Euclidean Embedding of Co-Proven Queries

Presentation of Master Thesis

Hannes Schulz

Albert-Ludwigs-Universität Freiburg

2009-5-20

The Blind and The Elephant

The Blind and The Elephant

OUTLINE

(1) Relational Data
(2) Embedding of Co-Proven Queries and Interpretations
(3) Experiments
(4) Conclusion

OUTLINE

(1) Relational Data

- Representation
- Algorithms (The High Altitude View)
- Semantically Grounded Distances
(2) Embedding of Co-Proven Queries and Interpretations
(3) Experiments
(4) Conclusion

OUTLINE

(1) Relational Data

- Representation
- Algorithms (The High Altitude View)
- Semantically Grounded Distances
(2) Embedding of Co-Proven Queries and Interpretations
(3) Experiments

4) Conclusion

Relational Databases

 UNIVERSITÄT FREIBURG

ReLational Databases

- Entities are discrete
- Elements part of arbitrary number of relations
- Implicit information in views
- No mapping to feature vectors

Inductive Logic Programming to the Rescue

bond(1,d1_1,d1_2,7). bond(1,d1_2, d1_3,7). bond(1,d1_3, d1_4,7). bond(1, d1_4, d1_5,7).

Inductive Logic Programming

- Retains complexity of DB in interpretations

Inductive Logic Programming to the Rescue

```
ring(K) :-
    atom(K,A,c,_,_),
    bond(K,A,B,_),
    atom(K,B,C,_,_),
    bond(K,B,C,_),
```

 bond (K, F, A,_).
 bond (K, F, A,_).

Inductive Logic Programming

- Retains complexity of DB in interpretations
- Uses rules to reflect implicit information

Inductive Logic Programming to the Rescue

```
atom(K,A, c,_,_),
bond(K,A,B,_),
atom(K,B,C,_,_),
bond(K,B,C,_)
```

is frequent in organic molecules

Inductive Logic Programming

- Retains complexity of DB in interpretations
- Uses rules to reflect implicit information
- Abstracts using variables in queries

OUTLINE

(1) Relational Data

- Representation
- Algorithms (The High Altitude View)
- Semantically Grounded Distances
(2. Embedding of Co-Proven Queries and Interpretations
(3) Experiments
(4) Conclusion

ILP Algorithms: Lifted from Propositional Case

One table to n tables

- Pattern miners (Warmr)
- Rule learners (Aleph)
- Decision Trees (Tilde)
- ...

UNIVERSITÄT FREIBURG

ILP Algorithms: Lifted from Propositional Case

One table to n tables

- Pattern miners (Warmr)
- Rule learners (Aleph)
- Decision Trees (Tilde)

Usually,

- Input: interpretations, rules ("background knowledge")
- Search (sub-)space of logical formulæ
- Output:
- Pattern miners: interesting patterns
- Classification: concept definitions

Back to the Elephant

Input and output of ILP algorithms feel like elephant parts.

Mutagenesis Pattern Mining

```
key(A), attyp (A,B,28),attyp (A,C,28),sbond(A,B,C,1)
key(A), atel(A,B,C), atel (A,C,C), attyp (A,D,27), sbond(A,
    B,C,1) ,sbond (A, B, D, 7), carbon_6_rings (A)
key (A), attyp (A,B,22), methyls (A)
key(A), atel (A,B,C), atel (A,C,C), atel(A,D,h), atel(A,E,n
    ), sbond (A,B,C,7), sbond (A,B,D,1), sbond(A,C,E,1),
    benzenes(A),ring_size_5s(A)
key(A), atel(A,B,C), atel(A,C,C), atel(A,D,h), atel (A, E, n
    ), attyp (A,F,10),sbond (A,B,C,7), sbond (A,B,D,1),
    sbond(A,C,E,1)
key(A), atel(A, B, C), attyp (A,C,10), attyp (A,D,27), attyp (
    A,E,27) ,sbond (A,B,C,1) ,sbond(A,D,E,7)
key(A), atel (A,B,C), attyp (A,C,21), attyp (A,D,26), attyp (
    A,E,26),sbond (A,B,C,7),sbond(A,B,D,7) ,sbond (A,C,
    E,7)
key(A), atel(A,B,C), atel(A,C,C), atel(A,D, n), attyp(A,E
    ,22), sbond (A,B,D,1),sbond (A,B,E,7),sbond(A,C,E
    ,1)
```


Back TO THE ELEPHANT

Input and output of ILP algorithms feel like elephant parts.

