
RoboCup 2016 Humanoid TeenSize Winner
NimbRo: Robust Visual Perception and Soccer

Behaviors

Hafez Farazi, Philipp Allgeuer, Grzegorz Ficht, André Brandenburger,
Dmytro Pavlichenko, Michael Schreiber and Sven Behnke

Autonomous Intelligent Systems, Computer Science, Univ. of Bonn, Germany
{farazi,pallgeuer}@ais.uni-bonn.de, behnke@cs.uni-bonn.de

http://ais.uni-bonn.de

Abstract. The trend in the RoboCup Humanoid League rules over the
past few years has been towards a more realistic and challenging game
environment. Elementary skills such as visual perception and walking,
which had become mature enough for exciting gameplay, are now once
again core challenges. The field goals are both white, and the walking
surface is artificial grass, which constitutes a much more irregular surface
than the carpet used before. In this paper, team NimbRo TeenSize, the
winner of the TeenSize class of the RoboCup 2016 Humanoid League,
presents its robotic platforms, the adaptations that had to be made to
them, and the newest developments in visual perception and soccer be-
haviour.

1 Introduction

In the RoboCup Humanoid League, there is an ongoing effort to develop hu-
manoid robots capable of playing soccer. There are three size classes—KidSize
(40-90cm), TeenSize (80-140cm), and AdultSize (130-180cm). Note that the over-
lap in size classes is intentional to facilitate teams to move up to higher size
classes.

Fig. 1. The igusr Humanoid Open Platform, Dynaped and team NimbRo.

{farazi, pallgeuer}@ais.uni-bonn.de
behnke@cs.uni-bonn.de
http://ais.uni-bonn.de

2 Farazi, Allgeuer, Ficht, Brandenburger, Pavlichenko, Schreiber, Behnke

The TeenSize class of robots started playing 2 vs. 2 games in 2010, and a
year later moved to a larger soccer field. In 2015, numerous changes were made
in the rules that affected mainly visual perception and walking, namely:

– the green field carpet was replaced with artificial grass,
– the field lines are only painted on the artificial grass, so they are highly

variable in appearance and no longer a clear white,
– the only specification of the ball is that it is at least 50% white (no longer

orange), and
– the goal posts on both sides of the field are white.

Our approach to addressing these rule changes in terms of perception are given
in Section 3.1.

In this year’s RoboCup, we used our fully open-source 3D printed robots,
the igusr Humanoid Open Platform [1], and the associated open-source ROS
software. Furthermore, we revived one of our classic robots, Dynaped, with the
same ROS software, by upgrading its electronics and PC and developing a new
communications scheme for this to work. This was done in such a way that the
robot hardware in use was completely transparent to the software, and abstracted
away through a hardware interface layer. More details are given in Section 2.
Both platforms are shown in Fig. 1, along with the human team members.

2 Robot Platforms

2.1 Igus Humanoid Open Platform

RoboCup 2016 was the first proper debut of the latest addition to the NimbRo
robot soccer family—the igusr Humanoid Open Platform, shown on the left in
Fig. 1. Although an earlier version of the robot had briefly played in 2015, 2016
was the first year where the platform constituted an integral part of the NimbRo
soccer team. Over the last three years, the platform has seen continual devel-
opment, originating from the initial NimbRo-OP prototype, and seven robots of
three generations have been constructed. The igusr Humanoid Open Platform
is 92 cm tall and weighs only 6.6 kg thanks to its 3D printed plastic exoskeleton
design. The platform incorporates an Intel Core i7-5500U CPU running a full 64-
bit Ubuntu OS, and a Robotis CM730 microcontroller board, which electrically
interfaces the twelve MX-106R and MX-64R RS485 servos. The CM730 incorpo-
rates 3-axis accelerometer, gyroscope and magnetometer sensors, for a total of 9
axes of inertial measurement. For visual perception, the robot is equipped with
a Logitech C905 USB camera fitted with a wide-angle lens. The robot software
is based on the ROS middleware, and is a continuous evolution of the ROS soft-
ware that was written for the NimbRo-OP. The igusrHumanoid Open Platform
is discussed in greater detail in [1].

