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Abstract

Visual information is easy to acquire but needs tedious preprocessing before it can be
put to use to guide the learning of a task. In this thesis, we examine a framework where
first, features optimized for stability and decorrelation over time are generated with
an unsupervised learning technique for a simulated pendulum swing-up reinforcement
learning task. Second, the fitness of these features for a neural net-based task learning
algorithm is tested. We find that the task can be learnt on the features within a similar
timescale as the direct learning on the simulated sensor data. Furthermore, we find
that the stability of the features affects the performance of the task learner.
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1. Introduction

1.1. Learning from Visual Information

In physical systems, visually acquired information can be a cheap and easy substitute
for specific sensor information. As a drawback, images usually contain much more
information than necessary, posing a problem for their efficient utilization. A common
way to deal with this problem is by filtering the images in such a way that only relevant
information is retained. These filters are usually handcrafted or very general, like edge
detectors and thus not problem specific.

In this work, we consider a method of feature generation without manual intervention
which – nevertheless – is highly specific to the image selection. This is possible because
pictures of natural or artificial scenes in general contain a lot of redundant information.
In particular, the analysis of natural scenes suggests that spatially related pixels are
strongly correlated [Simoncelli and Olshausen, 2001, p. 1199], that is, knowing one
pixel, its neighbours can be predicted with a high probability. This characteristic
stems from the quite specific probability distribution which describes natural scenes
(ibd.). Consider, for example, generating images by randomly assigning brightness
values to their pixels. The probability of generating an image that could be classified
as a natural or artificial scene is exceedingly low in this experiment. If the view is
further restricted to a certain kind of scenery it should be obvious that the images of
this scenery can only reside in a tiny subspace of the available pixel-brightness space.

Knowing that there is much less information in an image than if all pixels were
uncorrelated, it should be possible to build visual features that identify an image in
a certain scenery with only a few numbers. These features could then be used to
represent the original image in a more condensed, prepared form. More interestingly,
it should be possible to create these features autonomously since they depend only on
the probability distribution of the images. Yet, we still have to define what properties
the features should have.

To define the desired properties of the features, consider an agent learning a task
using only visual information.

• As the agent acts and thus changes the environment, the pictures of this envi-
ronment change. Thus, it is important to describe the state of those parts in the
picture that change, instead of fully describing the picture, to learn about the
meaning of the agent’s actions.

• Moreover, as changes take place in the picture, the features should change
smoothly. A smooth activation has two main advantages. First, it preserves
a similarity relation between images. An analogous preservation can be found
in tuning curves of some biological neurons [e. g. Pouget et al., 2000], where the
activation is similar for related images. Second, the continuity of the activation
facilitates the approximation of functions over the features when the functions
vary with the same process, a property highly desirable if one wants to use neural
networks (e. g. multi-layer perceptrons) for learning.
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• As a simplification, we can assume that the important changes take place on
a timescale similar to the one needed to solve the problem. This assumption
provides us with a timescale on which we can look for changes and optimize the
smoothness.

• Finally, it would be best if different features concentrated on different aspects of
the image, for example signify the state of independent changes. If there actually
are independent changes in the picture, then their combined state cannot be
captured by one feature alone.

1.2. Aim of this Thesis

This thesis reports on an experiment testing the hypothesis that first, the network
based on temporal stability and local memory described by Wyss et al. [2006] can
generate the kind of features described previously from a stream of images, and sec-
ond, that these features are indeed able to provide a neural network-based learning
algorithm with input that eases learning. The testing ground will be a visual version
of the pendulum swing-up task, which we will now briefly introduce.

The pendulum swing-up task (also known as “inverted pendulum”) is a classical
reinforcement learning task (e. g. Santamaria et al. [1997], Doya et al. [2002]; an
extensive discussion of the task’s complexity and possible solutions can be found in
the work of Åström and Furuta [2000]). A pendulum is attached to a motor with the
help of which the pendulum has to be swung (depending on motor strength, possibly
with multiple swings) to an upright position. The task is widely used to test new
learning algorithms because of its transferability to a physical system and its simplicity;
particularly, the state of the pendulum can be completely described by two numbers,
namely, its angle and its angular velocity. In addition, the number of actions is small,
as the controller is usually given the choice of two actions, exerting a clockwise or
counterclockwise force on the pendulum, respectively.

