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RELATIONAL DATABASES

atom
id name
1 h
2 h
3 n
4 c
5 o

bond
id a1 a2 type
1 1 3 1
2 2 3 1
3 3 4 1
4 4 5 2

. . .

Entities are discrete

Elements part of
arbitrary number of
relations

Implicit information in
views

I No mapping to feature
vectors
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INDUCTIVE LOGIC PROGRAMMING TO THE RESCUE

atom (1 , d1_1 , c ,22 , −0.117) .
atom (1 , d1_2 , c ,22 , −0.117) .
atom (1 , d1_3 , c ,22 , −0.117) .
. . .
bond (1 , d1_1 , d1_2 , 7 ) .
bond (1 , d1_2 , d1_3 , 7 ) .
bond (1 , d1_3 , d1_4 , 7 ) .
bond (1 , d1_4 , d1_5 , 7 ) .
. . .

Inductive Logic Programming

Retains complexity of DB in
interpretations

Uses rules to reflect implicit
information

Abstracts using variables in
queries
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atom (K,A, c , _ , _ ) ,
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INDUCTIVE LOGIC PROGRAMMING TO THE RESCUE

atom (K,A, c , _ , _ ) ,
bond (K,A,B, _ ) ,
atom (K,B, c , _ , _ ) ,
bond (K,B,C, _ )

is frequent in organic molecules

Inductive Logic Programming

Retains complexity of DB in
interpretations

Uses rules to reflect implicit
information

Abstracts using variables in
queries
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ILP ALGORITHMS: LIFTED FROM PROPOSITIONAL CASE

One table to n tables

Pattern miners (W)

Rule learners (A)

Decision Trees (T)

. . .

Input: interpretations, rules
(“background knowledge”)

Search (sub-)space of
logical formulæ
Output:

Pattern miners:
interesting patterns
Classification: concept
definitions
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BACK TO THE ELEPHANT

Input and output of ILP algorithms feel like elephant parts.

M PM

key (A) , a t t yp (A,B,28 ) , a t t yp (A,C,28 ) , sbond (A,B,C, 1 )
key (A) , a t e l (A,B, c ) , a t e l (A,C, c ) , a t t yp (A,D,27 ) , sbond (A,

B,C, 1 ) , sbond (A,B,D, 7 ) , carbon_6_r ings (A)
key (A) , a t t yp (A,B,22 ) , methyls (A)
key (A) , a t e l (A,B, c ) , a t e l (A,C, c ) , a t e l (A,D, h ) , a t e l (A,E, n

) , sbond (A,B,C, 7 ) , sbond (A,B,D, 1 ) , sbond (A,C,E, 1 ) ,
benzenes (A) , r ing_s ize_5s (A)

key (A) , a t e l (A,B, c ) , a t e l (A,C, c ) , a t e l (A,D, h ) , a t e l (A,E, n
) , a t t yp (A, F ,10 ) , sbond (A,B,C, 7 ) , sbond (A,B,D, 1 ) ,
sbond (A,C,E, 1 )

key (A) , a t e l (A,B, c ) , a t t yp (A,C,10 ) , a t t yp (A,D,27 ) , a t t yp (
A,E,27 ) , sbond (A,B,C, 1 ) , sbond (A,D,E, 7 )

key (A) , a t e l (A,B, c ) , a t t yp (A,C,21 ) , a t t yp (A,D,26 ) , a t t yp (
A,E,26 ) , sbond (A,B,C, 7 ) , sbond (A,B,D, 7 ) , sbond (A,C,
E, 7 )

key (A) , a t e l (A,B, c ) , a t e l (A,C, c ) , a t e l (A,D, n ) , a t t yp (A,E
,22 ) , sbond (A,B,D, 1 ) , sbond (A,B,E, 7 ) , sbond (A,C,E
, 1 )
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SEE THE WHOLE PICTURE

Idea:

Embed queries and
interpretations into
common 2D space

Show – at a glance! –
how they are related

M PM
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SEE THE WHOLE PICTURE

Idea:

Embed queries and
interpretations into
common 2D space

Show – at a glance! –
how they are related

However:

Embedding
algorithms need a
distance measure

M PM
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DISTANCES IN ILP

Typical ILP distances measures

Based on syntax

Recursively defined over terms T
and predicates F

p(q(x,y),b) p(f(x,y),b)

p

q

p

f

distNC(·, ·) = 1
4

N-C D

∧
t∈T

distnc(t , t) = 0∧
p/n∈F

∧
q/m∈F

distnc(p(s1, . . . , sn), q(t1, . . . , tm)) = 1

∧
p/n∈F

distnc(p(s1, . . . , sn), p(t1, . . . , tn)) =
1

2n

n∑
i=1

distnc(si , ti).
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SYNTAX-BASED DISTANCES NOT “GROUNDED”

Queries q and p are equivalent with respect to data in E∧
e∈E

(
q(e)↔ p(e)

)
.

I Syntactic difference tells us little about data!

Two queries q and p are not related with respect to the data∧
e∈E

(
(q(e)→ ¬p(e)) ∧ (p(e)→ ¬q(e))

)
.

I p ≡ ¬q? Probably not. Property of the data? Probably.
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DEFINE SIMILARITY USING DATABASE

Q-Q S

sim(q1, q2) =∣∣∣∣∣∣{e|e ∈ E ∧ q1(e) ∧ q2(e)
}∣∣∣∣∣∣

Q-I S

sim(q, e) =

1 if q(e)

0 sonst.

I Co-Proven queries are similar

I Queries are similar to interpretations in which they are true

I Can be seen as joint probability when normalized:
pQQ(q1, q2) = η · sim(q1, q2) and pQE(q, e) = ν · sim(q, e)

I Queries with same co-occurrence can be removed
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CODE

CODE (Globerson et al. 2007): template for Co-Occurrence
Data Embedding algorithms

We use instance of CODE
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CODE FOR RELATIONAL DATA AND QUERIES

1 Define Φ(·), Ψ(·) placing queries, interpretations in 2D space
2 Distance in 2D space reflects co-occurrence probability

pQQ(q1, q2) ∝ exp(−
∥∥∥Φ(q1) − Φ(q2)

∥∥∥2
)

pQE(q, e)

p(e)
∝ exp(−

∥∥∥Φ(q) −Ψ(e)
∥∥∥2

)

3 Maximize log-likelihood of embedding

l(Φ,Ψ) =
∑
q,e

pQE(q, e) log pQE(q, e)+

η
∑
q1,q2

pQQ(q1, q2) log pQQ(q1, q2)
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DATASETS AND PATTERN MINERS

In molecular databases: Interpretations=molecules;
Queries=properties

Mutagenesis: 188 molecules, ca. 30 atoms per molecule.
C- finds 16 Mio pattern, 505 semantically different.

AIDS: Sampled 800 molecules, M finds 3310 linear
fragments (e. g.C-C=C-N-C).

Estrogen: 232 chemicals, M finds 843 different linear
fragments.
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CODE BEST RETAINS CO-OCCURRENCE STATISTICS
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CODE BEST RETAINS CO-OCCURRENCE STATISTICS
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STARTING POINT
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SUPPLYING ADDITIONAL INFORMATION

Size: Frequency

Color: interpretation
class

Color: class affinity of
queries

Mark representative
queries

Interactivity to
disambiguate
embedding
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MUTAGENESIS DATASET
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AIDS DATASET
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CONCLUSION

First visualization method for relational data and queries

Interpretations and queries placed in common Euclidean
space

Use semantically grounded distance measure

In embedding, co-proven queries are close to each other,
interpretations close to their queries

Developed tools to visualize embedding with side-information
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FUTURE WORK

Improve interactive program to full-fledged Visual Analytics
application

Use graph miner to crawl databases, use for visualization

Explore use of technique for other applications with large
binary feature vectors (Genetic Algorithms, Bag-of-Words,. . . )



Thanks!

(Elephant pictures from http://www.wordinfo.info/words/index/info/view_unit/1/?letter=B&spage=3).

http://www.wordinfo.info/words/index/info/view_unit/1/?letter=B&spage=3
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