2.2 Upgraded Dynaped

Dynaped, shown in the middle in Fig. 1, has been an active player for team
NimbRo since RoboCup 2009 in Graz, Austria. Through the years, Dynaped

RoboCup 2016 TeenSize Winner NimbRo 3

CM740

All Servos

Servo 1

Servo 2

Servo n

Hardware
Interface

read

write

enable

 configure

9DOF
IMU

dynamixel
protocol

 read

 read

 read

sync write

custom
protocol

Fig. 2. Dynaped’s custom communication scheme

has played both as a goalie and a field player during numerous competitions,
contributing to the team’s many successes. Dynaped’s competition performance
and hardware design, including features like the effective use of parallel kine-
matics and compliant design, contributed to NimbRo winning the Louis Vuitton
Best Humanoid Award in both 2011 and 2013.

In 2012, our focus of development shifted towards the development of an open
platform—the NimbRo-OP prototype, later followed by the igusr Humanoid
Open Platform. Because of platform incompatibilities and a severe electrical
hardware failure during RoboCup 2015, we decided to upgrade Dynaped to the
newer ROS software, in a way that is transparently compatible with the igusr
Humanoid Open Platform. The upgrade included both hardware and software
improvements. In terms of hardware, Dynaped has been equipped with a modern
PC (Intel Core i7-5500U CPU), a new CM740 controller board from Robotis,
and a vision system as in the igusr Humanoid Open Platform, consisting of the
same camera unit and 3D-printed head.

To adapt Dynaped to the new ROS software framework, a number of mod-
ifications had to be made. Thanks to the modularity of our software, only the
low-level modules needed a specific reimplementation, while all of our high-level
functionality that contributed to the success during RoboCup 2016 could be
used untouched. At first glance, the only fundamental difference seems to be the
utilisation of parallel kinematics, leading to the loss of one degree of freedom,
but in fact, quite importantly, Dynaped still uses the older Dynamixel actuators.
The used Dynamixel EX-106 and RX-64 have very similar physical properties to
the MX-106 and MX-64 used in the igusr Humanoid Open Platform, but they
lack a bulk read instruction, which is essential for allowing fast communications
with multiple actuators with a single instruction. This limitation greatly reduces
the control loop frequency, as each actuator needs to be read individually. This
increases the latencies with each added actuator to the bus. To reduce these
delays, Dynaped utilises a custom firmware for the CM740, which no longer acts
merely as a passthrough from the PC to the servos. Instead, it communicates
with both sides in parallel (see Fig. 2). On the actuator side, the CM740 queries
all registered devices on the Dynamixel bus in a loop. Communications with
the PC are performed using an extension of the original Dynamixel protocol,
which allows the use of the same, well-developed error handling as our original

4 Farazi, Allgeuer, Ficht, Brandenburger, Pavlichenko, Schreiber, Behnke

Fig. 3. Serial to parallel kinematic translation. Left: Before translation, virtual chain
visible. Right: After translation.

firmware, as well as having the option to still use the CM740 as a passthrough
device. The CM740-PC protocol has been extended by four new instructions:

– Configure extended packet communication,
– Enable extended packet communication,
– Send extended packet, and
– Receive extended packet.

To start the custom communication scheme, the hardware interface first sends
a configuration packet containing a list of servo ID numbers, along with their
respective model types. This informs the CM740 which servo registers it needs
to keep reading from and writing to. Typically, these registers correspond to
position, torque, and controller gain data. The read packets contain the most
recent data from all of the Dynamixel devices, with an indication of how many
times it has been read from since the last packet. The write packets include the
current position setpoints and compliance values for the servos. In Dynaped’s
case, the packet transmission frequency is 100Hz, which allows all devices on
the Dynamixel bus to be read at least once before a new read packet is sent.
This transfer rate would not be achievable on Dynaped’s hardware with the
traditional request-response transmission paradigm.

