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Motivation 

BHuman vs. Nimbro, RoboCup German Open 2010 
 

Photo by J. Bösche, www.joergboesche.de 



Previous approaches:  
2D Path Planning 

 Compute collision-free 2D path first,  
then footsteps in a local area 

 

 Problem: 2D planner cannot consider all 
capabilities of the robot 

 

[Li et al. ‘03, Chestnutt & Kuffner ‘04] 
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Path Planning for Humanoids  

 Humanoids can avoid obstacles by 
stepping over or close to them  

 However, planning whole-body motions 
has a high computational complexity 

 Planning for possible  
foot locations reduces  
the problem  

[Hauser et al. ‘07, Kanoun ’10, …] 

 



Overview: Path Planning  
for Humanoids  
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Footstep planning with A* 

 Search space:  
(x,y,θ) 

 

 Discrete set  
of footsteps 

 

 Optimal solution  
with A* 

 

[Kuffner ‘01, Chestnutt et al. ‘05, ‘07] 



Randomized Footstep Planning 

 Search space of footstep actions  
with RRT / PRM 

 Fast planning results 

 Enables high number of actions 

 No guarantees on  
optimality or  
completeness 

 

 

[Perrin et al. ‘11] 



A* Heuristic Search 

 Best-first search to find a cost-optimal 
path to a goal state 

 Expands states according to the evaluation 
function f(s)=g(s)+h(s) 

 g(s): Costs from start to current state 

 h(s): Heuristic, estimated costs to the goal 

 Heuristic must be admissible: it may never 
overestimate the costs to the goal 



 

 

 State  

 Footstep action 

 Fixed set of footstep actions 

 Successor state  

 Transition costs reflect execution time: 

Footstep Planning 

costs based on the 
distance to obstacles 

constant step cost 

Euclidean distance 



Footstep Planning 
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Footstep Planning 

transition costs 

path costs from 
start to s 
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estimated costs 
from s’ to goal 
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Footstep Planning 
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Heuristic 

 Estimates the costs to the goal 

 Critical for planner performance 

 Usual choices: 

 Euclidean distance 

 2D Dijkstra path 

expanded  
state s' 

goal 
state 

h(s') 



Collision Checking in 2D 

 Footprint is rectangular with arbitrary orientation 

 Evaluating the distance between foot center and 
the closest obstacle may not yield correct or 
optimal results 

 Recursively subdivide footstep shape 

[Sprunk et al. (ICRA ‘11)] 

            = distance  
to the closest obstacle 
(precomputed map) 



Search-Based Footstep Planning 

 Concatenation of footstep actions builds a 
lattice in the global search space 

 Only valid states after a collision check 
are added 

 Goal state may not be exactly reached, 
but it is sufficient to reach a state close 
by (within the motion range) 

 

 

current state 

goal state 



Search-Based Footstep Planning 

 We can now apply heuristic search 
methods on the state lattice 

 Search-based planning library: 
www.ros.org/wiki/sbpl 

 Footstep planning implementation based 
on SBPL: 
www.ros.org/wiki/footstep_planner 

 

 

http://www.ros.org/wiki/sbpl
http://www.ros.org/wiki/footstep_planner


Local Minima in the Search Space 

start goal 

expanded states 

 A* will search for the optimal result 

 Initially sub-optimal results are often 
sufficient for navigation 

 Provable sub-optimality instead of 
randomness yields more efficient paths 

 



Anytime Repairing A* (ARA*) 

 Heuristic inflation by a factor w allows to 
efficiently deal with local minima:  
weighted A* (wA*) 
 

 ARA* runs a series of wA* searches, 
iteratively lowering w as time allows 
 

 Re-uses information from previous 
iterations 

[Likhachev et al. (NIPS 2004),  

Hornung et al. (Humanoids 2012)] 



ARA* with Euclidean Heuristic 

start goal 

w = 10 



ARA* with Euclidean Heuristic 

start goal 

w = 1 



ARA* with Dijkstra Heuristic 

Performance depends on well-
designed heuristic  

start goal 

w = 1 



Randomized A* (R*) 

 Iteratively constructs a graph of sparsely 
placed randomized sub-goals (exploration) 

 Plans between sub-goals with wA*, 
preferring easy-to-plan sequences 

 Iteratively lowers w as time allows 

[Likhachev & Stentz (AAAI 2008),  

Hornung et al. (Humanoids 2012)] 



R* with Euclidean Heuristic 

start goal 

w = 10 



R* with Euclidean Heuristic 

start goal 

w = 1 



Planning in Dense Clutter Until 
First Solution 

A* 
Euclidean heur. 

R* 
Euclidean heur. 

ARA* 
Euclidean heur. 

ARA* 
Dijkstra heur. 

11.9 sec. 0.4 sec. 2.7 sec. 0.7 sec. 



