
ALBERT-LUDWIG-UNIVERSITÄT FREIBURG

Faculty of Engineering
Department of Computer Science

Euclidean Embedding of
Co-Proven Queries

MASTER THESIS

Hannes Schulz

Advisor : Dr. Andreas Karwath
Second Advisor : Prof. Dr. Martin Riedmiller

Submitted on : May 19, 2009

Acknowledgements
At this point I would like to thank all those who have supported me during the time of
writing my thesis.

I am especially grateful to Dr. Kristian Kersting. This thesis – and I – greatly profited
from his inexhaustible pool of ideas, technical knowledge and stimulating discussions.
Many thanks to Dr. Andreas Karwath, whose door was always open for my doubtful

questions and for his time spent on introducing me to some of more the technical details of
ILP.

I would like to thank Amir Globerson, the author of the CODE algorithm, for providing
his source code.
I also thank Prof. Dr. Martin Riedmiller for making this thesis possible.
Finally, I would like to thank my parents, whose support I could count on throughout

my studies.

i

Abstract

Relational data is complex. Inductive logic programming (ILP) algorithms, which can deal
with this complexity, typically use large quantities of logical formulæ as input and output.
A basic step of learning becomes difficult for the untrained user: Understanding the data.
Visual representations on the other hand make it easy to shift from one perspective to
another while exploring and analyzing data. In this thesis, we describe the first method
for embedding the contents of a relational database and the rules governing the data into
a single, common Euclidean space based on their co-proven statistics. The embedding is
designed to place objects which are often co-proven close to each other, while unrelated
objects are placed far from one another. We analyze the properties of the embeddings and
demonstrate our method on real-world datasets, showing that ILP results can be intuitively
represented and indeed be captured at a glance.

Deutsche Zusammenfassung

Relationale Daten sind sehr komplex. Inductive logic programming (ILP)-Algorithmen
können mit dieser Komplexität umgehen. Als Eingabe benutzen, als Ausgabe erzeugen
diese Algorithmen jedoch große Mengen an logischen Formeln, sodass ein entscheidender
Schritt beim Lernen erschwert wird: Das Verstehen der Daten. Visuelle Repräsentationen,
auf der anderen Seite, machen es dem Benutzer leicht während der Exploration und Analyse
der Daten von einer Perspektive zur anderen zu wechseln. In dieser Arbeit beschreiben
wir die erste uns bekannte Methode um die Inhalte einer relationalen Datenbank und die
sie bestimmenden logischen Regeln in einen gemeinsamen euklidischen Raum einzubetten.
Dabei ist die Einbettung so gewählt, dass sie die Distanzen der eingebetteten Objekte
klein ist wenn diese oft miteinander bewiesen werden konnten. Wir analysieren die
Eigenschaften unserer Methode und zeigen Einbettungen anwendungsnaher Datenbanken.
Unsere Experimente zeigen dass ILP-Resultate tatsächlich intuitiv repräsentiert und auf
einen Blick erfasst werden können.

iii

Contents
1 Introduction 1

2 Preliminaries 2
2.1 Inductive Logic Programming . 2
2.2 Distances in ILP . 6
2.3 Dimensionality Reduction and Euclidean Embedding 8

3 Euclidean Embedding of Relational Data and Queries 12
3.1 Constructing the Interaction-Model . 12
3.2 The RCODE Embedding Algorithm . 15
3.3 Linlog Embedding . 16
3.4 Spectral and PCA-based Embedding . 16
3.5 Extensions . 17

3.5.1 Using Co-Occurrence Probabilities of Co-Proven Queries 17
3.5.2 Embedding Interpretations Based on Query Entropy 17
3.5.3 Finding Regional Representatives . 18
3.5.4 Interactive Extensions . 20

4 Experiments 20
4.1 Pattern Miners . 20
4.2 Datasets . 21
4.3 Pre-Processing: Removing Redundant Queries 22
4.4 Post-Processing: Visualizing Side-Information in Embedding 23
4.5 Analysis of Embeddings . 23

4.5.1 Convergence and Scalability Properties of RCODE 23
4.5.2 Quality of Embedding . 24

4.6 Showcases . 28

5 Related Work 31

6 Conclusion 32

References 33

iv

List of Figures
1 The chemical compound pyrimidine: Structural formula and logical repre-

sentation. 5
2 Visualization of swiss roll dataset . 10
3 Schematic overview of our visualization method 12
4 Data representation for Linlog embedding 15
5 Comparison of embeddings with and without co-occurrence statistics of

co-proven queries . 18
6 Comparison of one step embedding and entropy-weighted two-step embedding 19
7 Comparison of performance between iRPROP+ and BFGS for embedding

Molfea-generated patterns of the AIDS dataset 24
8 Embedding of words and papers from NIPS database 25
9 Comparison of squared distance in embedding vs. co-occurrence probability 25
10 Comparison of Spectral Embedding, PCA Embedding, Linlog and RCODE 26
11 Embedding of AIDS and Mutagenesis dataset using spectral embedding,

PCA and Linlog . 27
12 Entropy-based embedding of Mutagenesis Dataset 28
13 Entropy-based embedding of AIDS Dataset 29
14 Embedding of Estrogen dataset . 30

v

1 Introduction

1 Introduction
Large databases containing complex relational information were built over the last years.
The numerous examples include molecules, social networks and the semantic web. However,
data in its vast amount is meaningless and consequently, there is a large interest in
algorithms that break it down to meaningful pieces for common tasks such as pattern
mining, classification or regression. These tasks are significantly complicated by properties
of relational databases: The entities in a relational database can take part in an arbitrary
number of relations and additional information about them can be derived using so-called
views. Furthermore, evident in the relations, the entities are not independent and thus
violate common machine learning assumptions. Feature vectors, commonly used in machine
learning, can therefore in general not be used as an equivalent representation (Džeroski,
2003). This also means that we cannot make use of the many algorithms which depend on
feature vectors.
The relatively young discipline of inductive logic programming (ILP, Muggleton 1992;

Lavrac and Džeroski 1994) has found a way to deal with relational information, essentially
by fully keeping the complexity of the data in a logical representation. ILP then combines
techniques from machine learning and logic programming to search the space of logical
formulæ (queries) for solutions. These rules can abstract from the data, that is, they may
contain variables.
This flexibility comes at a cost. Firstly, learning algorithms, even when simply general-

izations of feature vector based algorithms (e. g. Van Laer and De Raedt, 2001) become
more complex. Secondly, the solutions found are hard to interpret. Consider, for example
the well-known Mutagenesis database (Srinivasan et al., 1996), containing 188 organic
molecules. A naïve search for frequent patterns, that is, patterns that occur in more than
12 entities (molecules) up to a fixed complexity threshold with the WARMR algorithm
resulted in 16 million syntactically different patterns. The vast majority of these patterns
probably deal with common properties of organic molecules. Examples could be carbon
atoms connected by single- and double bonds with hydrogen and oxygen. Mostly, these
are not very surprising. Nevertheless, they can give insights into the structure of the data
contained in the database. For a classification task, the user faces similar problems: The
rules found by an ILP algorithm can be quite large and because they cannot be overlooked
as a whole, classification performance is the main check for their correctness. We conclude
that there is a gap between what ILP algorithms can do on multi-relational data and our
ability to comprehend the results.
In this work, we propose the – to the best of our knowledge – first visualization for

relational datasets and queries, tailored to provide the human user with insights into the
structure of the data at hand. We use a two-step approach. In a first step, we use standard
ILP algorithms to discover interesting patterns in a multi-relational database. During the
second step we place both, the patterns and the entities in our database, into a common
Euclidean space and optimize the distances such that co-occurring (i. e. co-proven) patterns
appear close to each other, and entities in the database are placed close to the patterns they
co-occur with. We compare various embedding algorithms as to how good the distances in
the embedding reflect the co-occurrence relationship and find that the CODE algorithm
of Globerson et al. (2007) yields the best results. In the resulting image we can further
visualize properties of the embedded entities in a natural way. Finally, our method can be
extended to interactive data exploration.

1

2 Preliminaries

Part of this work is going to be published as “ILP, the Blind, and the Elephant: Euclidean
Embedding of Co-Proven Queries” (Schulz, Kersting, Karwath, 2009) in the proceedings of
the ILP conference.
The remainder of this work is organized as follows. In Section 2 we define important

ILP concepts. We further provide an overview of distance measures in ILP and important
embedding methods. We derive specific instances of embedding algorithms for relational
data in Section 3, which we then compare on standard datasets in Section 4. Section 5
relates our method to the broader field of visual analytics and interactive tools in the
domain of genetics which may benefit from our embedding method. We conclude in
Section 6.

2 Preliminaries
Before introducing our embedding algorithm, we look into some important notions and
algorithms. This section is divided into three parts. We first introduce ILP and define
basic ILP concepts which we want to embed later. Embedding algorithms usually try to
retain a distance measure. Therefore, some choices for measure distances between logical
formulæ as used in ILP are provided in Section 2.2. With distances available, we have the
choice of a wide variety of algorithms for dimensionality reduction and embedding, some of
which we consider in Section 2.3.

2.1 Inductive Logic Programming
Inductive Logic Programming (ILP) is a scientific discipline at the intersection of machine
learning and logic programming. The term was introduced by Stephen Muggleton (Mug-
gleton and King, 1991; Muggleton, 1992). ILP strives to explain a set of observations by a
theory and some background knowledge. Inputs and outputs are specified using a more or
less restricted subset of First Order Logic (FOL).

ILP inherits its choice of FOL from logic programming. Its advocates claim that FOL is
expressive and intuitive. It is expressive, since very complex concepts including variables
can be described (Dantsin et al., 2001). FOL rules are said to be intuitive because their
semantics easily map to natural language sentences (while the other direction is harder,
e. g. Fuchs et al., 1999).

Clausal Theories and Interpretations As unconstrained FOL is infeasible to deal with,
one restricts the language used to describe concepts for the ILP algorithms. We start from
the syntax of FOL and define the basic constructs for the learning from interpretations
setting as defined by De Raedt and Džeroski (1994), thereby fixing the vocabulary for
the remaining chapters. To illustrate the definitions, we use examples derived from the
Mutagenesis dataset.
An alphabet is a set of symbols for constants, functors and predicates.

Example 1: Constant. The elements c, h, cl are constants.
Example 2: Predicate. atom and bond are predicate symbols.
A term t is either a constant, a variable or a compound term f(t1, . . . , tn) composed

of an n-ary function symbol f and n terms ti. An atom is a logical formula of the form
p(t1, . . . , tn), where p is an n-ary predicate symbol and ti are terms.

2

2 Preliminaries

Example 3: Term.

(i) atom(K, I,E,W) is a term with variables K, I, E and W , where K is a unique key
for the molecule, I is a atom-id unique in K, E is an element constant and W is the
weight of the atom.

(ii) atom(2, d2_1, c, 22) is a variable-free term
(iii) bond(K,E1, E2, T) is a term, where K is a unique key for the molecule, E1 and E2

are atom-ids of elements in K and T designates the bond type, e.ġ. single or double.