Creating a model with parallel kinematics and using it in the hardware inter-
face proved to be another challenge, as ROS does not natively support this. In
order to translate between the serial and parallel kinematics, the created model
has two sets of leg kinematic chains, a virtual serial one and the true parallel
one that is actuated. The virtual kinematic chain receives the commands as-is
from the motion modules, which the hardware interface then translates for the
parallel chain (see Fig. 3) before sending a command to the actuators. In order
to recreate the state of the parallel joints when reading out positions from the
actuators, virtual joints have been added in order to offset the next link in the
kinematic chain by the same angle that the joint has rotated. With these mod-
ifications, the robot can be seen as an igusr Humanoid Open Platform robot
by the software, and thanks to our modular design approach, no robot-specific
changes had to be done to any motion modules, or other higher level parts of
our code.

RoboCup 2016 TeenSize Winner NimbRo 5

3 Software Design

3.1 Visual Perception

The primary source of perceptual information for humanoid robots on the soccer
field is the camera. Each robot is equipped with one Logitech C905 camera, fit-
ted with a wide-angle lens that has an infrared cut-off filter. The diagonal field
of view is approximately 150◦. The choice of lens was optimised to maximise
the number of usable pixels and minimise the level of distortion, without signif-
icantly sacrificing the effective field of view. Our vision system is able to detect
the field boundary, line segments, goal posts, QR codes and other robots using
texture, shape, brightness and colour information. After identifying each object
of interest, by using appropriate intrinsic and extrinsic camera parameters, we
project each object into egocentric world coordinates. The intrinsic camera pa-
rameters are pre-calibrated, but the extrinsic parameters are calculated online
by consideration of the known kinematics and estimated orientation of the robot.
Although we have the kinematic model of both robot platforms, some variations
still occur on the real hardware, resulting in projection errors, especially for dis-
tant objects. To address this, we utilised the Nelder-Mead [2] method to calibrate
the position and orientation of the camera frame in the head. This calibration is
crucial for good performance of the projection operation from pixel coordinates
to egocentric world coordinates, as demonstrated in Fig. 4. As a reference, the
raw captured image used to generate the figure is shown in the left side of Fig. 5.
More details can be found in [3].

Fig. 4. Projected ball, field line and goal post detections before (left) and after (right)
kinematic calibration.

Field Detection: Although it is a common approach for field boundary detec-
tion to find the convex hull of all green areas directly in the image [4], more care
needs to be taken in our case due to the significant image distortion. The con-
vex hull may include parts of the image that are not the field. To exclude these
unwanted areas, vertices of the connected regions are first undistorted before
calculating the convex hull. The convex hull points and intermediate points on

6 Farazi, Allgeuer, Ficht, Brandenburger, Pavlichenko, Schreiber, Behnke

Fig. 5. Left: A captured image with ball (pink circle), field line (light blue lines), field
boundary (yellow lines), and goal post (dark blue lines) detections. Right: Distant ball
detection on RoboCup 2016 field.

each edge are then distorted back into the raw captured image, and the resulting
polygon is taken as the field boundary. An example of the final detected field
polygon is shown in Fig. 5.

Ball Detection: In previous years of the RoboCup, most teams used simple
colour segmentation and blob detection-based approaches to find the orange ball.
Now that the ball has a pattern and is mostly white however, such simple ap-
proaches no longer work effectively, especially since the lines and goal posts are
also white. We extend [5], our approach is divided into two stages. In the first
stage, ball candidates are generated based on colour segmentation, colour his-
tograms, shape and size. White connected components in the image are found,
and the Ramer-Douglas-Peucker [6] algorithm is applied to reduce the number
of polygon vertices in the resulting regions. This is advantageous for quicker
subsequent detection of circle shapes. The detected white regions are searched
for at least one third full circle shapes within the expected radius ranges. Colour
histograms of the detected circles are calculated for each of the three HSV chan-
nels, and compared to expected ball colour histograms using the Bhattacharyya
distance. Circles with a suitably similar colour distribution to the expected one
are considered to be ball candidates.