Mutagenesis Pattern Mining


```
key(A), attyp (A,B,28), attyp (A,C,28), sbond (A,B,C,1)
key(A), atel (A,B,C), atel (A,C,C), attyp (A,D,27), sbond(A,
    B,C,1) ,sbond (A, B, D, 7), carbon_6_rings (A)
key (A) , attyp (A,B,22), methyls (A)
key(A), atel (A,B,C), atel (A,C,C), atel(A,D,h), atel(A,E,n
    ), sbond (A, B, C,7), sbond (A,B,D,1), sbond (A,C,E,1),
    benzenes(A),ring_size_5s(A)
key(A), atel(A,B,C), atel(A,C,C), atel(A,D,h), atel (A, E, n
    ), attyp (A,F,10),sbond (A,B,C,7), sbond (A,B,D,1),
    sbond(A,C,E,1)
key(A), atel(A, B, C), attyp (A,C,10), attyp (A,D,27), attyp (
    A,E,27) ,sbond (A,B,C,1) ,sbond(A,D,E,7)
key(A), atel (A,B,C), attyp (A,C,21), attyp (A,D,26), attyp (
    A,E,26),sbond (A,B,C,7),sbond(A,B,D,7),sbond (A,C,
    E,7)
key(A),atel (A,B,C), atel(A,C,C),atel(A,D,n),attyp(A,E
    ,22) ,sbond (A,B,D,1), sbond (A,B,E,7), sbond (A,C,E
    ,1)
```


See the Whole Picture

Idea:

- Embed queries and interpretations into common 2D space

Mutagenesis Pattern Mining

```
key(A), attyp (A,B,28), attyp (A,C,28),sbond(A,B,C,1)
key(A), atel (A,B,C), atel (A,C, c), attyp (A,D,27),sbond (A,
    B,C,1), sbond (A,B,D,7), carbon_6_rings (A)
key(A), attyp (A,B,22), methyls(A)
key(A), atel (A,B,C), atel (A,C,C), atel (A,D,h), atel (A, E, n
    ), sbond(A,B,C,7), sbond(A,B,D,1), sbond(A,C,E,1),
    benzenes(A),ring_size_5s(A)
key(A), atel (A,B,C), atel(A,C,C), atel (A,D,h), atel (A, E, n
    ), attyp (A,F,10),sbond (A,B,C,7),sbond (A,B,D,1),
    sbond(A,C,E,1)
key(A), atel (A,B,C), attyp (A,C,10), attyp (A,D,27), attyp(
    A,E,27), sbond (A,B,C,1), sbond (A,D,E,7)
key(A), atel (A,B,C), attyp(A,C,21), attyp(A,D,26), attyp(
    A, E, 26), sbond (A,B,C,7), sbond (A,B,D,7), sbond (A,C,
    E,7)
key(A), atel (A,B,C), atel (A,C,C), atel (A,D, n), attyp (A, E
    ,22), sbond(A,B,D,1), sbond (A,B,E,7), sbond(A,C, E
    ,1)
```


See the Whole Picture

Idea:

- Embed queries and interpretations into common 2D space
- Show - at a glance! how they are related

Mutagenesis Pattern Mining

See the Whole Picture

Idea:

However:

- Embed queries and interpretations into common 2D space
- Show - at a glance! how they are related
- Embedding algorithms need a

Mutagenesis Pattern Mining distance measure

OUTLINE

(1) Relational Data

- Representation
- Algorithms (The High Altitude View)
- Semantically Grounded Distances
(2) Embedding of Co-Proven Queries and Interpretations
(3) Experiments
(4) Conclusion

DISTANCES IN ILP

Typical ILP distances measures

- Based on syntax
- Recursively defined over terms \mathcal{T} and predicates \mathcal{F}

Nienhuys-Cheng Distance

$$
\begin{aligned}
\bigwedge_{t \in \mathcal{T}} \operatorname{dist}_{n c}(t, t) & =0 \\
\bigwedge_{p / n \in \mathcal{F}} \bigwedge_{q / m \in \mathcal{F}} \operatorname{dist}_{n c}\left(p\left(s_{1}, \ldots, s_{n}\right), q\left(t_{1}, \ldots, t_{m}\right)\right) & =1 \\
\bigwedge_{p / n \in \mathcal{F}} \operatorname{dist}_{n c}\left(p\left(s_{1}, \ldots, s_{n}\right), p\left(t_{1}, \ldots, t_{n}\right)\right) & =\frac{1}{2 n} \sum_{i=1}^{n} \operatorname{dist}_{n c}\left(s_{i}, t_{i}\right) .
\end{aligned}
$$

SyNTAX-BASED DISTANCES NOT "GROUNDED"

- Queries q and p are equivalent with respect to data in E

$$
\bigwedge_{e \in E}(q(e) \leftrightarrow p(e)) .
$$

- Syntactic difference tells us little about data!