A literal is an atom or the negation ¬A of an atom A. Atoms are positive literals;
negated atoms are negative literals. A clausal theory (the FOL generalization of the
conjunctive normal form, or CNF) has the form∧

V 1
1 ,...,V

1
v1

(l11 ∨ · · · ∨ l1n1) ∧ · · · ∧
∧

V k1 ,...,V
k
vk

(lk1 ∨ · · · ∨ lknk),

where lij are literals and V i
1 , . . . , V

i
vi are all variables occurring in li1 ∨ · · · ∨ lini . Generally,

ILP is restricted to clausal theories or subsets thereof (e.g. Horn clauses contain at most
one positive literal in each clause; queries do not have positive literals); we will therefore
limit our discussion to this subset of FOL.

Example 4: Clausal Theory.
active(K) ← atom(K,E1, c,W1),bond(K,E1, E2, T), atom(K,E2, cl,W2) is a (Horn)
clausal theory. The variables (capital letters) are implicitly all-quantified. The body (right
of ←) is a query.

We define a (Herbrand) interpretation as a set of ground (i. e. variable free) atoms. For
interpretations, the closed-world assumption holds: All atoms in the interpretation are
true, all atoms not in the interpretation are false.

Example 5: Interpretation.
atom(1, d1_1, c, 22), atom(1, d1_2, cl, 23), bond(1, d1_1, d1_2, single) is an interpreta-
tion.

A substitution θ = {V1 ← t1, . . . , Vn ← tn} is an assignment of terms t1, . . . , tn to vari-
ables V1, . . . , Vn. The formula Fθ, where F is a term, atom, literal or expression and
θ = {V1 ← t1, . . . , Vn ← tn} is a substitution, is the formula obtained by simultaneously
replacing all variables V1, . . . , Vn in F by the terms t1, . . . , tn.
We can now define what it means that a clausal theory or query T is true in an

interpretation I,

T true in I ⇐⇒
∧
θ

(
Tθ is ground→ Tθ true in I

)
. (1)

A ground clausal theory T is true in an interpretation I if and only if each clause of T is
true in I; ground clauses are true if one of the positive (negative) atoms in the clause is
true (false) according to I (De Raedt, 1997).

Example 6: Substitution.
The substitution θ = {K ← 1, E1← d1_1, E2← d1_2,W1← 22,W2← 23, T ← single}
applied to the body of Example 4 is true in Example 5.

3

2 Preliminaries

With the main concepts defined, we now have a look at two common tasks of ILP:
pattern mining and concept learning.

Discovery of Interesting Patterns A common task for ILP algorithms is to find interesting
patterns in relational data. Dehaspe and Toivonen (1999) define the task as follows: Given
a database r, a class L of sentences (patterns) and a selection predicate q, the task is to find
the theory of r with respect to L and q, i. e. the set Th(L, r, q) = {Q ∈ L|q(r, Q) is true}.
For frequent pattern mining, the selection predicate q(r, Q) is true if and only if the
frequency of the pattern Q exceeds the frequency threshold in database r. For relational
databases, the Apriori algorithm (Agrawal and Srikant, 1994) can be used to find frequent
patterns: Starting from very general patterns, it specializes the ones which are frequent.
ILP-techniques extend this basic idea such that more general relational data can be analyzed
and patterns with complex structure can be discovered.

Using the terms defined above, we set r to be a set of interpretations and L to be a set
of clausal theories (queries). While the set of interpretations is fixed, ILP systems typically
take a declarative language bias as parameter, reducing the number of candidates for L
(Adé et al., 1995). Frequent pattern miners such as Warmr (Dehaspe and De Raedt, 1997;
Dehaspe and Toivonen, 1999) then spend much effort on further restricting the search by
eliminating logical redundancy. For example, it is crucial not to specialize queries which
are instances of a query already determined to be infrequent.

Concept Learning Another typical task for ILP is the inductive learning of a logical
concept definition (Džeroski, 2007). Consider, for example, a database of family relations
in the form of the interpretations, such as

father(john,peter) (John is the father of Peter) and
mother(mary,peter) (Mary is the mother of Peter).

An ILP learner could now induce the concept of

parent(X,Y)← mother(X,Y). (Some X is parent of Y if X is
parent(X,Y)← father(X,Y). either mother or father of Y)

simply from labelled examples from the database, e. g. parent(john, peter) (labelled
positive) or parent(john,mary) (labelled negative). The general definition (in contrast
to the original examples it contains variables) of parent(·, ·) above can come in handy as
background knowledge for learning the definition of grandparent(X,Y):

grandparent(X,Y)← parent(X,Z) ∧ parent(Z, Y).

More formally stated, the task of an ILP learner is to construct a theory H using positive
examples in the set P, negative examples in N and background knowledge in B such that∧

e∈P
(B ∧H |= e) and (2)

∧
e∈N

(B ∧H 6|= e) . (3)

4

2 Preliminaries

N

N

atom(n, 1), atom(c, 2), atom(c, 3), atom(c, 4),
atom(n, 5), atom(c, 6), bond(1, 2, 2), bond(2, 3, 1),
bond(3, 4, 2), bond(4, 5, 1), bond(5, 6, 2), bond(6, 1, 1)

Figure 1: The chemical compound pyrimidine: Left: Structural formula, right: possible logical
representation without hydrogen. Although logic is rich and expressive, the picture says more
than the 12 terms.

If Equation (2) holds, H is said to be complete, if Equation (3) holds, H is said to be
consistent.

We briefly discussed two applications of ILP, both of which yield a set of theories about
the data: Frequent pattern mining yields a set of frequent patterns, concept learning
possible definitions of a concept. Taking one step back, we have to relate to the following
basic questions:

(i) How can we understand the data so that we can exploit it optimally?
(ii) How can we reach an understanding of theories produced by ILP algorithms?

We will now address both issues separately.

Understanding the Data. Even considering the way first order logic maps to natural lan-
guage, large logic-based databases are inaccessible to the human understanding. Consider,
for example, the common case of molecular databases, which typically contain molecules
described by the elements they consist of and the atomic bonds between them. Even
the description of a single molecule is hard to read (consider Figure 1), insights into
relationships of objects in the database are even harder to determine. Without insights into
the structure of the database, however, the choice of learning algorithm and parameters
remains largely heuristic.

Understanding Theories About Data. In contrast to for example deductive reasoning,
in ILP the theory is inferred from background knowledge and examples by induction.
Therefore it is not necessarily correct; in fact, there may be infinitely many possible
theories explaining a given set of observations. An ILP learner consequently has to restrict
itself. The restrictions constrain the language used for constructing the theory (language
bias) and the selection of the theory. The latter bias could be realized by Occam’s razor
(Blumer et al., 1987) or (more technically) Plotkin’s Relative Least General Generalization
(Plotkin, 1971).

A “good” theory must be carefully chosen to balance between how much of the data is
explained (coverage, composed of relaxed conditions in Equations (2) and (3)) and how
complicated its description is (simplicity). The rationale here is that simpler explanations
tend to have better generalization properties and are therefore better fit for prediction
purposes. However, for non-trivial datasets there is no obvious answer as to where to draw
this line.

5

2 Preliminaries

After learning, the rules learned by ILP algorithms leave important questions unanswered
or at least hard to access:

(i) Which examples are covered?
(ii) Is the theory overly specific or general?
(iii) How does it relate to other possible theories?

This work addresses the problems of understanding data and theories from a novel
perspective, by providing a generic procedure of visualizing relational datasets with respect
to the determined queries and theories. We propose to use spatial concepts (i. e. distance)
to intuitively represent the inherent structure. The next section considers ways to use the
structure of queries and the database to define distance measures.

2.2 Distances in ILP
In this section, we will give a short overview on distance functions for logical theories
(Section 2.1), the objects we want to embed. An in-depth discussion of distance functions
in logics can be found in Ramon (2002).
In the ILP domain, distance functions serve an important purpose: They relieve us

from the burden of discrete objects and thereby enable us to use algorithms designed for
real-valued attributes: Close objects are more related than objects far from each other.
Once distances between objects are available,

• instance based learning (Emde and Wettschereck, 1996) can be employed to predict
properties of an unknown query object from similar, known objects;

• clustering algorithms (Jain and Dubes, 1988) can identify groups of objects which
are similar within the group, but dissimilar between groups; and

• a dimensionality reduction technique such as the ones described in Section 2.3 can
be employed to embed the objects into a low-dimensional space for visualization;

Distance Measures for Sequences We shall look for symmetric functions which are
real-valued, positive and reflexive1. The simplest case is if the terms we are comparing
are in fact sequences from a finite set of constants, e. g. letters or amino acids (Karlin
and Ghandour, 1985). We can then define a distance function d(·, ·) specifying a cost for
changing from one constant to another, as well as for removal and insertion of constants.
We then determine the distance between the two sequences s and t with length |s| = n
and |t| = m using some variant of the string edit distance (e.g. Wagner and Fischer, 1974):

dist(s, t) = Dn,m, where
D0,0 = 0 and

∧
i∈{1...n}

∧
j∈{1...m}

Di,j = min


Di−1,j−1 +0 (match)
Di−1,j−1 +d(si, tj) (replacement)
Di,j−1 +d(ε, tj) (insertion)
Di−1,j +d(si, ε) (deletion)

1For a reflexive function f : D ×D 7→ R, we require that
∧
x∈D f(x, x) = 0.

6

2 Preliminaries

Distance Measures for Sets If we loosen the sequence constraint, that is, we allow sets A
and B of constants instead of sequences s and t, we can use symmetric difference distance
(Ramon, 2002), for example

dist(A,B) = |(A \B) ∪ (B \A)| or, normalized,

dist(A,B) = |(A \B) ∪ (B \A)|
|A ∪B|

.

If we again want to incorporate knowledge about distances d(·, ·) between constants into
our distance function, we can use the Hausdorff metric defined as

distH(A,B) = max
{

sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)
}
, (4)

which is dominated by the largest minimal distance between members of the two sets and
ignores all smaller distances.

Distance Measures for Terms and Interpretations We can generalize even further, by
allowing ground terms in addition to constants. One way to do this is by measuring the
distance of both terms to their least general generalization (Hutchinson, 1997). Another,
wide-spread distance function for terms is the Nienhuys-Cheng distance (Nienhuys-Cheng,
1997), inductively defined over the constants T and the predicates F as∧

t∈T
distnc(t, t) = 0

∧
p/n∈F

∧
q/m∈F

distnc(p(s1, . . . , sn), q(t1, . . . , tm)) = 1

∧
p/n∈F

distnc(p(s1, . . . , sn), p(t1, . . . , tn)) = 1
2n

n∑
i=1

distnc(si, ti).

It is easy to see that the Nienhuys-Cheng distance can be combined with the Hausdorff
metric to yield a distance function for (ground) interpretations. We solely have to substitute
distnc(·, ·) for d(·, ·) in Equation (4). Finally, the methods introduced can be generalized
such that they can also deal with terms containing variables (Ramon, 2002). Thereby, the
distance of any two terms can be computed.