In the second stage of processing, a dense histogram of oriented gradients
(HOG) descriptor [7] is applied in the form of a cascade classifier, with use of
the AdaBoost technique. Using this cascade classifier, we reject those candidates
that do not have the required set of HOG features. The aim of using the HOG
descriptor is to find a description of the ball that is largely invariant to changes in
illumination and lighting conditions. The HOG descriptor is not rotation invari-
ant, however, so to detect the ball from all angles, and to minimise the user’s
effort in collecting training examples, each positive image is rotated by ±10◦
and ±20◦ and mirrored horizontally, with the resulting images being presented
as new positive samples, as shown in Fig. 6. Greater rotations are not considered
to allow the cascade classifier to learn the shadow under the ball. The described

RoboCup 2016 TeenSize Winner NimbRo 7

Fig. 6. Ball detection tracking data augmentation extending one positive sample (left-
most) to ten, by applying rotations and mirroring operations.

approach can detect balls with very few false positives, even in environments
cluttered with white, and under varying lighting conditions. In our experiments,
we observed detection a FIFA size 3 ball up to 4.5m away with a success rate
above 80% on a walking robot, and up to 7m away on a stationary robot, as
shown in the right side of Fig. 5. It is interesting to note that our approach can
find the ball in undistorted and distorted images with the same classifier.

Field Line and Centre Circle Detection: Due to the introduction of artifi-
cial grass in the RoboCup Humanoid League, the field lines are no longer clearly
visible. In past years, many teams based their line detection approaches on the
segmentation of the colour white [4]. This is no longer a robust approach due to
the increased number of white objects on the field, and due to the visual vari-
ability of the lines. Our approach is to detect spatial changes in brightness in the
image using a Canny edge detector on the V channel of the HSV colour space.
The V channel encodes brightness information, and the result of the Canny edge
detector is quite robust to changes in lighting conditions.

A probabilistic Hough line detector [8] is used to extract line segments of a
certain minimum size from the detected edges. The minimum size criterion helps
to reject edges from white objects in the image that are not lines. The output
line segments are filtered in the next stage to avoid false positive line detections
where possible. We verify that the detected lines cover white pixels in the image,
have green pixels on either side, and are close on both sides to edges returned
by the edge detector. The last of these checks is motivated by the expectation
that white lines, in an ideal scenario, will produce a pair of high responses in the
edge detector, one on each side of the line. Ten equally spaced points are chosen
on each line segment under review, and two normals to the line are constructed
at each of these points, of approximate 5 cm length in each of the two directions.
The pixels in the captured image underneath these normals are checked for white
colour and green colour, and the output of the canny edge detector is checked for
a high response. The number of instances where these three checks succeed are
independently totalled, and if all three counts exceed the configured thresholds,
the line segment is accepted, otherwise the line segment is rejected.

In the final stage, similar line segments are merged together to produce fewer
and bigger lines, as well as to cover those field line segments that might be
partially occluded by another robot. The final result is a set of line segments
that relate to the field lines and centre circle. Line segments that are under a
certain threshold in length undergo a simple circle detection routine, to find the
location of the centre circle. In our experiments, we found that this approach
can detect circle and line segments up to 4.5m away.

8 Farazi, Allgeuer, Ficht, Brandenburger, Pavlichenko, Schreiber, Behnke

Localisation on the Soccer Field: Localisation of the robot on the soccer
field—the task of estimating the 3D pose (x, y, θ) of the robot—is performed
using the field line, centre circle and goal post detections. Each component of
the 3D pose is estimated independently. To estimate the θ component, we use
the global heading information from the magnetometer, and maintain an inter-
nal correction term based on the angular deviation between the expected and
detected orientations of the white lines. This approach does not rely on hav-
ing an accurate magnetometer output, and in experiments was able to correct
deviations up to 30◦ coming from the magnetometer. Using the estimated θ,
which is normally quite exact, we can rotate every vision detection to align with
the global field coordinate system. The detected line segments can thereby be
classified as being either horizontal or vertical field lines. In each cycle of the
localisation node, we use the perception information and dead-reckoning walking
data to update the previously estimated 2D location. For updating 2D location,
we distinguish x and y component using estimated θ. The y component of the
localisation is updated based on the y components of the detected centre circle,
goal posts and vertical field lines. With the assumption that the robot is always
inside the field lines, the vertical sidelines can easily be differentiated and used
for updates. The x component of the localisation is analogously updated based
on the x components of the detected centre circle, goal posts and horizontal field
lines. The horizontal lines belonging to the goal area are discriminated from the
centre line by checking for the presence of a consistent goal post detection, centre
circle detection, and/or further horizontal line that is close and parallel. This
approach can easily deal with common localisation difficulties, such as sensor
aliasing and robot kidnapping. In contrast to some other proposed localisation
methods for soccer fields, this method is relatively easy to implement and very
robust. Our experiments indicate that the mean error of our localisation is better
than what was reported in both [4] and [9].