In this work, the dimensionality of the pendulum swing-up task is artificially in-
creased by working on the visual representation of a pendulum. All possible images
that can be generated from a pendulum angle θ ∈ [0, 2π[ are part of a plain circle in
{0, 1}n, where n is the number of pixels. Both the current and last angle are trans-
formed to an image, thus the possible states form a torus in {0, 1}2n. Although each
such combination of images can be described by just two numbers, the difficulty of
learning the task increases tremendously with the number of pixels used1, as mentioned
above, since the correlations between pixels are at first not obvious to a machine learn-
ing algorithm. In a two-stage approach first, features will be generated autonomously
that describe the state of the pendulum, and second, only those features will be used
to learn to swing the pendulum to an upright position.

1Of course, if the resolution is too low, too much information about the state is lost and learning
also becomes difficult.
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2. Methods

Two techniques are coupled in this work, namely, unsupervised feature generation and
reinforcement learning. In the following two sections, we will provide the knowledge
about these techniques crucial for the understanding of the experiments.

2.1. An Unsupervised Network based on an Objective Function

Wyss et al. [2006] propose a layered network architecture optimized using an objective
function comprising temporal stability and local memory. They suggest that opti-
mization based on this objective function could be a general principle of information
processing in the brain and could give rise to high level cortical functions. To demon-
strate the relevance of their work, the authors show that it is possible to generate
so-called place cells2 using the proposed network architecture.

In this thesis we will make use of a simplified version of the network architecture
and the learning principle proposed by Wyss et al. [2006], using it to extract features
from images. Hence, we will shortly summarize the essential ideas.

The input, usually an image taken from a stream of images, is fed forward as
−→
I l

consecutively through layers l = 1, 2 . . . containing a decreasing number of units. Each
unit i has two subunits with a local view onto the lower layer, limited by a circular
receptive field and represented by the weight matrices

−→
W l,i

1 and
−→
W l,i

2 . The activation
of unit i in layer l for timestep t is then determined by

Ai
l(t) =

√(−→
I l (t) ·

−→
W l,i

1

)2

+
(−→

I l (t) ·
−→
W l,i

2

)2

. (1)

As the number of neurons decreases with every layer, the size of their receptive fields
is increased such that the receptive fields cover the whole image.

For an incoming stream of images, the weights matrices
−→
W l,i

1 and
−→
W l,i

2 are continu-
ously changed to optimize the unit’s activation over time according to two criteria.

1. The activation of one neuron should change smoothly over time. This corre-
sponds to maximizing the stability

S = −
∑

i

〈(
Ai

l(t)−Ai
l(t− τl)

)2
〉

t

vart(Ai
l)

, (2)

where 〈 · 〉t denotes temporal averaging. To avoid the trivial solution of an un-
changing activation over time, the activity is divided by its variance. The layer
parameter τl is increased with l in the original work to facilitate a change in time
scale of higher layers by forcing them to abstract from short-term fluctuations
of the lower layer.

2Place cells are a type of cell found for instance in the hippocampus of mice. Cells of this type are
active when the animal is in a certain location regardless of the direction in which it is looking
[i. e. McNaughton et al., 1983].
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2. Neurons with similar receptive fields should try to capture different aspects of
the stimulus. This condition is enforced by maximizing the decorrelation

D = −
∑
i 6=j

 covt(Ai
t, A

j
t )√

vart(Ai
t)vart(A

j
t )

2

, (3)

that is, the squared temporal correlation between units, with covt( · ) denoting
covariance over time. As in the original work, only units sharing common feed-
forward input are decorrelated by this term.

Putting both aspects together, the overall aim of the unsupervised learning is to max-
imize the objective function

Ψ = S + βD, (4)

a weighted combination of stability and decorrelation of the activations within each
layer. The units in the network then constitute visual features, filters that capture
different aspects of the images and vary smoothly over time.

Before being passed to the next layer l + 1, the activation of all units in layer l is
transformed to

−→
O l(t) =

1
τl

−→
A ′

l +
(

1− 1
τl

−→
O (τl − 1)

)
, (5)

with

A′(t) =
A(t)− 〈A〉t

vart(A)
. (6)

That is, first the changes in the unit activation are weighted by the parameter τl.
Note that again, setting τl � 1 is intended to change the time scale for the next level.
Second, the output is mean corrected and normalized to unit variance. Both (and
only these) calculations incorporate a time-dependency (the “local memory”) into the
activation of neurons in the network, while the aforementioned temporal averages were
only part of the learning rule.