SyNTAX-BASED DISTANCES NOT "GROUNDED"

- Queries q and p are equivalent with respect to data in E

$$
\bigwedge_{e \in E}(q(e) \leftrightarrow p(e)) .
$$

- Syntactic difference tells us little about data!
- Two queries q and p are not related with respect to the data

$$
\bigwedge_{e \in E}((q(e) \rightarrow \neg p(e)) \wedge(p(e) \rightarrow \neg q(e))) .
$$

- $p \equiv \neg q$? Probably not. Property of the data? Probably.

Define Similarity Using Database

Query-Query Similarity

$$
\begin{aligned}
& \operatorname{sim}\left(q_{1}, q_{2}\right)= \\
& \left|\left\{e \mid e \in E \wedge q_{1}(e) \wedge q_{2}(e)\right\}\right|
\end{aligned}
$$

- Co-Proven queries are similar

UNIVERSITÄT FREIBURG

Define Similarity Using Database

Query-Query Similarity

$$
\begin{aligned}
& \operatorname{sim}\left(q_{1}, q_{2}\right)= \\
& \quad\left|\left\{e \mid e \in E \wedge q_{1}(e) \wedge q_{2}(e)\right\}\right|
\end{aligned}
$$

Query-Interpretation Similarity

$$
\operatorname{sim}(q, e)= \begin{cases}1 & \text { if } q(e) \\ 0 & \text { sonst }\end{cases}
$$

- Co-Proven queries are similar
- Queries are similar to interpretations in which they are true

Define Similarity Using Database

Query-Query Similarity

$$
\begin{aligned}
& \operatorname{sim}\left(q_{1}, q_{2}\right)= \\
& \left|\left\{e \mid e \in E \wedge q_{1}(e) \wedge q_{2}(e)\right\}\right|
\end{aligned}
$$

Query-Interpretation Similarity

$$
\operatorname{sim}(q, e)= \begin{cases}1 & \text { if } q(e) \\ 0 & \text { sonst. }\end{cases}
$$

- Co-Proven queries are similar
- Queries are similar to interpretations in which they are true
- Can be seen as joint probability when normalized: $p_{Q Q}\left(q_{1}, q_{2}\right)=\eta \cdot \operatorname{sim}\left(q_{1}, q_{2}\right)$ and $p_{Q E}(q, e)=v \cdot \operatorname{sim}(q, e)$

Define Similarity Using Database

Query-Query Similarity

$$
\begin{aligned}
& \operatorname{sim}\left(q_{1}, q_{2}\right)= \\
& \left|\left\{e \mid e \in E \wedge q_{1}(e) \wedge q_{2}(e)\right\}\right|
\end{aligned}
$$

Query-Interpretation Similarity

$$
\operatorname{sim}(q, e)= \begin{cases}1 & \text { if } q(e) \\ 0 & \text { sonst. }\end{cases}
$$

- Co-Proven queries are similar
- Queries are similar to interpretations in which they are true
- Can be seen as joint probability when normalized: $p_{Q Q}\left(q_{1}, q_{2}\right)=\eta \cdot \operatorname{sim}\left(q_{1}, q_{2}\right)$ and $p_{Q E}(q, e)=v \cdot \operatorname{sim}(q, e)$
- Queries with same co-occurrence can be removed

OUTLINE

(1) Relational Data

(2) Embedding of Co-Proven Queries and Interpretations - CODE

3 Experiments

4 Conclusion

OUTLINE

(1) Relational Data

(2) Embedding of Co-Proven Queries and Interpretations - CODE

3 Experiments

4 Conclusion

CODE

- CODE (Globerson et al. 2007): template for Co-Occurrence Data Embedding algorithms
- We use instance of CODE