3.2 Bipedal Walking

Motivated by the changed game environment at the RoboCup competition—
the chosen application domain for our own use of the igusr Humanoid Open
Platform—the gait generation has been adapted to address the new challenge
of walking on artificial grass. The use of a soft, deformable and unpredictable
walking surface imposes extra requirements on the walking algorithm. Removable
rubber cleats have been added at the four corners underneath each foot of the
robot to improve the grip on the artificial grass. This also has the effect that the
ground reaction forces are concentrated over a smaller surface area, mitigating
at least part of the contact variability induced by the grass.

The gait is formulated in three different pose spaces: joint space, abstract
space, and inverse space. The joint space simply specifies all of the joint angles,
while the inverse space specifies the Cartesian coordinates and quaternion ori-
entations of each of the limb end effectors relative to the trunk link frame. The
abstract space is a representation that was specifically developed for humanoid
robots in the context of walking and balancing [10]. The abstract space reduces

RoboCup 2016 TeenSize Winner NimbRo 9

Fig. 7. The implemented corrective actions in both the sagittal (left image) and lateral
(right image) planes, from left to right in both cases the arm angle, hip angle, continuous
foot angle, support foot angle, and CoM shifting corrective actions. The actions have
been exaggerated for clearer illustration.

the expression of the pose of each limb to parameters that define the length of
the limb, the orientation of a so-called limb centre line, and the orientation of
the end effector. Simple conversions between all three pose spaces exist.

The walking gait in the ROS software is based on an open loop central pattern
generated core that is calculated from a gait phase angle that increments at a
rate proportional to the desired gait frequency. This open loop gait extends the
gait of our previous work [11]. The central pattern generated gait begins with a
configured halt pose in the abstract space, then incorporates numerous additive
waveforms to the halt pose as functions of the gait phase and commanded gait
velocity. These waveforms generate features such as leg lifting, leg swinging, arm
swinging, and so on. The resulting abstract pose is converted to the inverse
space, where further motion components are added. The resulting inverse pose
is converted to the joint space, in which form it is commanded to the robot
actuators. A pose blending scheme towards the halt pose is implemented in the
final joint space representation to smoothen the transitions to and from walking.

A number of simultaneously operating basic feedback mechanisms have been
built around the open loop gait core to stabilise the walking. The PID-like feed-
back in each of these mechanisms derives from the fused pitch and fused roll [12]
state estimates and works by adding extra corrective action components to the
central pattern generated waveforms in both the abstract and inverse spaces,
namely arm angle, hip angle, continuous foot angle, support foot angle, CoM
shifting, and virtual slope. The corrective actions are illustrated in Fig. 7. The
step timing is computed using the capture step framework [13], based on the
lateral CoM state [14].

Overall, the feedback mechanisms were observed to make a significant dif-
ference in the walking ability of the robots, with walking often not even being
possible for extended periods of time without them. The feedback mechanisms
also imparted the robots with disturbance rejection capabilities that were not
present otherwise. Reliable omnidirectional walking speeds of 21 cm s−1 were
achieved on an artificial grass surface of blade length 32mm. Over all games
played at RoboCup 2016, none of the five robots ever fell while walking1 in free
space. Only strong collisions with other robots caused falls from walking Igus
robot s could quickly recover using keyframe get-up motions [15].