Non-Syntactic Distance Measures The distance measures described so far have one
property in common: They are purely syntactically defined. That is, given only two terms,
we can determine their distance. While this type of distance measure has its applications,
we want to point out that it is not necessarily a good choice for our purpose, namely
understanding empirically collected items using queries which match them. To expand on
this, we observe that for a given data-set, we can have the following relations:

• Two queries q and p are equivalent with respect to the data E, that is∧
e∈E

(
q(e)↔ p(e)

)
. (5)

7

2 Preliminaries

Empirically, there is no difference between p and q, so their syntactic difference can
tell us little about the dataset we are analyzing. We might, however, prefer one of
the queries, e. g. the one with smaller description length, as an explanation for the
data in which they are true and can ignore the other.

• Two queries q and p are not related with respect to the data∧
e∈E

(
(q(e)→ ¬p(e)) ∧ (p(e)→ ¬q(e))

)
. (6)

Again, the syntactic structure of p and q is not relevant, i. e. it is not necessarily the
reason for their exclusivity. While it could be that p ≡ ¬q, it is also possible that we
observe a property of the dataset, not of logical formulæ.

• Two queries q and p are somewhat related with respect to the data∧
e∈E

(
q(e)→ p(e)

)
, (7)

∧
e∈E

(
p(e)→ q(e)

)
, or simply (8)

∨
e∈E

(
q(e) ∧ p(e)

)
. (9)

The observations described in Equations (5) to (9) naturally lead to a distance measure for
queries p and q with respect to a dataset E:

distE(p, q) =
∣∣{e|e ∈ E ∧ p(e) ∧ q(e)}∣∣ (10)

When normalized, the distE(·, ·) corresponds to the empirical co-occurrence probability

p̄(p, q) = distE(p, q)/
∑
p

∑
q

distE(p, q). (11)

A distance measure alone is not enough for a low-dimensional representation. Specifically,
the distances described above may turn out to be contradictory, or the distances can only
be retained when the objects are placed in a high-dimensional space. These problems are
addressed by algorithms for dimensionality reduction and Euclidean embedding, which we
consider in the next section.

2.3 Dimensionality Reduction and Euclidean Embedding
Machine learning often deals with complex objects described by a possibly large set of
features. Assuming that there is some structure in the data, it may be worth looking at a
low-dimensional manifold within the high-dimensional data:

(i) By choosing a favorable projection, interesting properties of the data can be empha-
sized.

(ii) A low-dimensional representation lacks irrelevant features (dimensions) which impede
understanding and are an obstacle for many machine learning algorithms.

(iii) Low-dimensional spaces can be visualized.

8

2 Preliminaries

Numerous unsupervised dimensionality reduction algorithms have been proposed (e. g.
Fodor, 2002). In this section, we will consider some milestones and describe their properties.

Linear Dimensionality Reduction Techniques The most common algorithms principal
component analysis (PCA, Jolliffe 2002) and independent component analysis (ICA,
Hyvrinen 1999). Both methods depend on the examples being in some Euclidean space
in the first place. In PCA, first an orthogonal coordinate system is determined such that
the components (axis) of the examples are decorrelated. The solution to this problem is
given in closed form by the singular value decomposition (Golub and Kahan, 1965) of the
unbiased matrix X containing the original data points

X = WΣV T .

In a final step, components with less importance can be discarded by considering only the
first n columns of W . The low-dimensional representation of X is then given by

Y = WnX.

PCA is globally optimal, whereas most of the other techniques discussed here only result
in a local optimum. ICA strives to identify components which are independent of each
other (in the statistical sense) and therefore has to rely on higher order objective functions
e. g. mutual information or kurtosis. The projection is reached by gradient descent on the
objective function. For ICA, the number of target components has to be chosen in advance.

Non-Linear Dimensionality Reduction Techniques Both PCA and ICA in their original
form yield a linear projection of the data to the low-dimensional space. The field of
non-linear dimensionality projection has many degrees of freedom. At the most constrained
end of the spectrum, non-linear PCA (Karhunen, 2001) applies a fixed, non-linear function
g(·) during the projection. The choice of the function is arbitrary; its gradient is used to
find a locally optimal solution

W ∗ = arg max
W

E
{
‖x−Wg(W Tx)‖2

}
.

Multidimensional Scaling (MDS, Cox and Cox 2001) is arguably the most general non-
linear technique. It strives to retain a given dissimilarity measure δij between objects i and
j as distance dij after the projection of i and j to a low-dimensional space. Commonly,
this is done by minimizing a stress function such as

S =

√√√√(∑i

∑
j(dij − δij)2∑
i

∑
j dij

)

using an approach in which first, the positions of the embedded entities and second, the
axis scales are adjusted iteratively (originally proposed by Takane et al., 1977).

Focusing on Local Structure to Extract Low-Dimensional Manifolds The techniques
enumerated above cannot, however, deal with the case that the high-dimensional space
contains a low-dimensional manifold as in the classic swiss-roll dataset depicted in Figure 2,

9

2 Preliminaries

Figure 2: Visualization of swiss roll dataset (Roweis and Saul, 2000). (A) A low-dimensional
manifold is embedded in a high-dimensional space. (B) The manifold extracted using Locally
Linear Embedding (LLE).

since the objective function usually incorporates terms relating all data points to all other
data points. Locally Linear Embedding (LLE, Roweis and Saul 2000) and IsoMap (Tenen-
baum et al., 2000), for example, were developed such that the close-range relationships
dominate the embedding. In Figure 2, the LLE algorithm avoids the fallacy of embedding
the data points depicted in red next to the bright blue ones because it only considers the k
nearest neighbours of each data point to determine the parameters for its embedding. The
algorithm proposed by Roweis and Saul (2000) is globally optimal and also applicable to
the case where only a dissimilarity measure is available. Similar results can be achieved
using IsoMap, which first constructs a locally connected graph on the high-dimensional
dataset, then calculates distances on the graph using Dĳkstra’s algorithm (Dĳkstra, 1959)
and finally performs MDS. Even though the use of MDS allows only for local optima,
there is evidence that IsoMap outperforms LLE even on such artificial datasets as the
swiss roll (Friedrich, 2002).

Embedding as Graph We can also view our dataset as a weighted graph with stronger
or weaker ties between the contained items. We can now try to embed this graph to
a two-dimensional space. A large number of works deals with the 2D-layout of planar
graphs (Di Battista et al., 1994), and heuristic algorithms exist for non-planar graphs (e.g.
Davidson and Harel, 1996; Herman and Marshall, 2000). However, there is a catch in this
analogy, since not-connected nodes can be placed quite close to each other in the layout.
Furthermore, many real-world graphs seem to have “small-world” properties: The average
minimal path length is very short and there are tightly connected clusters (Travers and
Milgram, 1969; Newman, 2003). Graph layout algorithms that try to find good paths for
edges are prone to fail.

A method developed for the embedding of small-world graphs, especially in the context
of social networks, is the Linlog algorithm (Noack, 2004, 2007). In contrast to energy
model based embeddings, Linlog does not try to enforce uniform short path lengths,
thereby placing nodes with high degree in the center. Instead, Linlog tries to identify
subgraphs using the normalized cut (Gomory and Hu, 1961) and then minimizes within-
cluster distances and maximizes between-cluster distances. Distances between similar
clusters are retained such that they reflect the size of the cut between them.

10

3 Euclidean Embedding of Relational Data and Queries

Another well-known general purpose graph embedding method is spectral embedding
(Brand and Huang, 2003). In contrast to Linlog, no clusters in the graph are assumed.
The common procedure is to do an eigenanalysis of the weighted adjacency matrix W or
its Laplacian L, where

Lij =
{∑

kWik if i = j

−Wij otherwise.

We can then use the eigenvectors associated with the n smallest non-zero eigenvalues as
the n components of the coordinates in the embedding. This embedded representation has
various interesting properties useful e. g. for graph clustering (Belkin and Niyogi, 2002)
and graph comparison (Luo et al., 2003). However, the interpretation of the embeddings is
difficult. As Brand and Huang (2003) derived, the coordinates represent angles between
nodes on a hypersphere; we will see that the resulting embeddings are inherently structured,
but not intuitive.

Co-Occurrence Data Embedding In Section 2.1 we already alluded to the structure of the
data we would like to embed for visualization. To recapitulate, we are given interpretations
and queries, which do not easily map to a low-dimensional Euclidean space, let alone a
common one. In Section 2.2 we defined an empirically grounded distance measure for
logical queries: The co-occurrence probability (Equation (11)). We can extend this notion
to distances between interpretations and queries. More formally, we know that

(i) the query q is true in the set of interpretations Iq; and
(ii) in the interpretation i, the queries Qi are true.

In addition to Equation (11), we can derive a second dissimilarity measure from these
observations, namely distqi(·, ·), which should be small if query q co-occurs with interpre-
tation i. Given that we only have dissimilarity measures, our choice of algorithms seems
to be limited to versions of MDS or LLE. We can do better than these general purpose
algorithms, however, by considering how the distances were constructed and following
an appropriate gradient, as demonstrated in recent publications (Globerson et al., 2007;
Iwata et al., 2007). In fact, as the authors demonstrated, this optimization problem can be
formulated as a convex problem and then optimally solved using semidefinite programming
(SDP, e. g. Boyd and Vandenberghe 2004).

In their algorithm “Euclidean Embedding of Co-Occurrence Data” (CODE), Globerson
et al. derive their similarity measure from statistics extracted from the data, such as joint
or conditional probabilities of objects co-occurring. The embedding is therefore based on
the empirical estimate of the joint probability distribution p(x, y) of two random variables
X and Y . The authors derive a least squares gradient descend algorithm which optimizes
random initial positions of objects representing the values of X and Y , such that their
relations in space respect the empirical co-occurrence measure. Additionally, the authors
introduce extensions to add further embedding constraints, such as co-occurrence-statistics
within a random variable or embedding based on the co-occurrence statistics of more than
two variables. Their very general approach thus has many specific instances. In Section 3
we will focus on and derive a few instances for our application.

11

3 Euclidean Embedding of Relational Data and Queries

Interpretations

Background
Knowledge

... Queries, Theories

Co-Occurrence
Statistics

ILP,
Pattern
Mining

CODE
Embedding

Figure 3: Schematic Overview. First, interpretations and background knowledge are used by the
ILP algorithm or pattern miner, generating frequent patterns and queries. Their co-occurrence
with the interpretations is used to embed both, interpretations and queries, into a common
Euclidean space, where additional properties can be visualized.

3 Euclidean Embedding of Relational Data and Queries
With co-occurrence as distance measure, we can derive instances of the embedding algo-
rithms discussed in the previous section. We first consider the CODE algorithm, as it is
specifically tailored to retain co-occurrence relationships as distances. In Section 3.1, we
construct a distance measure for the interaction between queries and interpretations and
derive a gradient to optimize the embedding. We improve the speed of convergence of the
original CODE implementation by choosing RPROP to minimize the objective function
as described in Section 3.2. In Sections 3.3 and 3.4 we then briefly discuss how the Linlog
algorithm, PCA and spectral embedding can be used to embed relational data.

3.1 Constructing the Interaction-Model
In this section, we motivate a model which models the co-occurrence of queries with
interpretations as Euclidean distance. We will loosely follow Globerson et al. (2007). We
assume that we are given the co-occurrence matrix C, where Cxy = 1 if query x is true in
interpretation y. From C we can construct the joint probability distribution p(x, y) which
describes the probability of observing a query x in interpretation y

p(x, y) = Cxy/
∑
i

∑
j

Cij .