2.2. Reinforcement Learning

The features generated by the unsupervised network described in the previous section
can serve as the input of a controller. With the help of a signal indicating success
or failure, this controller can then be taught to accomplish a task. The techniques of
teaching the controller are subsumed by the term “reinforcement learning”, which will
be briefly introduced in the following.

A Markovian Decision Process (MDP) is a framework to model sequential actions
of an agent in its environment. It is defined as a 4-tuple, including

• a set of states s ∈ S

• a set of actions a ∈ A,
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• a function p : S ×A× S → IR defining the probability of a transition from state
s to state s′ if action a is chosen, and

• a function c : S × A → IR defining the immediate reinforcement signal that the
agent receives when carrying out action a in state s.

MDPs feature the Markov property, that is, the probability of a transition to state s′

is only determined by the current state s and the chosen action a and explicitly not
by previous states and actions. This property is emphasized, since it motivates some
changes to the unsupervised network. In this thesis, we allow S to be continuous and
assume that A is finite. We further assume that p is unknown to the learning system.

The “solution” of an MDP is an optimal policy π∗ : S → A mapping states to
actions, that minimizes the costs defined by c( · ) if the agent acts according to it. In
the case of an unknown transition function p, the task of finding π∗ can be achieved
by Q-learning.

The Q-learning algorithm [see e. g. C., May 1992] estimates the expected costs for a
state/action pair by sampling transitions from one state to another. The estimate is
given by the Q-function Q(s, a), which is usually updated according to the rule

Qk+1(s, a) := (1− α)Qk(s, a) + α(c(s, a) + min
b

Qk(s′, b)) (7)

for problems with a finite horizon, which we are concerned with in this thesis. The
usual approach is to update the Q-function online, after each observed transition.

When the Q-function is approximated by multilayer perceptrons, the online updat-
ing approach performs badly. The reason for the bad performance is that multilayer
perceptrons cannot be adjusted locally without changing their output for other areas
of the state-action space in an unpredictable manner. Hence, updates after each tran-
sition have to be made very carefully (α is small in Equation (7)), which results in
small learning rates and the need for many trials.

The Neural Fitted Q-Iteration (NFQ) algorithm [Riedmiller, 2005a] deals with this
problem by remembering all observed transitions and reusing them for training. Con-
sequently, updates can be committed “offline” and algorithms for batch training of
the multilayer perceptron can be employed, resulting in a more stable learning pro-
cess. The main idea of NFQ is to use the recorded samples to generate a training set,
which is based on the current estimate of the Q-function Qk, i. e. as if the recorded
transitions were observed again. In particular, for each transition (s, a, s′), we set

input = (s, a)
target = c(s, a, s′) + min

b
Qk(s′, b)

and collect all pairs (input, target) in the training set. This training set can then
be used to adjust the estimate of the Q-function Qk+1 with the help of e. g. Back-
propagation or RPROP [Riedmiller and Braun, 1993]. Note that this procedure can
be repeated without observing new transitions since the recorded transitions and the
new estimate of the Q-function can be used to generate a fresh training set. We will
make use of the NFQ algorithm to accomplish the reinforcement learning tasks in this
paper.
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3. An Architecture for Visual Task Learning

With the help of the discussed methods, it is now possible to describe the architecture
with which we will tackle the visual task learning problem as a Markovian Decision
Process.

• We suppose that we are given a system determined by a probability matrix
p(s, a, s′). Here, the states s and s′ contain system parameters which are not
known but can be observed indirectly via a video stream.

• The state space S is formed by the features of the topmost layer of the unsuper-
vised network and their history of activation of length h

S =
{

s|s =
−→
A 0,

−→
A 1, . . . ,

−→
Ah

}
.

Note that h needs to be adjusted to the observed system: Some parameters of
the system can not be observed in one image, but setting h = 1 enables the
learner to calculate differences between the last and the current state, h = 2
allows to determine the rate of this change, and so on. Additionally, higher
values of h can be useful if the rate of change is small compared to level of noise
[Hernandez-Gardiol and Mahadevan, 2000].

• Further, suppose that we can perform actions a ∈ A that modify the system. As
actions are executed, we can observe the new state of the system s′ indirectly
through the images. Consequently, we can apply the technique of Wyss et al.
[2006] to find visual features that vary smoothly with the image stream as it
changes.

• Finally, we assume that there is an immediate reward function c( · ) based on the
image or the system state itself.