1 Video: https://www.youtube.com/watch?v=9saVpA3wIbU

https://www.youtube.com/watch?v=9saVpA3wIbU

10 Farazi, Allgeuer, Ficht, Brandenburger, Pavlichenko, Schreiber, Behnke

3.3 Soccer Behaviours

Given the current game state, as perceived by the vision system, the robots
must autonomously decide on the higher-level actions to execute in order to try
to score a goal. For this we use a two-layered hierarchical finite state machine
(FSM), that has a tailor-made custom implementation for RoboCup soccer. The
upper layer is referred to as the game FSM, and the lower layer is referred to
as the behaviour FSM. Given the current required playing state of the robot,
the former is responsible for deciding on a suitable higher-level action, such as
for example “dribble or kick the ball to these specified target coordinates”, and
based on this higher-level action, the latter is responsible for deciding on the
required gait velocity, whether to kick or dive, and so on.

In the order of execution, a ROS interface module first abstracts away the
acquisition of data into the behaviours node, before this data is then processed,
refined and accumulated into a so-called sensor variables structure. This ag-
gregates all kinds of information from the vision, localisation, RoboCup game
controller, team communications and robot control nodes, and precomputes com-
monly required derived data, such as for example the coordinates of the currently
most intrusive obstacle, whether the current ball estimate is stable, and/or how
long ago it was last seen. This information is used to decide on the appropri-
ate game FSM state, such as for example default ball handling, positioning, or
wait for ball in play, which is then executed and used to compute standardised
game variables, such as for example kick if possible and ball target. These game
variables, along with the sensor variables, are then used by the behaviour FSM
to decide on a suitable state, such as for example dribble ball, walk to pose or
go behind ball. The execution of the required behaviour state then yields the
required low-level action of the robot, which is passed to the robot control node
via the aforementioned ROS interface module, completing the execution of the
soccer behaviours.

3.4 Human-Robot Interfaces

Despite being designed to operate autonomously, our robots still need suitable
human-robot interfaces to allow them to be configured and calibrated. For the
lowest and most fundamental level of control and operation, each robot can
be launched and configured directly on the command line inside SSH sessions
directly on the robot PC. This allows the greatest amount of freedom and flexi-
bility in launching ROS nodes and checking their correct operation, but is also a
complex and time-consuming task that is prone to errors and requires in-depth
knowledge of the robot and software framework.

To overcome these problems, a web application was developed for the robot
(see Fig. 8), with the robot PC as the web server, to allow standard web browsers
of all devices to connect to the robot for configuration and calibration. This op-
erates at a higher level of abstraction than the command line, and allows users
to perform all common tasks that are required when operating the robot. This
makes routine tasks significantly quicker and easier than on the command line,

RoboCup 2016 TeenSize Winner NimbRo 11

Fig. 8. A screenshot of the web application used to help calibrate the robot.

and avoids problems altogether such as hangup signals and resuming command
line sessions. By exploiting the client-server architecture of web applications and
the highly developed underlying web protocols, the connection is very robust,
even over poor quality wireless network connections, and of low computational
cost for the robot as most processing is implemented on the client side. The web
application, amongst many other things, allows the user to start, stop and mon-
itor ROS nodes, displays all kinds of status information about the robot, allows
dynamic updates to the configuration server parameters, shows the processed
vision and localisation outputs, allows various calibration and system services to
be called, and allows the pose of the head to be controlled manually.

During operation, whether managed over the command line or the web server,
the robot can be visualised using the RQT GUI, and dynamically reconfigured
using the configuration server. This requires a live network connection to the
robot for communication purposes. To configure the robot instantaneously, and
without the need for any kind of network connection, a QR code detector has
been implemented in the vision module. With this feature, arbitrary reconfig-
uration tasks can be effectuated due to the great freedom of data that can be
robustly encoded in a QR code. QR codes can conveniently be generated on
mobile devices, also for example with a dedicated mobile application, and shown
to the robot at any time. The robot plays a short tune to acknowledge the QR
code, serving as auditory feedback that the QR code was detected and processed.