CODE FOR RELATIONAL DATA AND QUERIES

(1) Define $\Phi(\cdot), \Psi(\cdot)$ placing queries, interpretations in 2D space
(2) Distance in 2 D space reflects co-occurrence probability

$$
\begin{gathered}
p_{Q Q}\left(q_{1}, q_{2}\right) \propto \exp \left(-\left\|\Phi\left(q_{1}\right)-\Phi\left(q_{2}\right)\right\|^{2}\right) \\
\frac{p_{Q E}(q, e)}{p(e)} \propto \exp \left(-\|\Phi(q)-\Psi(e)\|^{2}\right)
\end{gathered}
$$

(3) Maximize log-likelihood of embedding

$$
\begin{aligned}
I(\Phi, \psi)= & \sum_{q, e} p_{Q E}(q, e) \log p_{Q E}(q, e)+ \\
& \eta \sum_{q_{1}, q_{2}} p_{Q Q}\left(q_{1}, q_{2}\right) \log p_{Q Q}\left(q_{1}, q_{2}\right)
\end{aligned}
$$

OUTLINE

(1) Relational Data
(2) Embedding of Co-Proven Queries and Interpretations
(3) Experiments

- Datasets and Pattern Miners
- Distance vs. Co-Occurrence in the Embedding
- From Embedding to Visualization

4. Conclusion

OUTLINE

(1) Relational Data
(2) Embedding of Co-Proven Queries and Interpretations
(3) Experiments

- Datasets and Pattern Miners
- Distance vs. Co-Occurrence in the Embedding
- From Embedding to Visualization

4. Conclusion

Datasets and Pattern Miners

In molecular databases: Interpretations=molecules;
Queries=properties

- Mutagenesis: 188 molecules, ca. 30 atoms per molecule. C-armr finds 16 Mio pattern, 505 semantically different.
- AIDS: Sampled 800 molecules, Molfea finds 3310 linear fragments (e. g.C $-\mathrm{C}=\mathrm{C}-\mathrm{N}-\mathrm{C}$).
- Estrogen: 232 chemicals, Molfea finds 843 different linear fragments.

OUTLINE

(1) Relational Data
(2) Embedding of Co-Proven Queries and Interpretations
(3) Experiments

- Datasets and Pattern Miners
- Distance vs. Co-Occurrence in the Embedding
- From Embedding to Visualization

4 Conclusion

code best Retains Co-Occurrence Statistics

Query/Interpretation and Co-Proven

- Cannot be perfect because of intransitivity of co-occurrence

CODE Best Retains Co-Occurrence Statistics

Query/Interpretation and Co-Proven

- Cannot be perfect because of intransitivity of co-occurrence

CODE Best Retains Co-Occurrence Statistics

- Cannot be perfect because of intransitivity of co-occurrence

OUTLINE

(1) Relational Data
(2) Embedding of Co-Proven Queries and Interpretations
(3) Experiments

- Datasets and Pattern Miners
- Distance vs. Co-Occurrence in the Embedding
- From Embedding to Visualization

4. Conclusion

Starting Point

SUPPLYING ADDITIONAL INFORMATION

- Size: Frequency

UNIVERSITÄT FREIBURG

SUPPLYING ADDITIONAL INFORMATION

- Size: Frequency
- Color: interpretation class

UNIVERSITÄT FREIBURG

SUPPLYING ADDITIONAL INFORMATION

- Size: Frequency
- Color: interpretation class
- Color: class affinity of queries

SUPPLYING ADDITIONAL INFORMATION

- Size: Frequency
- Color: interpretation class
- Color: class affinity of queries
- Mark representative queries

SUPPLYING ADDITIONAL INFORMATION

- Size: Frequency
- Color: interpretation class
- Color: class affinity of queries
- Mark representative queries
- Interactivity to disambiguate embedding

Mut AgENESIS DATASET

AIDS DATASET

OUTLINE

(1) Relational Data
(2) Embedding of Co-Proven Queries and Interpretations
(3) Experiments
(4) Conclusion

CONCLUSION

- First visualization method for relational data and queries
- Interpretations and queries placed in common Euclidean space
- Use semantically grounded distance measure
- In embedding, co-proven queries are close to each other, interpretations close to their queries
- Developed tools to visualize embedding with side-information

Future Work

- Improve interactive program to full-fledged Visual Analytics application
- Use graph miner to crawl databases, use for visualization
- Explore use of technique for other applications with large binary feature vectors (Genetic Algorithms, Bag-of-Words,...)

Thanks!

(Elephant pictures from http://www.wordinfo.info/words/index/info/view_unit/1/?letter=B\&spage=3).