The marginals of the distribution, p(x) = ∑
y p(x, y) and p(y) = ∑

x p(x, y), reflect the
probability of query x being true and interpretation y occurring, respectively. Note that it
does not make much sense to speak of the probability of an interpretation y occurring, since
this quantity is created artificially by the number of queries x which are true in y. Queries
which occur in many interpretations seem to be interesting, however. To summarize:

(i) We are interested in how a query occurs absolutely; and
(ii) We are not interested in how many queries an interpretation interacts with.

We should therefore make our embedding sensitive to the marginal of the queries p(x), but
insensitive to the marginal of an interpretation p(y).

12

3 Euclidean Embedding of Relational Data and Queries

To relate the distance and statistical dependency, we assume that there are embedding
functions Φ : Q 7→ Rn and Ψ : I 7→ Rn mapping queries and interpretations to vectors,
respectively. The term dxy then denotes the distance between the embeddings

dxy = ‖Φ(x)−Ψ(y)‖ .

Following Globerson et al. (2007), we start with the requirement that

p(x, y)
p(y) ∝ e

−d2
xy

and therefore
pUM (x, y) ≡ 1

Z
p(y)e−d2

xy ,

where Z = ∑
x

∑
y p(y)e−d

2
xy ensures that p(x, y) is a probability distribution. The subscript

UM is derived from the model classification scheme introduced in Globerson et al. (2007):
A U , in contrast to M , is used for variables whose the marginal does not occur in the
model, the order reflects the order of parameters of p(·, ·).

The quality of our embedding functions Φ and Ψ can be measured with the log-likelihood
of the model, given by

l(Φ,Ψ) =
∑
x,y

p(x, y) log pUM (x, y).

We will use a gradient ascend method to maximize the log-likelihood of the embedding.
For this purpose we derive the gradient of l(·, ·):

l(Φ,Ψ) =
∑
x,y

p(x, y) log pUM (x, y) (12)

=
∑
x,y

p(x, y)
(
−d2

xy − logZ + log p(y)
)

= −
∑
x,y

p(x, y) d2
xy − logZ + const,

= −
∑
x,y

p(x, y) d2
xy − log

∑
x,y

p(y)e−d2
xy + const,

where const = ∑
x,y log p(y) is a term which does not depend on dxy and therefore not on

the parameters Φ and Ψ. We can now determine the partial derivatives with respect to
Φ(x) and Ψ(y). First, note that

∇d2
xy = 2 (Φ(x)−Ψ(y)) .

13

3 Euclidean Embedding of Relational Data and Queries

Function RCODE – calculate embedding of interpretations and queries
Input: Joint probability table p ∈ R|Q|×|I|
Input: Dimension of Embedding n
Output: Embeddings Φ : Q 7→ Rn, Ψ :7→ Rn

lbest ← −∞1
for nrestart← 1 to nrestartmax do2

initialize Φ1 ∈ R|Q|×n,Ψ1 ∈ R|I|×n randomly3
for t← 1 to tmax do4

lt ← l(Φt,Ψt) /* determine log-likelihood */5
(GΦ

t , G
Ψ
t)T ← ∇l(Φt,Ψt) /* determine gradient */6

if t > 1 then7
∆Φt ←Get_RPROP_Update(GΦ

t , GΦ
t−1, lt,lt−1)8

∆Ψt ←Get_RPROP_Update(GΨ
t , GΨ

t−1, lt,lt−1)9
Φt+1 ← Φt + ∆Φt10
Ψt+1 ← Ψt + ∆Ψt11

if lbest < ltmax then12
lbest ← ltmax13
(Φ,Ψ)← (Φtmax ,Ψtmax)14

the derivative then becomes

∂l(Φ,Ψ)
∂Φ(x) = −

∑
x,y

p(x, y)2 (Φ(x)−Ψ(y))− 1
Z

∑
p(y)e−d2

xy (−2 (Φ(x)−Ψ(y)))

= 2
(
−
∑
x,y

p(x, y) (Φ(x)−Ψ(y)) + 1
Z

∑
p(y)e−d2

xy (Φ(x)−Ψ(y))
)

= 2
(
−
∑
x,y

p(x, y)Φ(x) +
∑
x,y

p(x, y)Ψ(y) +
∑
x,y

1
Z
p(y)e−d2

xyΦ(x)−
∑
x,y

1
Z
p(y)e−d2

xyΨ(y)
)

= 2
(
−〈Φ(x)〉p(x,y) + 〈Ψ(y)〉p(x,y) + 〈Φ(x)〉pUM (x,y) − 〈Ψ(y)〉pUM (x,y)

)
= 2

(
〈Φ(x)〉pUM (x,y) − 〈Φ(x)〉p(x,y)

)
+ 2

(
〈Ψ(y)〉p(x,y) − 〈Ψ(y)〉pUM (x,y)

)
Here we use the generalized average notation 〈f(x)〉p(x) = ∑

x p(x)f(x). Analogously, we
can derive

∂l(Φ,Ψ)
∂Ψ(y) = −

∑
x,y

p(x, y) (−2 (Φ(x)−Ψ(y)))− 1
Z

∑
p(y)e−d2

xy (2 (Φ(x)−Ψ(y)))

= 2
(
〈Φ(x)〉p(x,y) − 〈Φ(x)〉pUM (x,y)

)
+ 2

(
〈Ψ(y)〉pUM (x,y) − 〈Ψ(y)〉p(x,y)

)

14

3 Euclidean Embedding of Relational Data and Queries

Queries (Q)

Interpretations (I)

true in

co-proven

i1 i2 i3

q1 q2 q3


0 I ×Q

Q× I Q×Q



Figure 4: Data representation for Linlog embedding. Left: The interpretations and queries can be
seen as a bipartite graph. The graph can be extended using co-occurrence probabilities between
queries. Right: The adjacency matrix of the resulting graph has four blocks with co-occurrence
probabilities of queries (Q) and interpretations (I).

3.2 The RCODE Embedding Algorithm
Using the gradient from the previous section, we can use a gradient descent algorithm
to maximize the log-likelihood of the embedding. Our algorithm is summarized on the
preceding page.
We maximize the log-likelihood function iteratively (Line 4) using unconstrained opti-

mization techniques with random restarts (Line 2) as suggested by Globerson et al. (2007).
In their work2, the authors used BFGS (e.g. Avriel, 2003) to update Φ and Ψ in each itera-
tion. BFGS is a quasi-Newton method which tries to iteratively maximize a function using
its gradient and a Hessian which is approximated using previously determined gradients.
The step-size of BFGS is computed as a function of the gradient at the current position
and then adjusted by a line search to a locally optimal value. Thus, for each iteration the
function and its gradient have to be determined several times.
Since determining the gradient is the costly part of the embedding, we employ the

iRPROP+ (Igel and Husken, 2000) algorithm shown on the next page, a derivate of
RPROP (Riedmiller and Braun, 1993). Instead of estimating a second order derivative,
RPROP relies solely on the sign of the derivative and one learning-rate per dimension
to find its step size. The rationale is: If the sign does not change (Lines 5 to 8), increase
the learning rate and continue in the same direction; if the sign changes (Lines 2 to 4),
proceed in the opposite direction using a smaller rate. RPROP has been shown to be very
competitive and robust despite of its heuristic approach, not only for the artificial neural
net application it was originally designed for (e.g. Schiffmann et al., 1993; Hannan and
Bishop, 1997; Kretzschmar et al., 2008). Igel and Husken (2000) propose an extension to
RPROP, called iRPROP. In its iRPROP+ variant, they modify the original algorithm
such that no update is performed when the sign of the gradient changed but the objective
function did not worsen (Line 7), with the hope of jumping over some local minimum.

Using iRPROP+, we can modify CODE (pseudo-code on the preceding page) to ensure
that we have exactly one evaluation of the log-likelihood function (Line 5) and its gradient
(Line 6) per iteration. Additionally to the time savings per iteration, this change also
yields better convergence properties, as we will see in Section 4.5.1.

To distinguish our variant from the original CODE algorithm of Globerson et al., we
refer to it as RCODE, Resilient Co-Occurrence Data Embedding.

2Many thanks to Amir Globerson for providing the source code for CODE.

15

3 Euclidean Embedding of Relational Data and Queries

Function Get_RPROP_Update
Input: Gradients Gt, Gt−1

Input: Objective function values lt, lt−1
Output: Parameter update ∆W t

foreach Component Gij of G do1
if Gtij ·G

t−1
ij < 0 then2

∆t
ij ← min(∆t−1

ij · η+,∆max)3

∆W t
ij ← signGtij ·∆t

ij4

else if Gtij ·G
t−1
ij > 0 then5

∆t
ij ← max(∆t−1

ij · η−,∆min)6

if lt < lt−1 then ∆W t
ij ← −∆W t−1

ij ; /* iRPROP variant only */7

Gtij ← 08

else if Gtij ·G
t−1
ij = 0 then9

∆W t
ij ← signGtij ·∆t

ij10

3.3 Linlog Embedding
We can also embed relational data using the Linlog algorithm described in Section 2.3.
However, Linlog is designed to embed a single graph. A straight forward way to create
a graph from the co-occurrence data is a bi-partite graph with interpretations forming
one set of nodes, queries the other. The relation that query q is true in interpretation i is
represented by an edge (q, i). As with CODE, this information is not sufficient to yield
embeddings which represent the co-occurrence relationships in the data (Section 3.5.1).
Therefore, we also insert edges between co-occuring queries and weight the edges according
to the number of co-occurrences. The graph and the resulting adjacency matrix are
visualized in Figure 4. Similar to CODE, we can scale the Q×Q block in the adjacency
matrix to lower the importance of the inter-query co-occurrence probabilities.

After Linlog embedding, we proceed with post-processing as described in Section 3.5.3.

3.4 Spectral and PCA-based Embedding
To evaluate our method, we further consider spectral embedding and PCA-based embedding
for relational data. This section briefly describes how to apply the techniques described in
Section 2.3 in our setting.

PCA We perform PCA directly on the query-query co-occurrence matrix and derive the
coordinates in the embedding from the first two principal components.

Spectral Embedding We take the coordinates from the eigenvectors of the query-query
matrix associated with the smallest non-zero eigenvalues.

As the performance of both methods is not promising (see below), we do not consider
embedding interpretations into the same space.

16

3 Euclidean Embedding of Relational Data and Queries

3.5 Extensions
The embeddings generated using the algorithms can be extended such that they provide
more information to the user. In this section, we discuss how additional information can be
incorporated into the embedding process itself (Sections 3.5.1 and 3.5.2) and the final image
(Section 3.5.3). Finally, we consider how we can interactively explore the embeddings.

3.5.1 Using Co-Occurrence Probabilities of Co-Proven Queries

Using only the algorithm discussed in Section 3.2 does not yield good results. Specifically,
for logical queries we have that the co-occurrence probabilities are basically binary up to
normalization: Either the query is true in the interpretation, or it is not. As a result, all
interpretations are placed approximately equally far away from all their associated queries.
Such a “degenerate” picture is shown in figure Figure 5. While the image already contains
a lot of the information we are interested in, we can force the embedding algorithm to put
more emphasis onto the inter-query co-occurrence probabilities.

