
Armin Hornung

Search-Based Footstep Planning

Joint work with J. Garimort, A. Dornbush, D. Maier, C. Lutz, M. Likhachev, M. Bennewitz

University of Freiburg, Germany

Motivation

BHuman vs. Nimbro, RoboCup German Open 2010

Photo by J. Bösche, www.joergboesche.de

Previous approaches:
2D Path Planning

 Compute collision-free 2D path first,
then footsteps in a local area

 Problem: 2D planner cannot consider all
capabilities of the robot

[Li et al. ‘03, Chestnutt & Kuffner ‘04]

start goal

Path Planning for Humanoids

 Humanoids can avoid obstacles by
stepping over or close to them

 However, planning whole-body motions
has a high computational complexity

 Planning for possible
foot locations reduces
the problem

[Hauser et al. ‘07, Kanoun ’10, …]

Overview: Path Planning
for Humanoids

Footsteps

CoM
Trajectory

Desired ZMP
Trajectory

Joint Angles

Pattern
Generator

(e.g. Kajita et
al. 2003)

Footstep planning with A*

 Search space:
(x,y,θ)

 Discrete set
of footsteps

 Optimal solution
with A*

[Kuffner ‘01, Chestnutt et al. ‘05, ‘07]

Randomized Footstep Planning

 Search space of footstep actions
with RRT / PRM

 Fast planning results

 Enables high number of actions

 No guarantees on
optimality or
completeness

[Perrin et al. ‘11]

A* Heuristic Search

 Best-first search to find a cost-optimal
path to a goal state

 Expands states according to the evaluation
function f(s)=g(s)+h(s)

 g(s): Costs from start to current state

 h(s): Heuristic, estimated costs to the goal

 Heuristic must be admissible: it may never
overestimate the costs to the goal

 State

 Footstep action

 Fixed set of footstep actions

 Successor state

 Transition costs reflect execution time:

Footstep Planning

costs based on the
distance to obstacles

constant step cost

Euclidean distance

Footstep Planning

start

Footstep Planning

start

Footstep Planning

start

Footstep Planning

transition costs

path costs from
start to s

s

estimated costs
from s’ to goal

start

s’

Footstep Planning

s

start

s’
planar obstacle

?

Heuristic

 Estimates the costs to the goal

 Critical for planner performance

 Usual choices:

 Euclidean distance

 2D Dijkstra path

expanded
state s'

goal
state

h(s')

Collision Checking in 2D

 Footprint is rectangular with arbitrary orientation

 Evaluating the distance between foot center and
the closest obstacle may not yield correct or
optimal results

 Recursively subdivide footstep shape

[Sprunk et al. (ICRA ‘11)]

 = distance
to the closest obstacle
(precomputed map)

Search-Based Footstep Planning

 Concatenation of footstep actions builds a
lattice in the global search space

 Only valid states after a collision check
are added

 Goal state may not be exactly reached,
but it is sufficient to reach a state close
by (within the motion range)

current state

goal state

Search-Based Footstep Planning

 We can now apply heuristic search
methods on the state lattice

 Search-based planning library:
www.ros.org/wiki/sbpl

 Footstep planning implementation based
on SBPL:
www.ros.org/wiki/footstep_planner

http://www.ros.org/wiki/sbpl
http://www.ros.org/wiki/footstep_planner

Local Minima in the Search Space

start goal

expanded states

 A* will search for the optimal result

 Initially sub-optimal results are often
sufficient for navigation

 Provable sub-optimality instead of
randomness yields more efficient paths

Anytime Repairing A* (ARA*)

 Heuristic inflation by a factor w allows to
efficiently deal with local minima:
weighted A* (wA*)

 ARA* runs a series of wA* searches,
iteratively lowering w as time allows

 Re-uses information from previous
iterations

[Likhachev et al. (NIPS 2004),

Hornung et al. (Humanoids 2012)]

ARA* with Euclidean Heuristic

start goal

w = 10

ARA* with Euclidean Heuristic

start goal

w = 1

ARA* with Dijkstra Heuristic

Performance depends on well-
designed heuristic

start goal

w = 1

Randomized A* (R*)

 Iteratively constructs a graph of sparsely
placed randomized sub-goals (exploration)

 Plans between sub-goals with wA*,
preferring easy-to-plan sequences

 Iteratively lowers w as time allows

[Likhachev & Stentz (AAAI 2008),

Hornung et al. (Humanoids 2012)]

R* with Euclidean Heuristic

start goal

w = 10

R* with Euclidean Heuristic

start goal

w = 1

Planning in Dense Clutter Until
First Solution

A*
Euclidean heur.

R*
Euclidean heur.

ARA*
Euclidean heur.

ARA*
Dijkstra heur.

11.9 sec. 0.4 sec. 2.7 sec. 0.7 sec.

