T) = c_{ref}^{x,y}$$

TUM Johnny/Lola

Autonomous Humanoid Robot Lola

at the Hannover Fair 2010

Honda Asimo

$$\frac{\sum m_i (\ddot{c}_i^z + g^z) c_i^{x,y} - m_i c_i^z \, \ddot{c}_i^{x,y}}{\sum m_i (\ddot{c}_i^z + g^z)} \approx z_{ref}^{x,y}$$

$$\xi^{x,y}(t + \Delta t) = \xi^{x,y}_{ref}$$

ToDaï H7 & Toyota

$$c^{x,y} - \frac{m \, c^z \, \ddot{c}^{x,y} - \dot{L}^{x,y}}{m(\ddot{c}^z + g^z)} \longrightarrow \overline{p_i^{x,y}}$$

$$c^{x,y}(t + \Delta T) = c_{ref}^{x,y}$$

Sony QRIO

$$\min \sum \left\| c^{x,y} - \frac{c^z}{g^z} \ddot{c}^{x,y} - \overline{p_i^{x,y}} \right\|^2$$

$$c^{x,y}(t + \Delta T) = c^{x,y}_{ref}, \ \dot{c}^{x,y}(t + \Delta T) = 0$$

Predefined footsteps, NO capturability constraint

Kawada HRP-2

$$\min \sum \|\ddot{c}^{x,y}\|^2 + \beta \left\| c^{x,y} - \frac{c^z}{g^z} \ddot{c}^{x,y} + \frac{S\dot{L}^{x,y}}{mg^z} - \overline{p_i^{x,y}} \right\|^2$$

A korean variant

$$\min \sum \|\ddot{c}^{x,y}\|^2 + \beta \left\| c^{x,y} - \frac{c^z}{g^z} \ddot{c}^{x,y} + \frac{S\dot{L}^{x,y}}{mg^z} - \overline{p_i^{x,y}} \right\|^2 + \gamma \|L^{x,y}\|^2$$

Nao omniwalk

$$\min \sum \|\ddot{c}^{x,y}\|^2$$

$$c^{x,y} - \frac{c^z}{g^z} \ddot{c}^{x,y} \in \operatorname{conv}\left\{p_i^{x,y}\right\}$$

EuroGraphics

Figure 17: Dinosaur turning and leaping. (a) footprin

Adaptive footsteps

Nao's future algorithm

$$\min \sum \left\| \dot{c}^{x,y} - \dot{c}^{x,y}_{ref} \right\|^2$$

$$c^{x,y} - \frac{c^z}{g^z} \ddot{c}^{x,y} \in \operatorname{conv}\left\{p_i^{x,y}\right\}$$

Walking without thinking about it

Vision feedback

Todaï

 $\xi^{x,y}(t + \Delta t) = \xi^{x,y}_{ref}$

Todaï

Online Decision of Foot Placement using Singular LQ Preview Regulation

Todaï

Online Walking Pattern Generation for Push Recovery and Minimum Delay to Commanded Change of Direction and Speed

Junichi Urata, Koichi Nishiwaki, Yuto Nakanishi, Kei Okada, Satoshi Kagami and Masayuki Inaba

Key ingredients ?

- Viability & Capturability
- Artificial synergy synthesis
- Model Predictive Control

Boston Dynamics ?

Don't want/have computing resources ?

Combining simple rules (MIT LegLab)

- Control vertical oscillations
- Control upper body attitude
- Adaptive step placement, «neutral position»

Combining simple rules (biomimetic)

- Central Pattern Generators (oscillators)
- Control upper body attitude
- Adaptive step placement

Motion and Force Control

Whole body motion

- Inverse Kinematics + joint control
- Virtual Model Control
- Task Function Approach
- Operational Space Control

CoM motion control

CoM motion control

$$\dot{c} = \omega(\xi - c)$$

$$\dot{\xi}^{x,y} = \omega(\xi^{x,y} - z^{x,y})$$

$$z^{x,y} = c_{ref}^{x,y} + k(\xi^{x,y} - c_{ref}^{x,y})$$

$$\dot{\xi}^{x,y} = \omega(k-1)(c_{ref}^{x,y} - \xi^{x,y})$$

Contact force control

• Damping oscillations

$$\dot{z} = \omega_z (z_d - z)$$

$$z_d^{x,y} = c_{ref}^{x,y} + k(\xi^{x,y} - c_{ref}^{x,y}) + k'(z^{x,y} - c_{ref}^{x,y})$$

Contact force control

Numerical implementation

People who are really serious about software should make their own hardware.

Alan Kay (invented Object Oriented Programming at Xerox PARC)

People who are really serious about control algorithms should make their own numerical solver.

Pierre-Brice Wieber (invented not much yet at INRIA Grenoble)

- Nishiwaki 2002 IROS: 52–104 samples over 3 steps, 2.6–5.2 s / 50 ms
- Buschmann 2007 ICHR: 20–30 pieces of cubic spline over 3 steps \approx 100 ms period
- Morisawa 2006 ICHR: 7 pieces of quartic or quintic + exponential over 2 steps ≈ 300 ms

- Takenaka 2009 IROS: 14 pieces of line + exponential over 2 steps ≈ 70–130 ms
- Pratt 2006 ICHR: 2 pieces of exponentials over 1 step

- Van de Panne 1997 EG: 2 pieces of cubic spline over 2 steps
- Kajita 2003 ICRA: 320–640 pieces with constant jerk over 2–4 steps, 1.6–3.2 s / 5 ms
- Herdt 2010 RSJAR: 16 pieces with constant jerk over 2 steps, 1.6 s / 100 ms