Assuming that co-occurrences between queries Q and interpretations I are stored in the
binary matrix

CQ,I ∈ {0, 1}|Q|×|I| ,

we can calculate the query-query co-occurrence matrix to be

CQ,Q = CQ,IC
T
Q,I .

As suggested by Globerson et al. (2007), we add a second term to the log-likelihood function
in Equation (12), such that

l(Φ,Ψ) =
∑
x,y

p(x, y) log pUM (x, y) + η
∑

x(1),x(2)

p(x(1), x(2)) log pUU (x(1), x(2)), (13)

where η is a constant weighting the relation between both gradients. We can visually verify
the effect of maximizing the combined log-likelihood function in Figure 9. In the following,
when referring to RCODE, we will refer to this variation of the algorithm.

3.5.2 Embedding Interpretations Based on Query Entropy

As mentioned in Section 2.1, concept learning is a typical ILP task and can – for our
purposes – be summarized as the search for queries which determine the concept of an
interpretation. In our visualization, we can colorize queries which are good candidates.
However, the embedding algorithm knows nothing about the varying importance of the
queries and hence treats them equally. It follows that the position of interpretations in the
embedding is dominated by the frequent patterns and not by the “important” ones.
We suggest to use a two-step approach to this problem. We first embed queries and

interpretations by maximizing Equation (13). In a second step, we fix the positions of the
queries and use RCODE to determine the position of the interpretations only with respect
to selected “important” queries. For a classification task with N classes, we can use a low
entropy

H(q) = −
N∑
c=1

pc,q log pc,q (14)

17

3 Euclidean Embedding of Relational Data and Queries

Figure 5: Left: Embedding of Mutagenesis dataset using only query-interpretation co-occurrence
measures. Because the co-occurrence probability is binary for each pair, interpretations (circles)
are embedded equally far away from all their queries (triangles). Right: Embedding using
additional co-occurrence probabilities from co-proven queries.

as a selection criterion, where pc,q represents the empirical probability of the query q being
true in an interpretation of class c.
When using a threshold to determine the “important” queries, some interpretations

might be left with no queries at all. We can solve this problem by generalizing the threshold
approach to a weighting approach: We multiply the query-interpretation co-occurrence
matrix with the negative entropy of the respective queries and normalize such that the sum
over all co-occurrences of an interpretation is one. When reapplying the RCODE algorithm
with fixed query-positions, each interpretation is placed close to the queries which are most
significant for the determination of its class. The difference between one-step and two-step
embedding for the Mutagenesis dataset (Section 4.2) is depicted in Figure 6.

3.5.3 Finding Regional Representatives

The RCODE algorithm described in Section 3.2 yields positions for interpretations and
queries. While the embeddings (i. e. Figures 5 and 6) already visualize the structure, the
resulting pictures are not very meaningful. They lack information on what the structure
represents. In principle, we could tag all embedded entities with meaningful descriptions,
however, as the number of entities increases the amount of information becomes too much.
Instead, we can pick out regional representatives that provide just enough information to
allow the user to navigate and understand the dataset without resulting in information
overload. This section describes an algorithm to automate the process of finding meaningful
regional representatives for the embedded queries.
As a first step, we will focus on finding a selection criterion, that is, we define which

queries we are interested in. The selection criterion should prefer queries which represent
the area in which they are placed. We can assume that this is the case for queries which
are true in many interpretations. Furthermore, using Occam’s razor (Blumer et al., 1987)
we can assume that queries with a shorter description length are more general than others.
A possible selection criterion selcrit : Q 7→ R for queries q ∈ Q could therefore be defined

18

3 Euclidean Embedding of Relational Data and Queries

Figure 6: Left: Standard one-step embedding; Right: Two-step embedding. In the second step,
the query (triangle) positions are fixed and the interpretations (circles) are embedded according
to their co-occurrence with low-entropy (dark) queries.

as
selcritfreq(q) := frequency(q)/ descriptionlength(q)

In classification tasks, it could also be desirable to focus on queries which can distinguish
well between classes, e. g. based on the well-known F -score:

F (q) = 2(precision(q) · recall(q))/(precision(q) + recall(q))
selcritF (q) := F (q)/descriptionlength(q)

We should note that the selection criterion will only be used to locally compare queries:
Queries with a wholly different co-occurrence statistic do not compete for selection. To
become indifferent to large-scale differences in the embedding, we can first use a technique
from digital image processing: A high-pass filter. We subtract the local average value from
the selection criterion, such that

selcrit′(q) := selcrit(q)− 1
|neighbours(q)|

∑
n∈neighbours(q)

selcrit(n),

where the neighbourhood of a query is defined in terms of a maximum distance in the
embedding and must be chosen to select the desired density of labels in the final image.
After applying the high-pass filter, there may still be very similar queries in a close

range. We use a local winner-takes-all rule to increase the value of the selection criterion
of queries which are strongest in their area and inhibit the others. Formally, for all queries
q, we determine

q∗ = arg max
n∈neighbours(q)

(
selcrit′(n)

)

19

4 Experiments

and then set

selcrit′(q∗) := α selcrit′(q) with α > 1, and

selcrit′(n) := 1
α

selcrit′(n) for n 6= q∗.

We iterate this process and then select the highest scoring queries for display.

3.5.4 Interactive Extensions

The 2D (and also 3D, for that matter) embeddings are ambiguous, as mentioned in
Section 4.4: Two objects may be placed at the same position in the embedding although
they have completely different co-occurrence statistics. As an example, consider the
rectangle A,B,C,D with the corners representing queries. The interpretation q occurring
with A and C will be placed in the center of the rectangle, just as the interpretation p
occurring with B and D will be. To disambiguate such situations, we can use interactive
data exploration. We implemented a tool which allows the user to point to interpretations
and see the associated queries, and thereby determine whether clusters in the image are
true clusters in the data.
Considering the other direction, some interpretations which are co-occurring with a

query might be scattered because they co-occur with many other queries. To detect such
cases, we can use a similar mechanism as above: Pointing to queries shows the associated
interpretations.
Finally, we suggest to introduce group selection and zooming to the interactive tool.

Group selection with a database backend could be used to determine the common features
of the selected queries.

4 Experiments
To analyze our visualization method, we embed the datasets described in Section 4.2 using
pattern miners briefly introduced in Section 4.1. Section 4.3 shows how we can pre-process
the data by reducing the information gathered by the pattern miner. After embedding, we
visualize additional properties of queries and interpretations as explained in Section 4.4.

Scalability and convergence of our approach are analyzed in Section 4.5.1. We then
compare the our algorithm against various other embedding methods in Section 4.5.2
with regards to correlation of spatial distance with co-occurrence and, qualitatively, the
readability of the embedding. Finally, Section 4.6 discusses selected embeddings in detail.

4.1 Pattern Miners
In this work, we use Molfea (Helma et al., 2002) and C-armr3 (De Raedt and Ramon,
2004) to mine databases of molecules. Both systems are inspired by the Apriori algo-
rithm (Agrawal and Srikant, 1994): they construct general queries and specialize them
only if they are frequent. Only queries more frequent than some threshold are retained and
further expanded, i.e., specialized. While Molfea constructs chains of molecules (atom,

3in the CLASSIC’CL implementation (Stolle et al., 2005)

20

4 Experiments

bond, atom, . . .), C-armr constructs general queries and can take background knowledge
into account as well.

4.2 Datasets
NIPS database The Neural Information Processing Systems database4 contains data ex-
tracted via OCR from NIPS1-12, papers of the pre-electronic submission era. Amongst other
statistics, the co-occurrence of 13, 649 words in 1, 740 submissions have been determined.

We simply set “interpretations” to the papers and the “queries” to words. Consequently
we have the number of occurrences of a query in the interpretation as the respective entry
in the co-occurrence matrix, when a word occurs in a paper. Part of this dataset was
also embedded by Globerson et al. (2007) to demonstrate the capabilities of their CODE
algorithm. In this work, we embed the complete dataset to demonstrate that RCODE
works in principle, and that it can deal with large amounts of data.

Mutagenesis Dataset On Mutgenesis (Srinivasan et al., 1996), the problem is to predict
the mutagenicity of a set of compounds. In our experiments, we use the atom and bond
structure information only (including the predefined predicate like ball3s, ring_size_5s,
and others). The dataset consists of two sets: a regression friendly set with 188 entries
(125 positives, 63 negatives) and a regression unfriendly set with 42 entries (13 positives
and 29 negatives).
Here, “interpretations” are all (regression friendly and unfriendly) molecules. We use

C-armr (Section 4.1) to find queries with minimum frequency 15 and delta 5 up to depth
8, resulting in a set of 504 queries with unique co-occurrence statistics. Additionally, we
record in how many interpretations of a class (active or inactive mutagenicity) each query
was true.

Estrogen Dataset The estrogen database was extracted from the EPA’s DSSTox NC-
TRER Database5. The original dataset was published by Fang et al. (2001), and is specially
designed to evaluate QSAR approaches. The NCTRER database provides activity classi-
fications for a total of 232 chemical compounds, which have been tested regarding their
binding activities for the estrogen receptor. The database contains a diverse set of natural,
synthetic, and environmental estrogens, and is considered to cover most known estrogenic
classes spanning a wide range of biological activity (Fang et al., 2001).
The database distributed by the EPA’s DSSTox is in SDF (Structure Data Format),

and contains, in addition to the original database, a number of annotations: 6 indicator
variables extracted from the original publication (Fang et al., 2001), logP (octanol/water
partition coefficient) values, chemical class assignments (6 main classes, 20 subclasses), as
well as the activity category ER-RBA (estrogen receptor relative binding affinity). This
classification yields 131 active and 101 inactive compounds (with regard to their ER-RBA).

Again, “interpretations” are molecules. This time, however, we use Molfea (Section 4.1)
to generate atom-bond chains as queries. We find all queries with minimum frequency 10,
resulting in 482 queries with unique co-occurrence statistics.

4http://www.cs.toronto.edu/~roweis/data.html
5http://www.epa.gov/ncct/dsstox/sdf_nctrer.html

21

http://www.cs.toronto.edu/~roweis/data.html
http://www.epa.gov/ncct/dsstox/sdf_nctrer.html

4 Experiments

AIDS Dataset The DTP AIDS Antiviral Screening Database originating from the NCI’s
development therapeutics program NCI/NIH6 consists of SMILES representations of 41, 768
chemical compounds (Kramer et al., 2001). Each data entry is classified as either active,
moderately active, or inactive. A total of 417 compounds are classified as active, 1, 069 as
moderately active, and 40, 282 as inactive. We have converted this dataset into SDF format
using the OpenBabel toolkit and randomly sampled 400 active and 400 moderate/inactive
compounds.
As in the estrogen dataset, we use Molfea-generated atom-bond chains as queries to

the interpretations (molecules). A minimum frequency of 15 and maximum length 30
results in 3310 queries with unique co-occurrence statistics.