For the features to constitute the state of an MDP, the unsupervised network as
introduced in Section 2.1 needs some alterations. In the original work, the local mem-
ory constant τl was chosen to increase with the layer number. Since τl > 1 introduces
an infinitely large time dependency unsuited for MDPs in Equation (5), in this work
we set τl = 1 for all l. This effectively eliminates the second term in Equation (5).
More severely, it deprives the network of the ability to ignore high-level redundancies
in the data, but these are simply not present in the pendulum swing-up task3. For
problems where abstraction is desired τ > 1 in combination with a moving window of
fixed length could be used instead of the infinite window. Finally, the time dependence
introduced by the functions 〈 · 〉t and vart( · ) in Equation (6) was kept for the training
of the unsupervised network. During its evaluation, however, their values had to be
fixed to the value at the end of training.
3This point was labelled “severe” as for the original paper this would mean that no place cells (see

Footnote 2 on page 5) could be found, due to the fact that the abstraction from the current view to
the current position was accomplished with the help of an increasing time constant in the neurons
activation resulting in different time scales across layers.
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We modeled the visual task learning problem as an MDP in order to be able to
perform reinforcement learning on it, which in turn has numerous variants that have
to be decided on.

• We used a variant of Q-learning, as Q-learning can be used without a model of
the system, which we assumed to be unknown since we want to restrict ourselves
to the camera as a source of information.

• Although the dimensionality of the visual task can be reduced significantly by
the feature extraction process, it remains too high to represent the Q-function
in a look-up table with reasonable space requirements. For instance, later we
will use nine features and a history of length two. A look-up table with a reso-
lution of just 10 in each dimension would therefore have an excessive number of
1018, entries. Using table-based function approximators such as CMACs [Albus,
1975] the space requirements can be reduced, but the general space weakness of
tables, their exponential growth with the input dimensionality, is not eliminated.
Therefore, we decided that the Q-function should be represented in a multi-layer
perceptron, which does not suffer from this limitation.

• Training Q-functions represented by multilayer perceptrons is difficult since newly
acquired information cannot easily be incorporated locally into the Q-function
without changing the function as whole. The NFQ algorithm (Section 2.2) is
able to reuse previously acquired information to overcome this drawback and
was therefore chosen to realize the task of learning.

4. Results

To gain experience with the setup proposed in Section 3, we decided on a simple
testing ground, a simulated inverted pendulum. As described above, we created a
virtual image stream by projecting the pendulum onto a virtual camera image as it
moved and passed the images to a network of an architecture adopted from Wyss
et al. [2006] which was designed to optimize the activation of its neurons for stability
and decorrelation. Since we chose the layers of the network to decrease in size, at
the same time the original image was transformed to a much smaller representation.
Based on this reduced representation and an external success signal, we derived a
controller performing the pendulum swing-up task and optimized it using the Neural
Fitted Q-Iteration reinforcement learning algorithm [Riedmiller, 2005a]. The whole
setup is visualized in Figure 1.

The following experiments were performed using an augmented version of wSim, a
network simulator programmed by Reto Wyss. We enhanced the functionality of the
simulation environment with a configurable, extensible and thoroughly tested library
which is able to carry out several variations of Q-learning (online and offline learning,
Advantage Updating, Neural Fitted Q-Iteration, additional parameters) on several
function approximators (Tables, CMACs and Multi Layer Perceptrons).
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M

Q-Controller

−→
W 1

−→
W 2

−→
W 3

32× 32

16× 16 12× 12 3× 3

P

l1

l2
l3 Figure 1: The simulated ex-

perimental setup. The motor
M controls the movements of
the pendulum P. The projec-
tion of the pendulum (“cam-
era image”) is fed to a feed
forward network of three lay-
ers decreasing in size. The out-
put of the last layer is used as
a state representation for the
Q-controller. Closing the loop,
the Q-controller sends motor
commands to the motor.

4.1. Description of the Stimulus

The experiments were performed on a simulated inverted pendulum represented by a
mass point. For comparability, the physics parameters of the pendulum simulation (i. e.
mass of pendulum, length of pole, integration time) were adjusted in such a way that
the task of swinging the pendulum to an upright position was approximately as hard as
in the real-world task described by Riedmiller [2005b]: An optimal controller (derived
by executing reinforcement learning directly on the angle and velocity) needed about
two swings – corresponding to 20 simulation steps – to bring the pendulum from the
initial position into the target area. To determine the physical parameters mentioned
above, the initial position of the pendulum was accordingly set to resting (pointing
downwards) while the target area was defined as the top position ± 0.3rad.