Planning in Dense Clutter Until 
First Solution 

 12 random start and goal locations  

 ARA* finds fast results only with the 2D Dijkstra 
heuristic, leading to longer paths due to its 
inadmissibility 

 R* finds fast results even with the Euclidean 
heuristic 



Planning with Time Limit 5s 
R* 
Euclidean heuristic 

ARA* 
Euclidean heuristic 

ARA* 
Dijkstra heuristic 

start 
goal 

start 

goal 

clutter 

fails, requires 43 sec. 

fails, requires 92 sec. 

final w=1.4 final w=7 

final w=8 final w=1.4 



Anytime Planning Results 

 Performance of ARA* depends on well-
designed heuristic 

 Dijkstra heuristic may be inadmissible 
and can lead to wrong results 

 R* with the Euclidean heuristic finds 
efficient plans in short time 



Dynamic A* (D*) 

 Allows for efficient re-planning in case of 

 Changes in the environment  

 Deviations from the initial path 

 Re-uses state information from previous 
searches  

 Planning backwards increases the efficiency 
in case of updated localization estimates 

 Anytime version: AD* 

[Koenig & Likhachev (AAAI ‘00), Garimort (ICRA ’11)] 



D* Plan Execution with a Nao 



Efficient Replanning 

 Plans may become invalid due to changes 
in the environment 

 D* allows for efficient plan re-usage 

2966 states, 1.05s 956 states, 0.53s 



Extension to 3D 

 Depth camera for visual perception  

 Scan matching to reduce drift of odometry 

 Heightmap as environment representation 

 Footstep planning and collision-checking  
on heightmap 

Maier et al. (to appear IROS 2013)] 



Depth Cameras for  
Robot Navigation 

 Dense depth  
information 

 

 Lightweight 

 

 Cheap 

 

 



Pose Estimation 

 Odometry estimate is error-prone due to 
slippage of the feet and noisy sensors 

 Accordingly, consecutive depth camera 
observations may not align 

 Error accumulates over time 

 Scan matching to reduce the error 

 

odometry 
estimate 



Pose Estimation 

 Odometry estimate is error prone due to 
slippage of the feet and noisy sensors 

 Accordingly, consecutive depth camera 
observations may not align 

 Error accumulates over time 

 Scan matching to reduce the error 

 

scan  
matching 



Heightmap Learned from  
Depth-Camera Observations 

 2D gridmap  

 Probabilistic  
height estimate  
for each cell 

 Conservative  
updates 

 Quick access 

 Memory efficient 

 High resolution 



T-Step step over step onto 

Action Set for a Nao Humanoid 

Standard 
planar steps 

Extended 3D stepping capabilities 



Dijkstra Heuristic for Heightmaps 

 Graph G=(V,E) 

 V: discrete locations in the (x,y)-space 

 E: union of 8-neighborhoods in the state space 

 Costs of an edge are defined by the height 
differences in the heightmap 

 h(s): shortest path in G to the goal / 

free (low) 

elevation  
(mid) 

non- 
traversable 
  (infinite) 

example costs heightmap 



Safe Stepping Actions 

 Allow only states where all  
cells covered by the footprint  
have a small height difference 
 

 

 Height difference between  
   and             must be within  
the limits  
allowed by the action  

 

s 0 = a(s)

a

s
[¢ zmin ; ¢ zmax ]

a

s



Whole-Body Collision Checking 

 Project swept volume of a motion to the 
ground plane: inverse heightmap (IHM) 

 An action    at state    is safe if  
 
 

s



Navigation Experiments 



Adaptive Level-of-Detail Planning 

 Planning the whole path with footsteps may 
not always be desired in large open spaces 

 Adaptive level-of-detail planning: Combine 
fast grid-based 2D planning in open spaces 
with footstep planning near obstacles 

 

 

 

 

 Adaptive planning 

[Hornung & Bennewitz (ICRA ‘11)] 



Adaptive Level-of-Detail Planning 

 Allow transitions between 
neighboring cells in free 
areas and between 
sampled contour points 
across obstacle regions 

 Traversal costs are 
estimated from a pre-
planning stage or with a 
learned heuristic 

 Every obstacle traversal  
triggers a footstep plan 

 

 

 



Adaptive Planning Results 

start 

goal 

<1 s planning time 
High path costs 

29 s planning time <1s planning time, 
costs only 2% higher 

2D Planning Footstep Planning Adaptive Planning 

Fast planning times and efficient solutions 
with adaptive level-of-detail planning 

 



Summary 

 Anytime search-based footstep planning 
with suboptimality bounds: ARA* and R* 

 Replanning during navigation with AD* 

 Heuristic influences planner behavior 

 Adaptive level-of-detail planning to 
combine 2D with footstep planning 

 Extensions to 3D obstacles 

 Available open source in ROS: 
www.ros.org/wiki/footstep_planner 

 

 

 

 

http://www.ros.org/wiki/footstep_planner


Example: ATLAS humanoid  
in DRC (Team ViGIR) 



Thank you! 



Live Demo 

 Install prerequisites: 
sudo apt-get install ros-groovy-desktop-full 

python-rosdep python-rosinstall ros-groovy-sbpl 

 Follow rosinstall instructions at 
http://ros.org/wiki/humanoid_navigation 
(but don‘t compile) 

 Compile with rosmake footstep_planner 

 Start with roslaunch footstep_planner 
footstep_planner_complete.launch 

http://ros.org/wiki/humanoid_navigation
http://ros.org/wiki/humanoid_navigation