4.3 Pre-Processing: Removing Redundant Queries
The number of possible frequent queries is huge even for small datasets, in fact, it becomes
prohibitively large for known embedding algorithms very quickly. For example, the number
of frequent queries with less than eight conjunctions as determined by C-armr in the
230 molecule-database “Mutagenesis” (Section 4.2) is at 16 million. One reason for this
explosion is that when queries are constructed in a very general way, redundant queries
cannot be distinguished from truly novel ones. Consider, again, the pyrimidine compound
depicted in Figure 1. The query pyrimidine(X) might match a certain number of molecules.
However, a query looking for a unique substructure of pyrimidine, e. g. N=C-C, will get an
equal number of results as the query for the whole molecule. Such redundancy is hard
to detect syntactically, although C-armr tries to eliminate obvious cases, e. g. using
δ-freeness and s-freeness concepts (Stolle et al., 2005).
Luckily it is not required to embed all queries, nor is it desirable for our method: In

CODE, queries get assigned different positions when they are different with respect to the
queries in which they are true. Consequently, we can reduce a set of redundant queries
to one, embed it, and after the embedding provide the user with the list of associated,
syntactically different queries.
The objective function in Equation (13) takes into account all queries, therefore the

embedding changes when the redundant ones are removed. Consequently, we have to
explain why we can assume that collapsing redundant queries to a single one does not
change the embedding in an unfavorable way. The rationale is as follows: Assume that
the query q0 co-occurs with exactly the same interpretations as the queries q1, q2, · · · qn for
some large n. Let us further assume that the queries are frequent. Then, when embedding
all queries including q0, · · · , qn, the queries will have a major influence on the outcome.
Now assume that we delete q1, · · · qn. Since there were many syntactically different queries
corresponding to q0, some of them are prone to have specializations which are frequent
as well and have similar, but not equal co-occurrence statistics. As a cluster, q0 and the
(semantically different) specializations of q0, · · · , qn will also have a large influence on
the embedding. Therefore, we can assume that removing semantically equivalent queries
(and thereby making the embedding possible in the first place) does not produce major
distortions.

6http://dtp.nci.nih.gov/

22

http://dtp.nci.nih.gov/

4 Experiments

4.4 Post-Processing: Visualizing Side-Information in Embedding
Given an embedding of queries and interpretations, we still have the options of – at least –
shape, hue, brightness and size to make the embedding more understandable. The choice
depends of course on the data available. We will briefly mention some of the options.

Features/Queries Both should be clearly distinguished; however, we can gain insights
from just looking at one of the two entity sets. For example, we can see whether
there are clusters of similar interpretations or just how the queries are related among
each other.
Note however, that the embedding is ambiguous and clusters can be composed of
queries with quite different co-occurrence statistics. For now, we can let the user find
such cases using interactive exploration (Section 3.5.4).

Frequency The amount of interpretations a query applies to is valuable information. We
use size to indicate the log(frequency). As we will see in Section 4.5.2, this somewhat
disambiguates the problem of the non-transitivity of co-occurrence, which cannot be
addressed correctly by the embedding algorithm.

Class In the AIDS and Mutagenesis dataset we have two classes of molecules. It is therefore
interesting to visualize how molecules of different classes relate to different queries
and how good they can be distinguished. We suggest to use different colors for this
purpose. This naturally extends to a regression setting e. g. the case of the estrogen
dataset, where activity is measured on a scale between 0 and 100.

Frequency/Class Specificity Measures We should also address the combination of the
frequency and class, since this is what yields a “good” theory as defined in Section 2.1.
In this work, we mostly use the brightness of a query to show how specific it is to a
class and hue to depict the class. For example, in Figure 12, green queries correspond
to many “active” molecules, red queries correspond to “inactive” ones. Dark queries
are undecided, which yields an intuitive transition between classes. Other candidates
for visualization are the F2 measure or the χ2 value of a query.

4.5 Analysis of Embeddings
4.5.1 Convergence and Scalability Properties of RCODE

To demonstrate the advantages of our modifications to CODE, we repeatedly embed
Molfea-generated patterns from the AIDS dataset. We embed the 800 molecules together
with the resulting 3310 queries using CODE and RCODE 10 times each. Both algorithms
robustly converge (Figure 7), however, RCODE gives slightly better results.

We additionally compared execution times for both algorithms. CODE was available in
a Matlab implementation using a highly optimized mex-function to calculate the gradient,
RCODE was implemented using C++. The RCODE implementation was approximately
three times faster per iteration, which we can attribute to the fact that it uses less
evaluations of the gradient than the original BFGS-based solution.
To demonstrate the scalability of our approach, we embedded the 13, 649 words and

1, 740 papers from the NIPS database. The result is shown in Figure 8. We used the
post-processing from Section 3.5.3 with frequency as the selection criterion to select words

23

4 Experiments

 77

 78

 79

 80

 81

 82

 83

 0 20 40 60 80 100 120 140 160

ite
ra

tio
n

log-likelihood

BFGS
iRPROP+ Figure 7: Performance of RCODE, our

iRPROP+ vs. the original BFGS imple-
mentation. We embedded 800 interpreta-
tions of the AIDS dataset and 3310 Molfea-
generated queries ten times with random ini-
tial positions. For each iteration and algo-
rithm, we averaged and plotted the value
of the log-likelihood function. Error bars
represent standard deviation. Note that em-
bedding using RCODE took 9 minutes on
average, while original implementation using
BFGS took 29 minutes.

for display. From this automated selection alone, we can determine areas such as graphical
models, scheduling, language processing and biologically inspired papers in the embedding.

4.5.2 Quality of Embedding

We will now analyze how faithful our embedding method is to the objective function and
how it deals with conflicting information.
As a start, we will concentrate on how well inter-query relationships are represented in

the embedding. For each pair of queries, we determine the co-occurrence and the distance
in the embedding and histogram which co-occurrence-distance relations occur how often.
The result is depicted in Figure 9. As expected, we find an inverse proportional relationship
between the two variables. That is, the probability of being placed close to each other
rises with the number of co-occurrences. However, queries which do not occur with each
other can occur at almost any distance in the image. We can explain this observation by
the intransitivity of co-occurrence: A query A might co-occur often with queries B and C,
thus (A,B) and (A,C) are pairs which we would like to see close together. Although B
and C could be unrelated, the embedding mechanism can be forced to place them close to
each other. In the ILP setting, this happens quite often, when A is a general query and
B and C are specializations which cover different interpretations. We can aid the user in
detecting such situations by visualizing the frequency of a query (number of interpretations
in which the queries are true), for example using color or size. In the figures we use the
size as an indicator of frequency.

In Section 3.5 we already considered that using only query-interpretation co-occurrences
induces undesirable embeddings, since all interpretations are placed at the same distance
to “their” queries. To circumvent this problem, we introduced an additional component
to the gradient which forced queries which often occur together to be close to each other.
The (expected) effect on the distance between queries in the embedding depending on
their co-occurrence is depicted in Figure 9: The plot based only on query-interpretation
co-occurrence shows a degenerated inverse proportional relation, which is improved when
query-query co-occurrence statistics are also taken into account.
We can further analyze other embedding methods. In Section 2.3 we suggested some

candidate algorithms. Globerson et al. (2007) already compared the CODE algorithm
to correspondence analysis, PCA, MDS and IsoMap. We chose Linlog (Section 3.3)
PCA, and spectral embedding (Section 3.4) to evaluate their fitness for relational data,

24

4 Experiments

Figure 8: Embedding of 13, 649 words (triangles) and 1, 740 documents (circles) of the NIPS
database. The common words are in the center, top left deals with graphical models, bottom left
with scheduling. The top center area deals with language processing, while biologically inspired
papers are in the bottom right corner. More papers seem to be published in the area of graphical
models.

0 5 10
0

20

40

60

80

squared distance in embedding

nu
m

be
r

of
 c

o−
oc

cu
rr

en
ce

s Co−Proven only

0 5 10
0

20

40

60

80

squared distance in embedding

nu
m

be
r

of
 c

o−
oc

cu
rr

en
ce

s Query/Interpretation only

0 5 10
0

20

40

60

80

squared distance in embedding

nu
m

be
r

of
 c

o−
oc

cu
rr

en
ce

s Query/Interpretation and Co−Proven

Figure 9: Comparison of squared distances of queries in the embedding to their co-occurrence
probabilities. We used a 2D histogram of size 40 × 40 to visualize the observed relations in
the Mutagenesis dataset. Left: using only co-proven query co-occurrence statistics (correlation
ρ = −0.5); Center: using only query-interpretation co-occurrence statistics (ρ = −0.47); Right:
Embedding using query-interpretation and co-proven query co-occurrence statistics (ρ = −0.51).

25

4 Experiments

-0.6

-0.4

-0.2

 0

 0.2

 0.4

Mutagenesis AIDS Estrogen

Correlation of Distance and Co-Occurrence

PCA
SE

Linlog
RCODE

Figure 10: Comparison of correlations be-
tween distances of queries in the embedding
and their number of co-occurrences. For Lin-
log and RCODE we averaged the results
from 10 random restarts.

specifically, how well the co-occurrence relation is represented as distances in the image and,
qualitatively, how readable the resulting representation is. The embeddings are displayed
in Figure 11, the correlations are compared in Figure 10.

PCA While some relations are retained – high-frequency queries are on the left, a top-down
arch represents the more specific queries – the inherent structure is not represented
very well. Specifically, distance-relations do not inversely correlate with co-occurrence
(ρ = 0.22), which makes the plot hard to interpret.

Spectral Embedding The embedding of the AIDS dataset shows a typical embedding of a
“power law” graph as described by Chung and Lu (2004), for which low-dimensional
embeddings are nearly useless for visualization and clustering (Lang, 2005). As
expected, the distance-relationships in the image are hard to interpret and do not
correlate inversely with the co-occurrence (ρ = 0.09).

Linlog Embedding In contrast to the previous methods, Linlog produces embeddings
which exhibit the desired negative correlation between distance and co-occurrence
(ρ = −0.44). The embedding of the Mutagenesis dataset reflects the clear clusters in
the dataset very well, however, within-cluster relationships of queries are hard to see.
In the AIDS dataset embedding, this effect becomes even more pronounced as clusters
are hard to identify. The clear tree structure observable in CODE embeddings, which
gives hints to specializations of queries, is hidden.
Provided that both PCA and spectral embedding do not provide a reading for spatial
distance, embedding the interpretations into the same Euclidean space is of no
value. For Linlog it is useful and also has an interesting aspect: Interpretations
are internally assigned to a cluster, which attracts them more than other clusters
to which they have connections as well. As a result, part of the ambiguities of a
mapping to the 2D plane are avoided or at least hidden. The cluster assignment can
be modulated similar to the extensions proposed in Section 3.5 by assigning weights
to the bi-partite graph in Figure 4.

26

4 Experiments

Figure 11: Embedding of AIDS (left) and Mutagenesis (right) dataset using non-CODE based
algorithms. Top: Spectral embedding using eigenvectors associated with second and third largest
eigenvalues of Query co-occurrence matrix. Center: PCA embedding using main two components
of query-query co-occurrence matrix. Bottom: Linlog embedding on extended bipartite graph.

27

4 Experiments

4.6 Showcases

Figure 12: Mutagenesis Dataset: Embedded Queries (triangles) and interpretations (circles).