The generated stimulus consisted of a parallel projection of a white disc at the pendu-
lum’s position onto a virtual 32×32 pixel camera image. The diameter of the disc was
chosen to be 30% of the virtual camera image width. Pixels representing the pendulum
were assigned a fixed luminance at 100%. The background pixels were initialized with
random luminance (10%, σ = 30%) and unchanged during the experiments.

Before actually being presented to the main network, the stimulus was passed
through an edge detection filter. Note that this was just kept for comparability. Actu-
ally it made the task of analyzing the image statistics more difficult for the pendulum
example since the stimulus was transformed from a “blob” to a ring.

4.2. Feature Generation in the Unsupervised Network

In a preparatory phase, the unsupervised layer was trained. We initialized the weights
by sampling from a normal distribution with µ = 0 and σ2 = 1.25. Then, the pendulum
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Smoothness

Layer No. untrained trained

1 −2.592 −2.493
2 −5.988 −2.498
3 −26.572 −2.025

Table 1: This table displays the
average stability of neurons in all
layers obtained with Equation (2)
using a non-weighted average over
one pendulum rotation. The val-
ues increase with training. This
effect is stronger in higher layers.

was presented to the network in a monotonous circular (1◦/timestep) motion. In
this phase, the neurons of the unsupervised network adjusted their weights according
to the objective function, i. e. in such a way that their activation changed slowly
while the pendulum was moving and close-by neurons were decorrelated as required
by Equations (2) and (3). Temporal averaging was performed with a time constant of
τ = 1000. The weight of the decorrelation β in the objective function (Equation (4))
was fixed to 0.1 across layers. It could not – although suggested in Wyss et al. [2006] –
be further increased with the decreasing number of neurons per layer due to a property
of the simplicity of the pendulum swing-up task: There is almost no uncorrelated
activity in the image because the stimulus is just one moving “blob” and all activity
is necessarily correlated to its movements. Nevertheless, setting β > 0 avoids the
possible outcome that all neurons with overlapping receptive fields acquire the same
or similar tuning curves. The training process was stopped after 500000 time steps,
when the value of the objective function had converged (Figure 3).

The initial (pre-training) and the resulting (post-training) tuning curve of some
neurons from the three layers are depicted in Figure 2. From layer one to three, neurons
were active for a growing interval of angles. Specifically, they could only change their
activation when the edges of the pendulum fell into their respective receptive field
(resulting in at least one neuron not changing its activation at all). It was only within
this interval that optimization with respect to the objective function could take place.
Comparing initial and resulting activations in Figure 2, we see that for the small
receptive fields in layer 1 this optimization effect is hardly noticeable (a-b), while
activations of neurons in layers 2 and 3 (c-d and e-f, respectively) are visibly more
stable after training. These relationships are quantified in Table 1, which displays
the average stability for every layer before and after training. Here, stability was
calculated with Equation (2) using a non-weighted average over one pendulum rotation
(1◦/timestep).

4.3. Reinforcement Learning Using Generated Features

For the following reinforcement learning experiments, learning was turned off in the
unsupervised network, thus fixing the weights to their current value. Additionally, the
mean and variance over time of the neuron’s activation (Equation (6)) were fixed to
their post-training values, so that the activation no longer depended on the previous
activations. This ensured the Markov property (Section 2.2) of the problem.

The trained unsupervised network was tested for fitness as a state representation in
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(a) Untrained neurons in layer 1 (b) Trained neurons in layer 1

(c) Untrained neurons in layer 2 (d) Trained neurons in layer 2

(e) Untrained neurons in layer 3 (f) Trained neurons in layer 3

Figure 2: The figure shows the tuning curve of neurons in the unsupervised network
as a mapping from the angle of the pendulum (x-axis) to the neuron’s activation (y-
axis). Only a subset of the neurons is shown for layer 1 and 2. The position of the
activation plots within a block correspond to the position of the neuron with respect to
the camera image. Their increasing activation across the layers reflects the enlarging
receptive field.
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Figure 3: The top figures show the development of stability S and decorrelation D
over time. Below, their weighted sum Ψ = S + 0.1 · D, as it was maximized in the
experiment, is displayed.

a neural net-based reinforcement learning task. For this purpose, a Q-Controller was
added to the otherwise strictly feed-forward network architecture. According to the
output of the unsupervised network, it had to decide whether to exert a clockwise or
counterclockwise force onto the pendulum by observing the effects of its motor com-
mands for sampled states and generalizing for the others. For training, the pendulum
was always initialized to a position pointing downwards with zero velocity. The current
and the last activation of the top layer (3 × 3 = 9 features) were passed to the con-
troller, implicitly enabling it to derive the position and the velocity of the pendulum.
Therefore, the pendulum state could be described in 2× 9 = 18 dimensions. Since the
activation varied strongly in amplitude across features, each feature was normalized
such that its value ranged between −1 and 1.