4 Conclusions

In this paper, we described our platforms and approaches to playing soccer in the
Humanoid TeenSize class. During RoboCup 2016, we successfully demonstrated
that our robots could robustly perceive the game environment, make decisions,
and act on them. Our team NimbRo TeenSize aggregated a total score of 29:0
over five games. We have released our hardware2 and software3 to GitHub with
the hope that it is beneficial for other teams and research groups.
2 Hardware: https://github.com/igusGmbH/HumanoidOpenPlatform
3 Software: https://github.com/AIS-Bonn/humanoid_op_ros

https://github.com/igusGmbH/HumanoidOpenPlatform
https://github.com/AIS-Bonn/humanoid_op_ros

12 Farazi, Allgeuer, Ficht, Brandenburger, Pavlichenko, Schreiber, Behnke

5 Acknowledgements

We acknowledge the contributions of igusr GmbH to the project, in particular the
management of Martin Raak towards the robot design and manufacture. This work
was partially funded by grant BE 2556/10 of the German Research Foundation (DFG).

References

1. P. Allgeuer, H. Farazi, M. Schreiber, and S. Behnke, “Child-sized 3D Printed igus
Humanoid Open Platform,” in Proceedings of 15th IEEE-RAS Int. Conference on
Humanoid Robots (Humanoids), (Seoul, Korea), 2015.

2. J. A. Nelder and R. Mead, “A simplex method for function minimization,” The
Computer Journal, vol. 7, no. 4, pp. 308–313, 1965.

3. H. Farazi, P. Allgeuer, and S. Behnke, “A monocular vision system for playing
soccer in low color information environments,” in 10th Workshop on Humanoid
Soccer Robots, IEEE-RAS Int. Conference on Humanoid Robots, (Korea), 2015.

4. T. Laue, T. J. De Haas, A. Burchardt, C. Graf, T. Röfer, A. Härtl, and
A. Rieskamp, “Efficient and reliable sensor models for humanoid soccer robot self-
localization,” in Fourth Workshop on Humanoid Soccer Robots, pp. 22–29, 2009.

5. H. Schulz, H. Strasdat, and S. Behnke, “A ball is not just orange: Using color and
luminance to classify regions of interest,”

6. U. Ramer, “An iterative procedure for the polygonal approximation of plane
curves,” Computer Graphics and Image Processing, vol. 1, no. 3, 1972.

7. N. Dalal and B. Triggs, “Object detection using histograms of oriented gradients,”
in Pascal VOC Workshop, ECCV, 2006.

8. J. Matas, C. Galambos, and J. Kittler, “Robust detection of lines using the pro-
gressive probabilistic hough transform,” Vision and Image Understanding, 2000.

9. H. Schulz and S. Behnke, “Utilizing the structure of field lines for efficient soccer
robot localization,” Advanced Robotics, vol. 26, no. 14, pp. 1603–1621, 2012.

10. S. Behnke, “Online trajectory generation for omnidirectional biped walking,” in
Proceedings of 2006 IEEE Int. Conf. on Robotics and Automation (ICRA), 2006.

11. M. Missura and S. Behnke, “Self-stable omnidirectional walking with compliant
joints,” in 8th Workshop on Humanoid Soccer Robots, Humanoids, 2013.

12. P. Allgeuer and S. Behnke, “Fused Angles: A representation of body orientation
for balance,” in Int. Conf. on Intelligent Robots and Systems (IROS), 2015.

13. M. Missura and S. Behnke, “Balanced walking with capture steps,” in Robot Soccer
World Cup, pp. 3–15, Springer, 2014.

14. P. Allgeuer and S. Behnke, “Omnidirectional bipedal walking with direct fused
angle feedback mechanisms,” in Proceedings of 16th IEEE-RAS Int. Conference on
Humanoid Robots (Humanoids), (Cancún, Mexico), 2016.

15. J. Stückler, J. Schwenk, and S. Behnke, “Getting back on two feet: Reliable
standing-up routines for a humanoid robot.,” in IAS, pp. 676–685, 2006.

	RoboCup 2016 Humanoid TeenSize Winner NimbRo: Robust Visual Perception and Soccer Behaviors
	Introduction
	Robot Platforms
	Igus Humanoid Open Platform
	Upgraded Dynaped

	Software Design
	Visual Perception
	Bipedal Walking
	Soccer Behaviours
	Human-Robot Interfaces

	Conclusions
	Acknowledgements