The Mutagenesis Dataset
• Molecules of the Mutagenesis dataset (circles) and C-armr-generated queries (trian-
gles) are displayed. The color of the molecules indicates their class as active (blue)
or inactive (salmon). Frequent queries appear larger in the image, queries which hint
to active (inactive) molecules are displayed in green (red), while black queries do not
exhibit a class preference.

• The key of a molecule says nothing about its properties and occurs in every molecule.
Therefore, it is placed in the center.

• The queries with textual description reflect the logical program learned by ALEPH
(Srinivasan, 2000) to identify active molecules:

active(A) :- attyp(A,B,195), phenanthrenes(A).
active(A) :- attyp(A,B,29), ring_size_5s(A).
active(A) :- ball3s(A).
active(A) :- attyp(A,B,21), attyp(A,C,38), sbond(A,C,B,1).
active(A) :- attyp(A,B,21), attyp(A,C,38), sbond(A,C,B,1).
active(A) :- attyp(A,B,195), attyp(A,C,10).
active(A) :- attyp(A,B,27), ring_size_5s(A).
active(A) :- attyp(A,B,29), attyp(A,C,27).
active(A) :- attyp(A,B,16), ring_size_5s(A).

• We further visualize which queries were considered by ALEPH to find this solution
using red circles surrounding the queries.

28

4 Experiments

Figure 13: Left: AIDS Dataset, Embedded queries (triangles) and interpretations (circles). Right:
Azidothymidine (AZT), a highly potent inhibitor of HIV-1 replication. AZT is prominent in the
top of the embedding.

The AIDS Dataset

• As with all organic compounds, short sequences of carbon (C) and oxygen (O) are
frequent in all molecules (placed in the center) and are not relevant to class information
(black).

• The molecules are displayed in blue (active) or salmon (inactive).

• The embedding clearly indicates compounds in green color that are derivatives of
Azidothymidine (AZT, right hand side), a potent inhibitor of HIV-1 replication. AZT
contains a number of functional groups like an ether group (C-O-C) and a nitrogen
group (N=N=N), one of the prominent features of AZT. These features, as well as
the bridge between the two aromatic rings (C-N-C-N-C-O) can clearly be seen to be
prominent in top of the embedding and attract many of the interpretations.

• At the bottom right, three groups of sulfur-related active queries can be distinguished,
most likely from the group of dyes and polyanions7.

• The information implicitly represented by the restricted chain form of queries could
be made more explicit by using a graph miner and displaying the actual graphs
instead of molecule chains. We are currently working on the realization of this idea.

7http://dtp.nci.nih.gov/docs/aids/searches/list.html#DPA

29

http://dtp.nci.nih.gov/docs/aids/searches/list.html#DPA

4 Experiments

Figure 14: Embedding of Estrogen dataset. Here, black/colored queries indicate low/high activity.

Estrogen Dataset

• As with all organic compounds, carbon (C) and oxygen (O) are frequent in all molecules
(placed in the center) and are not relevant to class information (black).

• Queries indicated in green color reflect a high average activity of the interpretations
in which they are true.

• In their original publication Fang et al. have identified that a phenolic ring connected
by one to three atoms to another benzene ring is one of the key features that have to be
present regarding the likelihood of a compound being an ER ligand. A phenolic ring
is a 6-carbon benzene ring with an attached hydroxyl (OH) group. In the embedding,
it can be seen that this is reflected in features like C-C-C=C-O, which indicates that
there is a path of one carbon atom to (a part of) a ring structure (C-C=C) connected
to an oxygen.
This implicit information could be made more explicit by using a graph miner and
displaying the actual graphs instead of molecule chains. We are currently working on
the realization of this idea.

30

5 Related Work

5 Related Work
This work’s contribution is a generic visualization method for relational data by embedding
queries and interpretations into a common low-dimensional Euclidean space. To the authors
knowledge, this is the first attempt at designing such an algorithm. We can, however,
relate our method to the general field of information visualization, visual analytics and
previous visualization methods for specific domains.

Visual analytics is a scientific field concerned with sensemaking and reasoning (Thomas,
2005). The aim is to provide interactive tools with visual feedback, thereby facilitating
the process of understanding and dealing with large amounts of data. Visual analytics
tools supply the human expert with tools that do the more mechanical tasks, while the
expert guides the process with her intuition and experience, both of which are hard to
put into machines. Our work addresses a crucial step in this process, namely information
visualization. It provides an intuitive and generic visual representation of large databases.

Previous work in this area is highly domain specific, for example in the domain of bioin-
formatics, which by definition deals with large databases. In the genetic age, visualization
centers around the domain of common properties in sequences, especially genomes (e. g.
Schneider and Stephens, 1990; Cho et al., 1998; Schatz et al., 2007).

The bioinformatics-centered system Fusion presented by Indukuri (2004) comes closest
to our approach in integrating ILP mechanism into an interactive application to visualize
and explore data. Fusion employs an ILP data miner to discover frequent patterns in a
database of genes. The genes can then be displayed in 2D scatterplots, where the axis
reflect properties of the genes, with the genes matching selected queries marked. The user
can change the axis of the scatterplots or select queries and thereby explore the interaction
of measured properties and matching queries. Our method provides a more direct way
of relating patterns and database with each other, since no measured axis are assumed
and we use the co-occurrence information to find the distances of the queries in the plane
instead of leaving it to the user to find an advantageous viewpoint.

Previous attempts at defining distance measures for logical data were largely motivated
by the syntax of logical formulæ. The thesis of Ramon (2002) provides such measures,
some of which are discussed in Section 2.2. Karwath and Kersting (2007) use syntax-based
distances for sequence alignments and provide a visualization of the resulting alignments.
In Karwath et al. (2008), the authors show how to discriminatively learn the parameters of
a syntax-based distance measure to separate classes in a classification task.
Michaels et al. (1998) used mutual information to define a distance measure for genes.

Their visualization method named Euclidean distance cluster analysis hierarchically deter-
mines clusters using this distance measure, places the entities in a plane and draws the
clusters as connecting and branching lines. While the clustering could be incorporated in
our approach as well (c. f. Section 3.3), the approach by Michaels et al. does not scale well
and the connections between the genes are implicit, not embedded into the same space as
the genes. The last point makes a data exploration as suggested in this work impossible.
Finally, for the distance measure used in this work we exploit a probabilistic model

of co-occurrence of relational queries and interpretations. We can therefore place our
visualization method in the larger context of statistical relational learning which develops
techniques for representation, reasoning and learning in domains with complex relational
and rich probabilistic structure (Getoor and Taskar, 2007).

31

6 Conclusion

6 Conclusion
In this work, we proposed a novel visualization method for relational datasets, tailored to
provide the human user with insights into the structure of a dataset and the algorithms
applied to it. The dataset is first represented as logical interpretations. We run pattern
miners from the inductive logic programming (ILP) literature to find interesting patterns
(logical queries). For the queries, we record in which interpretations they were true and
with which other – co-proven – queries they occurred. We showed that co-occurrence
statistics can be used as a similarity measure which is much more grounded in the
data than commonly used syntax-based distance measures. Consequently, we applied
an instance of the Co-Occurrence Data Embedding algorithm (CODE, Globerson et al.
2007) to embed queries and interpretations into a common Euclidean space. The resulting
embeddings compare favorably with PCA, spectral embedding and Linlog in retaining the
similarity relationships of the embedded entities as distances. The convergence speed of the
unconstrained minimization could be greatly improved by choosing an RPROP (Riedmiller
and Braun, 1993) variant instead of the originally proposed BFGS implementation.
We embedded data from various real-world molecular databases and implemented an

automated tagging system. Further information can be provided to the user through
coloring to represent underlying concepts such as class-membership and interactivity to
disambiguate placement in the 2D embedding. The resulting images promise to provide
insights into the database which were previously not possible (Barry Hardy, personal
communication). Part of this work will be published in the proceedings of the ILP
conference (Schulz, Kersting, Karwath, 2009).
To the authors knowledge, this work is the first attempt at a general visualization

method for ILP. Therefore, various topics remain to be explored. The visualization could
be improved by finding a better way to deal with non-transitivity of co-occurrence i. e. by
relaxing the distance constraints between two specializations of the same query.

The visualization of ILP learning algorithms should be further evaluated. There are two
aspects here in need of consideration: The visualization of the search procedure and the
visualization of the search results. The search procedure typically proceeds sequentially
and considers various subsets of the entities in the database, a process which could be
reflected in the image. Search results can take various forms, such as order-dependent rules
or trees. While queries constituting the search results can be embedded with our method,
clarification as to which interpretations they apply to when executed in tree or rule order
would greatly improve the usefulness of our approach. So far, our proposed method can
only provide hints to properties determined theories.
In this work we concentrated on the visualization aspects of co-occurrence embeddings;

however, low-dimensional embeddings could have uses in other domains as well. Low-
dimensional representations are particularly useful for e. g. clustering and instance-based
learning because they do not suffer from the curse of dimensionality. Our embeddings
could thus be used as input for other applications. For this work we showed how to embed
all available data at once. For the future, we also consider out-of-sample techniques, where
novel data can quickly be placed in the embedding, increasing the number of use-cases of
the clustering or instance-based learning techniques discussed above. Finally, the CODE
algorithm is not limited to embedding entities of two types, in our case, interpretations
and queries. For example, for classification tasks it is also possible to embed class labels
into the same Euclidean space using their co-occurrence with interpretations and queries.

32

References

References
Adé, H., De Raedt, L., and Bruynooghe, M. (1995). Declarative bias for specific-to-general
ILP systems. Machine Learning, 20(1):119–154.

Agrawal, R. and Srikant, R. (1994). Fast algorithms for mining association rules in large
databases. In Proceedings of the 20th International Conference on Very Large Data
Bases, pages 487–499. Morgan Kaufmann, San Francisco, CA, USA.

Avriel, M. (2003). Nonlinear programming: analysis and methods. Dover Publications.

Belkin, M. and Niyogi, P. (2002). Laplacian eigenmaps and spectral techniques for
embedding and clustering. Advances in neural information processing systems, 1:585–
592.

Blumer, A., Ehrenfeucht, A., Haussler, D., and Warmuth, M. (1987). Occam’s razor. Inf.
Process. Lett., 24(6):377–380.

Boyd, S. and Vandenberghe, L. (2004). Convex optimization. Cambridge university press.

Brand, M. and Huang, K. (2003). A unifying theorem for spectral embedding and
clustering. In Proceedings of the Ninth International Workshop on Artificial Intelligence
and Statistics.

Cho, R., Campbell, M., Winzeler, E., Steinmetz, L., Conway, A., Wodicka, L., Wolfsberg, T.,
Gabrielian, A., Landsman, D., Lockhart, D., et al. (1998). A genome-wide transcriptional
analysis of the mitotic cell cycle. Molecular Cell, 2(1):65–73.

Chung, F. and Lu, L. (2004). The average distance in a random graph with given expected
degrees. Internet Mathematics, 1(1):91–113.

Cox, T. and Cox, M. (2001). Multidimensional Scaling. CRC Press.

Dantsin, E., Eiter, T., Gottlob, G., and Voronkov, A. (2001). Complexity and expressive
power of logic programming. ACM Comput. Surv., 33(3):374–425.