To show that no special requirements are necessary for the method proposed in this
paper, the Q-function used for the controller was represented in a similar network
architecture as described by Riedmiller [2005b]: The state description was fed into a
multilayer perceptron with two hidden layers consisting of five units each, with the
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hyperbolic tangent as their activation function. Unlike in the aforementioned work,
for each action one such network was used to represent the action’s Q-values and the
single output unit was activated linearly.

While the controller greedily exploited the Q-function without exploration, a fixed
cost of 0.01 for every step was given and state transitions were recorded for NFQ
training. When the controller succeeded in its task, the cost of the step leading into
the goal region was reduced to zero. At the same time, the Q-value of the state that
was now discovered to be part of the goal region of the state space was set to zero and
excluded from NFQ updating to stabilize it there. The training was stopped after 100
transitions, or whenever the controller succeeded. Before running the next trajectory,
two iterations of the NFQ algorithm were applied. In each iteration the Q-function
was adjusted to the newly determined Q-values with 1000 epochs of RPROP-training
[Riedmiller and Braun, 1993]. The performance of this controller is visualized as
“trained” in Figure 4.

To be able to evaluate the results, the same task was also learned with three different
state spaces, while all parameters not mentioned were kept as above:

1. Untrained features (“untrained” in Figure 4). After randomly assigning weights
to the unsupervised network, the variance and mean activation as needed for
Equation (6) were determined by rotating the pendulum until they converged
and then fixed. As before, the features of two successive pictures formed the
2× 9 = 18 dimensional state.

2. Angle and velocity of the pendulum (“ang-vel” in Figure 4). The state variable
obviously has two dimensions. To some extend, the resulting controller consti-
tutes an upper bound for the others w.r.t. the performance.

3. Raw pixels (“pixels” in Figure 4). The pixels of the virtual camera (current and
last image) make up the state, which has a dimensionality of 2× 32× 32 = 512.

The graphs in Figure 4 are the result of averaging over 20 repeated experiments with
different initializations of the neural net representing the Q-function. The error bars
display the standard deviation over these trials. The results can be summarized as
follows:

• Reinforcement learning on the features (“trained”) yielded a policy which was
worse than learning on directly acquired pendulum parameters (“ang-vel”) in
terms of swing-up time (on average 8.7 time steps more during the last 20 tra-
jectories). Nevertheless, it converged after about 45 trajectories, similarly fast
compared to learning on angle and velocity. As can be seen in Figure 5, a sub-
optimal policy requiring 30 steps to swing up the pendulum was reached within
1100 interaction time steps for both methods.

• The performance of the feature-based controller varied more across trials than
the performance of the controller based on angle and velocity (σ̄trained = 10.5,
σ̄ang−vel = 4.1 time steps over the last 20 trajectories, respectively).
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• The untrained unsupervised network did not seem to support learning at all.

• The raw pixel input supported learning only to a limited degree: The learning
process was quite unstable (σ̄pixels = 22.9, during the last 20 trajectories) and
converged slowly (the point of convergence was not determined due to excessively
long training times).

Note that learning on pixels took about 40 times as long as learning on the trained
features (30.9 hours and 0.8 hours, respectively, on a 2.6 GHz Dual Core AMD
Opteron). For comparison, training on angle and velocity took 0.3 hours on the same
computer. This difference is rooted almost entirely in the RPROP training time. How-
ever, worse controllers produce longer trajectories, resulting in more training data and
thus longer computation time.
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Figure 4: The figure shows the performance of learners based on continuous (“ang-vel”)
angle and velocity, the trained/untrained unsupervised layer and the image pixels them-
selves. Depicted is the number of steps needed to swing up the pendulum depending
on the number of training trajectories seen. Each data point is the result of an average
over 20 trials. Error bars show the standard deviation over the same 20 trials.