Planning in Dense Clutter Until
First Solution

 12 random start and goal locations

 ARA* finds fast results only with the 2D Dijkstra
heuristic, leading to longer paths due to its
inadmissibility

 R* finds fast results even with the Euclidean
heuristic

Planning with Time Limit 5s
R*
Euclidean heuristic

ARA*
Euclidean heuristic

ARA*
Dijkstra heuristic

start
goal

start

goal

clutter

fails, requires 43 sec.

fails, requires 92 sec.

final w=1.4 final w=7

final w=8 final w=1.4

Anytime Planning Results

 Performance of ARA* depends on well-
designed heuristic

 Dijkstra heuristic may be inadmissible
and can lead to wrong results

 R* with the Euclidean heuristic finds
efficient plans in short time

Dynamic A* (D*)

 Allows for efficient re-planning in case of

 Changes in the environment

 Deviations from the initial path

 Re-uses state information from previous
searches

 Planning backwards increases the efficiency
in case of updated localization estimates

 Anytime version: AD*

[Koenig & Likhachev (AAAI ‘00), Garimort (ICRA ’11)]

D* Plan Execution with a Nao

Efficient Replanning

 Plans may become invalid due to changes
in the environment

 D* allows for efficient plan re-usage

2966 states, 1.05s 956 states, 0.53s

Extension to 3D

 Depth camera for visual perception

 Scan matching to reduce drift of odometry

 Heightmap as environment representation

 Footstep planning and collision-checking
on heightmap

Maier et al. (to appear IROS 2013)]

Depth Cameras for
Robot Navigation

 Dense depth
information

 Lightweight

 Cheap

Pose Estimation

 Odometry estimate is error-prone due to
slippage of the feet and noisy sensors

 Accordingly, consecutive depth camera
observations may not align

 Error accumulates over time

 Scan matching to reduce the error

odometry
estimate

Pose Estimation

 Odometry estimate is error prone due to
slippage of the feet and noisy sensors

 Accordingly, consecutive depth camera
observations may not align

 Error accumulates over time

 Scan matching to reduce the error

scan
matching

Heightmap Learned from
Depth-Camera Observations

 2D gridmap

 Probabilistic
height estimate
for each cell

 Conservative
updates

 Quick access

 Memory efficient

 High resolution

T-Step step over step onto

Action Set for a Nao Humanoid

Standard
planar steps

Extended 3D stepping capabilities

Dijkstra Heuristic for Heightmaps

 Graph G=(V,E)

 V: discrete locations in the (x,y)-space

 E: union of 8-neighborhoods in the state space

 Costs of an edge are defined by the height
differences in the heightmap

 h(s): shortest path in G to the goal /

free (low)

elevation
(mid)

non-
traversable
 (infinite)

example costs heightmap

Safe Stepping Actions

 Allow only states where all
cells covered by the footprint
have a small height difference

 Height difference between
 and must be within
the limits
allowed by the action

s 0 = a(s)

a

s
[¢ zmin ; ¢ zmax]

a

s

Whole-Body Collision Checking

 Project swept volume of a motion to the
ground plane: inverse heightmap (IHM)

 An action at state is safe if

s

Navigation Experiments

Adaptive Level-of-Detail Planning

 Planning the whole path with footsteps may
not always be desired in large open spaces

 Adaptive level-of-detail planning: Combine
fast grid-based 2D planning in open spaces
with footstep planning near obstacles

 Adaptive planning

[Hornung & Bennewitz (ICRA ‘11)]

Adaptive Level-of-Detail Planning

 Allow transitions between
neighboring cells in free
areas and between
sampled contour points
across obstacle regions

 Traversal costs are
estimated from a pre-
planning stage or with a
learned heuristic

 Every obstacle traversal
triggers a footstep plan

Adaptive Planning Results

start

goal

<1 s planning time
High path costs

29 s planning time <1s planning time,
costs only 2% higher

2D Planning Footstep Planning Adaptive Planning

Fast planning times and efficient solutions
with adaptive level-of-detail planning

Summary

 Anytime search-based footstep planning
with suboptimality bounds: ARA* and R*

 Replanning during navigation with AD*

 Heuristic influences planner behavior

 Adaptive level-of-detail planning to
combine 2D with footstep planning

 Extensions to 3D obstacles

 Available open source in ROS:
www.ros.org/wiki/footstep_planner

http://www.ros.org/wiki/footstep_planner

Example: ATLAS humanoid
in DRC (Team ViGIR)

Thank you!

Live Demo

 Install prerequisites:
sudo apt-get install ros-groovy-desktop-full

python-rosdep python-rosinstall ros-groovy-sbpl

 Follow rosinstall instructions at
http://ros.org/wiki/humanoid_navigation
(but don‘t compile)

 Compile with rosmake footstep_planner

 Start with roslaunch footstep_planner
footstep_planner_complete.launch

http://ros.org/wiki/humanoid_navigation
http://ros.org/wiki/humanoid_navigation