Davidson, R. and Harel, D. (1996). Drawing graphs nicely using simulated annealing. ACM
Transactions on Graphics, 15(4):301–331.

De Raedt, L. (1997). Logical settings for concept-learning. Artificial Intelligence, 95(1):187–
201.

De Raedt, L. and Džeroski, S. (1994). First-order jk-clausal theories are PAC-learnable.
Artificial Intelligence, 70(1):375–392.

De Raedt, L. and Ramon, J. (2004). Condensed representations for inductive logic
programming. In Proceedings of 9th International Conference on the Principles of
Knowledge Representation and Reasoning, pages 438–446.

Dehaspe, L. and De Raedt, L. (1997). Mining association rules in multiple relations. pages
125–132.

33

References

Dehaspe, L. and Toivonen, H. (1999). Discovery of frequent datalog patterns. Data Mining
and Knowledge Discovery, 3(1):7–36.

Di Battista, G., Eades, P., Tamassia, R., and Tollis, I. (1994). Algorithms for drawing
graphs: an annotated bibliography. Computational Geometry-Theory and Application,
4(5):235–282.

Dĳkstra, E. (1959). A note on two problems in connexion with graphs. Numerische
Mathematik, 1(1):269–271.

Džeroski, S. (2007). Introduction to statistical relational learning, chapter 3, pages 57–92.
MIT Press.

Džeroski, S. (2003). Multi-relational data mining: an introduction. ACM SIGKDD
Explorations Newsletter, 5(1):1–16.

Emde, W. and Wettschereck, D. (1996). Relational instance-based learning. In Proceedings
of the Thirteenth International Conference on Machine Learning, pages 122–130. Morgan
Kaufmann.

Fang, H., Tong, W., Shi, L., Blair, R., Perkins, R., Branham, W., Hass, B., Xie, Q., Dial, S.,
Moland, C., , and Sheehan, D. (2001). Structure-activity relationships for a large diverse
set of natural, synthetic, and environmental estrogens. Chem. Res. Tox, 14:280–294.

Fodor, I. (2002). A survey of dimension reduction techniques. Manuscript.

Friedrich, T. (2002). Nonlinear dimensionality reduction with locally linear embedding
and isomap. Master’s thesis, The University of Sheffield.

Fuchs, N., Schwertel, U., and Torge, S. (1999). Controlled natural language can replace
first-order logic. In Automated Software Engineering, 1999. 14th IEEE International
Conference on., pages 295–298.

Getoor, L. and Taskar, B. (2007). Introduction to statistical relational learning. MIT Press.

Globerson, A., Chechik, G., Pereira, F., and Tishby, N. (2007). Euclidean Embedding of
Co-occurrence Data. The Journal of Machine Learning Research, 8:2265–2295.

Golub, G. and Kahan, W. (1965). Calculating the singular values and Pseudo-Inverse
of a matrix. Journal of the Society for Industrial and Applied Mathematics: Series B,
Numerical Analysis, 2(2):205–224.

Gomory, R. and Hu, T. (1961). Multi-terminal network flows. Journal of the Society for
Industrial and Applied Mathematics, pages 551–570.

Hannan, J. and Bishop, J. (1997). A comparison of fast training algorithms over two real
problems. In Fifth International Conference on Artificial Neural Networks, pages 1–6.

Helma, C., Kramer, S., and De Raedt, L. (2002). The molecular feature miner MolFea. In
Proceedings of the Beilstein-Institut Workshop.

Herman, I. and Marshall, M. (2000). Graph visualization and navigation in information
visualization: A survey. IEEE Transactions on Visualization and Computer Graphics.

34

References

Hutchinson, A. (1997). Metrics on Terms and Clauses. In Proceedings of the 9th European
Conference on Machine Learning, pages 138–145. Springer-Verlag London, UK.

Hyvrinen, A. (1999). Survey on independent component analysis. Neural Computing
Surveys, 2(4):94–128.

Igel, C. and Husken, M. (2000). Improving the Rprop learning algorithm. In Proceedings
of the second international ICSC symposium on neural computation (NC 2000), pages
115–121.

Indukuri, K. (2004). Fusion: A Visualization Framework for Interactive ILP Rule Mining
with Applications to Bioinformatics. Master’s thesis, Virginia Polytechnic Institute and
State University.

Iwata, T., Saito, K., Ueda, N., Stromsten, S., Griffiths, T., and Tenenbaum, J. (2007).
Parametric Embedding for Class Visualization. Neural Computation, 19(9):2536–2556.

Jain, A. and Dubes, R. (1988). Algorithms for clustering data. Prentice-Hall, Inc.

Jolliffe, I. (2002). Principal component analysis. Springer New York.

Karhunen, J. (2001). Nonlinear independent component analysis. Independent Component
Analysis: Principles and Practice, page 113.

Karlin, S. and Ghandour, G. (1985). Multiple-alphabet amino acid sequence comparisons
of the immunoglobulin-chain constant domain. Proceedings of the National Academy of
Sciences, 82(24):8597–8601.

Karwath, A. and Kersting, K. (2007). Relational Sequence Alignments and Logos. Lecture
Notes in Computer Science, 4455:290.

Karwath, A., Kersting, K., and Landwehr, N. (2008). Boosting Relational Sequence
Alignments. In Eighth IEEE International Conference on Data Mining, 2008. ICDM’08,
pages 857–862.

Kramer, S., De Raedt, L., and Helma, C. (2001). Molecular feature mining in HIV data.
In Provost, F. and Srikant, R., editors, Proc. KDD-01, pages 136–143, New York, NY,
USA. ACM Press.

Kretzschmar, H., Stachniss, C., Plagemann, C., and Burgard, W. (2008). Estimating
Landmark Locations from Geo-Referenced Photographs. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2008. IROS 2008, pages 2902–2907.

Lang, K. (2005). Fixing two weaknesses of the spectral method. In NIPS, pages 715–722.
MIT Press.

Lavrac, N. and Džeroski, S. (1994). Inductive logic programming. Journal of Logic
Programming, 19(20):629–679.

Luo, B., C Wilson, R., and Hancock, E. (2003). Spectral embedding of graphs. Pattern
Recognition, 36(10):2213–2230.

35

References

Michaels, G., Carr, D., Askenazi, M., Fuhrman, S., Wen, X., and Somogyi, R. (1998).
Cluster analysis and data visualization of large-scale gene expression data. In Pacific
Symposium on Biocomputing, volume 3, pages 42–53.

Muggleton, S., editor (1992). Inductive Logic Programming. Academic Press, New York,
NY.

Muggleton, S. and King, R. (1991). Predicting protein secondary-structure using inductive
logic programming. Technical report, Turing Institute, Glasgow, Scotland.

Newman, M. (2003). The Structure and Function of Complex Networks. SIAM Review,
45:167.

Nienhuys-Cheng, S. (1997). Distance between herbrand interpretations: A measure for
approximations to a target concepts. pages 213–226.

Noack, A. (2004). An energy model for visual graph clustering. In Proceedings of the 11th
International Symposium on Graph Drawing (GD 2003), LNCS 2912, pages 425–436.
Springer-Verlag.

Noack, A. (2007). Energy Models for Graph Clustering. Journal of Graph Algorithms and
Applications, 11(2):453–480.

Plotkin, G. (1971). Automatic Methods of Inductive Inference. Department of Machine
Intelligence, and Perception, University of Edinburgh.

Ramon, J. (2002). Clustering and Instance Based Learning in First Order Logic. PhD
thesis, K.U. Leuven, Leuven, Belgium.

Riedmiller, M. and Braun, H. (1993). A direct adaptive method for faster backpropagation
learning: The RPROP algorithm. In In Proceedings of the IEEE International Conference
on Neural Networks.

Roweis, S. and Saul, L. (2000). Nonlinear Dimensionality Reduction by Locally Linear
Embedding.

Schatz, M., Phillippy, A., Shneiderman, B., and Salzberg, S. (2007). Hawkeye: an interactive
visual analytics tool for genome assemblies. Genome Biology, 8(3):R34.

Schiffmann, W., Joost, M., and Werner, R. (1993). Comparison of optimized backprop-
agation algorithms. In Proceedings of the European Symposium on Artificial Neural
Networks, ESANN, volume 93, pages 97–104.

Schneider, T. and Stephens, R. (1990). Sequence logos: a new way to display consensus
sequences. Nucleic Acids Research, 18(20):6097–6100.

Schulz, H., Kersting, K., and Karwath, A. (2009). ILP, the Blind, and the Elephant:
Euclidean Embedding of Co-Proven Queries. In ILP, Lecture Notes in Computer Science.
Springer. to be published.

Srinivasan, A. (2000). The aleph manual. Computing Laboratory, Oxford University.

36

References

Srinivasan, A., Muggleton, S., King, R., and Sternberg, M. (1996). Theories for Mutagenic-
ity: A Study of First-Order and Feature-based Induction. Artificial Intelligence Journal,
85:277–299.

Stolle, C., Karwath, A., and De Raedt, L. (2005). CLASSIC’CL: An Integrated ILP System.
In Hoffmann, A., Motoda, H., and Scheffer, T., editors, Discovery Science, volume 3735
of Lecture Notes in Computer Science, pages 354–362. Springer.

Takane, Y., Young, F., and De Leeuw, J. (1977). Nonmetric individual differences
multidimensional scaling: an alternating least squares method with optimal scaling
features. Psychometrika, 42(1):7–67.

Tenenbaum, J., Silva, V., and Langford, J. (2000). A Global Geometric Framework for
Nonlinear Dimensionality Reduction.

Thomas, J. (2005). Illuminating the Path: The Research and Development Agenda for Visual
Analytics. National Visualization and Analytics Center. http://nvac.pnl.gov/agenda.stm.

Travers, J. and Milgram, S. (1969). An experimental study of the small world problem.
Sociometry, pages 425–443.

Van Laer, W. and De Raedt, L. (2001). How to upgrade propositional learners to first
order logic: A case study. Relational data mining, pages 235–261.

Wagner, R. and Fischer, M. (1974). The string-to-string correction problem. Journal of
the ACM (JACM), 21(1):168–173.

37

Declaration
I hereby declare that this thesis has been composed by me without any assistance and I
have not used any sources or tools other than those cited. Furthermore I declare that this
thesis has not been accepted in any other previous application for a degree.

Location, Date Signature

	Introduction
	Preliminaries
	Inductive Logic Programming
	Distances in ILP
	Dimensionality Reduction and Euclidean Embedding

	Euclidean Embedding of Relational Data and Queries
	Constructing the Interaction-Model
	The RCODE Embedding Algorithm
	Linlog Embedding
	Spectral and PCA-based Embedding
	Extensions
	Using Co-Occurrence Probabilities of Co-Proven Queries
	Embedding Interpretations Based on Query Entropy
	Finding Regional Representatives
	Interactive Extensions

	Experiments
	Pattern Miners
	Datasets
	Pre-Processing: Removing Redundant Queries
	Post-Processing: Visualizing Side-Information in Embedding
	Analysis of Embeddings
	Convergence and Scalability Properties of RCODE
	Quality of Embedding

	Showcases

	Related Work
	Conclusion
	References