4.4. The Impact of Stability on Performance

The whole experiment described in the previous sections (unsupervised feature gener-
ation and 20 trials of reinforcement learning) was repeated an additional eight times.
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Figure 5: The figure shows the average interaction time needed to reach a policy
of a certain quality once. If the quality was only reached in less than 50% of the
trials, the line was discontinued. The lines show the behavior of controllers learnt
on trained/untrained unsupervised neurons (“trained”, “untrained”), the pixels of the
image (“pixel”) and on angle and velocity (“ang-vel”).

Again, the performance was averaged, this time over the averages of the single exper-
iments, and plotted (Figure 6). We note that the performance which we recorded for
our first feature set seems to be no exception, since the newly generated features yield
equally good results. However, there are differences in the quality of the reinforcement
learning controller.

We analyzed whether the performance of the reinforcement learning controller varied
with the stability. This was done in the following steps:

1. We calculated the average stability of all generated feature sets with Equation (2)
using a non-weighted average over one pendulum rotation.

2. We determined the mean performance of the respective reinforcement learning
controller. This was defined as 〈pt〉, where pt is the average performance of the
controller in 20 reinforcement learning trials at the time t, with t ∈ {1 . . . 100}.

3. Similarly, we calculated the average variance over 20 trials at time t, as in 〈vt〉.

4. Finally, we plotted the mean and its variance as a function of the stability and
fit a line to this data. This is shown in Figure 7.
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Both the mean performance and its variance seem to depend on the stability. The
swing-up time decreases when features have stable tuning curves, as does the variance.

Please note that there are only seven, not eight, data points in Figure 7. We elimi-
nated one outlier after examining it more closely: The features displayed in Figure 9h
(Appendix) have low stability, but good performance. Apparently this results from a
inhomogenity of the features, as some are much more stable than others. Consequently,
the variance of the stability in this set is much higher than in the others. This shows
on the one hand that (as mentioned) there is redundant information in the features.
On the other hand, it shows that the reinforcement learning was robust enough to
ignore the less stable features. At this point, we are not interested in either of these
questions, so it is safe to ignore this outlier.
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Figure 6: This figure shows the average performance of eight completely relearned
controllers, including feature generation and reinforcement learning (“trained-all”).
Across the controllers the performance is stable, which demonstrates the robustness of
the learning algorithm. For comparison, the performance of the optimal controller is
plotted again (“ang-vel”).

4.5. Effect of the Discretized Image

The resolution of the unsupervised network was limited by the resolution of the virtual
camera. To quantify this limitation, the pendulum was moved in a full circle once in
tiny (0.01◦) steps. The visual image did not change with every such movement, as the
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Figure 7: This figure shows the mean performances (left) and the variance of the
performance (right) of the reinforcement learning controllers as a function of feature
stability. The lines were fitted using the least-squares algorithm applied to the param-
eters a, b of the function f(x) = ax + b. A higher feature stability seems to result in
both better performance (i. e. lower swing-up time) and lower variance.

resolution was too coarse. For the pendulum used in this experiment, with a diameter
of 30% and a length of 40% of the image width, and a camera resolution of 32 × 32,
the number of different states was 1240. One such state was determined to correspond
to an angle of 0.3◦ with a standard deviation of 0.3◦.

To test the effect of discrete angle perception, another control was performed, train-
ing on angle and velocity discretized to 1240 equal sized buckets. Contrary to the
assumption that this would worsen the policy, the performance after convergence and
the convergence speed are similar or better (Figure 8). This indicates that the level
of performance of the visually trained controller is not a result of the discretization.
Rather, the reason for the performance loss lies either in the information lost in the
unsupervised network, the still increased dimensionality or the more complicated struc-
ture of the state data.

5. Discussion

The feature extraction process is very general and can easily be applied to other prob-
lems. Since the features are optimized for stability and decorrelation based on the
stream of images, no task knowledge is required. In particular, the exact dimension-
ality of the original problem (except for the size of the history required to solve it)
need not be known. Indeed, a higher task dimensionality than the one of the pendulum
swing-up problem would definitely increase the understanding of the discussed method,
since then there might actually be independent movements in the picture that could
be sensibly decorrelated by the feature extraction process.