- Like Kajita and Buschmann, let's use cubic splines (piecewise constant jerk) for the CoM
- We can bound the overshoot of the CoP:

$$z^{x,y} - z^{x,y}_{\max} \le \frac{1}{8} \ddot{c}^{x,y}_{\max} \delta t^2 \approx \frac{g^z \|z^{x,y} - c^{x,y}\|_{\max}}{8c^z} \delta t^2 \approx \frac{1}{2} \delta t^2$$

100 ms appears fair enough in this linear
Detailed formulas

Herdt 2010 RSJAR $\ddot{C}_k = \begin{vmatrix} c_k \\ \vdots \\ \vdots \\ c_{k+N-1} \end{vmatrix}$ $\dot{C}_{k+1} = \begin{vmatrix} \dot{c}_{k+1} \\ \vdots \\ \dot{c}_{k} \end{vmatrix} = S_v \begin{bmatrix} c_k \\ \dot{c}_k \\ \ddot{c}_k \end{bmatrix} + U_v \ddot{C}_k$ $Z_{k+1}^{x} = \begin{vmatrix} z \\ \vdots \\ z^{x} \end{vmatrix} = S_{z} \begin{bmatrix} c_{k}^{x} \\ \dot{c}_{k}^{x} \\ \ddot{c}_{k}^{x} \end{vmatrix} + U_{z} \ddot{C}_{k}^{x}$

Detailed formulas

$$S_{v} = \begin{bmatrix} 0 & 1 & T \\ \vdots & \vdots & \vdots \\ 0 & 1 & NT \end{bmatrix} U_{v} = \begin{bmatrix} T^{2}/2 & 0 & 0 \\ \vdots & \ddots & 0 \\ (1+2N)T^{2}/2 & \dots & T^{2}/2 \end{bmatrix}$$

$$S_{z} = \begin{bmatrix} 1 & T & T^{2}/2 - h/g \\ \vdots & \vdots & \vdots \\ 1 & NT & N^{2}T^{2}/2 - h/g \end{bmatrix} U_{z} = \begin{bmatrix} T^{3}/6 - Th/g & 0 & 0 \\ \vdots & \ddots & 0 \\ (1+3N+3N^{2})T^{3}/6 - Th/g & \dots & T^{3}/6 - Th/g \end{bmatrix}$$

Cost function

Cost function

$$\min \frac{\alpha}{2} \left\| \ddot{C}_{k}^{x,y} \right\|^{2} + \frac{\beta}{2} \left\| \dot{C}_{k+1}^{x,y} - \dot{C}_{ref}^{x,y} \right\|^{2} + \frac{\gamma}{2} \left\| Z_{k+1}^{x,y} - F_{k+1}^{x,y} \right\|^{2}$$

$$x_k = \begin{bmatrix} C_k \\ \bar{F}_{k+1}^x \\ \vdots \\ \bar{C}_k^y \\ \bar{F}_{k+1}^y \end{bmatrix} \qquad \min_{x_k} \frac{1}{2} x_k^T Q_k x_k + p_k^T x_k \qquad Q_k = \begin{bmatrix} Q'_k & 0 \\ 0 & Q'_k \end{bmatrix}$$

$$Q'_{k} = \begin{bmatrix} \alpha I + \beta U_{v}^{T} U_{v} + \gamma U_{z}^{T} U_{z} & -\gamma U_{z}^{T} \bar{V}_{k+1} \\ -\gamma \bar{V}_{k+1}^{T} U_{z} & \gamma \bar{V}_{k+1}^{T} \bar{V}_{k+1} \end{bmatrix}$$

Constraints on the CoP

$$l \le R(F_{k+1}^{\theta}) \begin{bmatrix} Z_{k+1}^x - F_{k+1}^x \\ Z_{k+1}^y - F_{k+1}^y \end{bmatrix} \le u$$

$$l \le R(F_{k+1}^{\theta}) \left(\begin{bmatrix} U_z & -\bar{V}_{k+1} & 0 & 0\\ 0 & 0 & U_z & -\bar{V}_{k+1} \end{bmatrix} x_k + \begin{bmatrix} S_z \hat{c}_k^x - V_{k+1} f_k^x \\ S_z \hat{c}_k^y - V_{k+1} f_k^y \end{bmatrix} \right) \le u$$

$$x_k = \begin{bmatrix} \ddot{C}_k^x \\ \bar{F}_{k+1}^x \\ \ddot{C}_k^y \\ \bar{F}_{k+1}^y \end{bmatrix}$$

Trivial constraints

How to solve a Quadratic Program

Unconstrained

$$\min_{x} \frac{1}{2}x^{T}Qx + p^{T}x$$

$$Qx + p = 0$$

Equality constrained

$$\min_{x} \frac{1}{2}x^{T}Qx + p^{T}x$$

s.t. $Ax + b = 0$
 $Qx + p = A^{T}\lambda$

$$\begin{pmatrix} Q & A^T \\ A & 0 \end{pmatrix} \begin{pmatrix} x \\ -\lambda \end{pmatrix} + \begin{pmatrix} p \\ b \end{pmatrix} = 0$$

Trivially constrained

$$\min_{x} \frac{1}{2}x^{T}Qx + p^{T}x$$

s.t. $\underline{x} + b = 0$ $(\underline{x} = Ex)$
 $Qx + p = E^{T}\underline{\lambda}$
 $\overline{Q}\overline{x} + \overline{p} = 0$

Active constraints

Computation time