In this work, the feature extraction step was performed separately from the learn-
ing of the task. The reason for this decision is rooted primarily in methodological
constraints, but the two-stage-approach has some notable parallels in the literature as
well. In the following, we will discuss both points.
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Figure 8: This figure shows the performance of two controllers, one learning on contin-
uous angle and velocity (“raw”), one learning on angle and velocity discretized to the
same extent as done by the resolution of the camera image (“discrete”). Each data
point in the graph represents the average of 20 trials, the error bars show the standard
deviation over these trials.

1. During the feature extraction process the semantics of the features change con-
tinuously. This is not compatible with the Neural Fitted Q-Iteration (NFQ)
algorithm used for the reinforcement learning task, as it reuses all experiences.
Thus, even if we suppose that newly explored subspaces of feature space do
not overlap with previously explored ones, that is, there are no inconsistencies,
NFQ would still try to accommodate its Q-function to all previous experiences.
Clearly, the chosen neural net function approximator is inadequate for this pur-
pose. Nevertheless, it seems desirable to run both the feature extraction and the
reinforcement learning at the same time, such that as the reinforcement learning
process learns to explore new areas in stimulus space features for these areas can
be created. For this to succeed, some kind of forgetting needs to be implemented.
The obvious idea, to implement this forgetting depending on the stability of the
feature tuning curves f (forget fast in case of low stability and forget slowly in
case of high stability to enable fine tuning), is deceptive, however. In particu-
lar, to calculate this tuning curve stability function, that is, the change in the
mapping θ × Ai

l → f , one would need knowledge about the system parameters,
θ, during training. Consequently, one major property of the proposed method,
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that no knowledge about θ is needed, would be lost.

2. It seems possible to provide a biological reason for a lengthy feature extraction
phase which is not related to task learning directly. Studies of sleeping patients
suggest that the activity of visual areas is dissociated from the actual physical
input at the time of REM sleep [Braun et al., 1998]. In principle, this leaves room
for some kind of repetitive replay of seen inputs. Furthermore, a good night’s
sleep seems to tremendously help the improvement of motor skills [Walker, 2002]
and visual discrimination skills [Gais et al., 2000]. Both skills together are the
key to successful learning in the conducted experiment.

For this work, the unsupervised network was deprived of one of its main properties,
its ability to abstract from low level states. This was possible because for the pendulum
swing-up task abstraction was not necessary. Nevertheless, if implemented, the layers
with higher abstraction could be used in complex reinforcement learning setups to
decide on macro actions which in turn are guided by layers with lower abstraction
[analogous to Sutton et al., 1999].

To learn the task of swinging up the pendulum, no special demands were made on
reinforcement learning. In particular, the same learning parameters and network struc-
tures – aside from state dimensionality – could be used for learning on the extracted
features and for learning directly on the state of the pendulum. The only difference to
classical reinforcement learning is that the semantics of the generated features are not
known in advance. Consequently, the cost function, or, more specifically, the decision
of whether the task succeeded, cannot be determined based on the generated features,
it has to be provided by an external observer who has direct access to the state of
the system (e. g. a human), a handcrafted visual feature of the camera image, or a
different sensor (e. g. a switch or a collision sensor). However, if one confines oneself to
the creation of a feature deciding whether the goal state has been reached, the effort
should still be greatly reduced compared to the one needed for creating features for
the whole task.

6. Conclusion

This thesis describes a method to generate visual features from a time series of images
which are fit for neural net-based reinforcement learning. To demonstrate its effec-
tiveness, the method was applied in simulation to a visual version of the pendulum
swing-up task.

We showed that learning on the trained features greatly improves performance over
learning on the pictures themselves or untrained features. Thus, our method may help
in situations where no other sensor data but visual information is available. Since the
features are created in an unsupervised manner, they can also help if handcrafting of
features is too difficult or not an option.

We further analyzed the performance of a neural-net based reinforcement learning
algorithm, which had to learn given only the features created beforehand. The key
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property of our features, the stability, correlated with its performance, which supports
our hypothesis that their output is particularly suitable for such algorithms.

Although the results are encouraging, further research needs to be done, especially
with real-world data and more complex tasks.
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A. Appendix
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(a) smoothness = 0.63633
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(b) smoothness = 0.66407
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(c) smoothness = 0.71763
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(d) smoothness = 0.77225

Figure 9: This figure shows the performance of features generated in separate trials.
The subplots are sorted according to their stability. For comparison, the performance
on the controller based on angle and velocity is also plotted.
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(e) smoothness = 0.85321
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(f) smoothness = 0.93861
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(g) smoothness = 1.08665
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(h) smoothness = 2.33775

Figure 9: Continued
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