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Domestic Robots – Requirements and Constraints

Detection of room structure, doorways and connectivity between 
functional units in homes is crucial for place learning and task 
related navigation esp. for floor/ wall cleaning robots etc.
In situ functional detection and classification of rooms in indoor 
environments – important in training and map building stages 
of deployment of robotic assistants
Traditional place learning methods do not perform functional 
room or unit identification

Explicit user labeling of places as well as map editing 
Feature based methods to detect typical objects and hypothesize 
room functionality/ learn places based on localization of these 
objects (RobotVision @ ImageCLEF challenge)
Unsuitable in dynamic environments or in unoccupied/ 
unfurnished homes

Functional semantic definitions for rooms



Current Indoor Structural Modeling and Doorway 

Detection Scenario using EO

3D surface characterization by clustering point clouds, 
typically using RANSAC or its extensions

Feature based multi-frame/ stereo using 3D line 
descriptions- half-plane detection, real-plane or facade 
reconstruction, plane sweeping - Baillard, Zisserman, 
ISPRS 2000 



Current Indoor Structural Modeling and Doorway 

Detection Scenario using EO

Machine Learning based Door detection -
Murillo, Kosecka, RAS 2008

Facade detection and multi-level 
regeneration - Lee, Nevatia, ICCV 2003

Panoramic camera based mapping

Piecewise planar modeling – Dick, Cipolla, 
ICCV 2001, Triangulation – Morris, 
Kanade, CVPR 2000 or Space carving –
Kutulakos 2000 



Current Indoor Structural Modeling and Doorway 

Detection Scenario using EO

Geometric constraints on corners and edges - Lee et al., 
CVPR 2009



EO Processing - Problems

Rapid degradation in presence of high amounts of noise 
under conditions of low illumination and in regions of low-
texture or sparse features 

Accidental line/plane grouping (due to shelves/ 
cupboards), especially under lack of cues for visibility tests 

Presence of depth edges or discontinuities that are not 
visible in the 2D image 

Lack of adaptive clustering metrics
Clutter

Wall and floor reflectance

Open doors, partial view or case of doorway being structurally 
similar to an arch, lacking the actual door frame



Range Processing - Problems

Inference and Message Passing techniques are integral to surface 
generation

Dynamic Programming, Belief Propagation, Relaxation, Diffusion, 
Graph Cut etc.

Computational complexity too high to support real-time 3D surface 
generation esp. on robots

Excessive smoothing at depth discontinuities resulting in loss of structure 
(esp. where the 2D image does not provide structural cues)

Unsuitable for diffusion of extremely sparse depth data (such as -
homogenous surfaces)

Propagation of gross errors in the initial data can significantly affect end 
reconstruction – traditional scene agnostic filtering schemes are slow and 
ineffective on surfaces with sparse data points

Assumption of dependence on co-planarity or curvature metrics of data 
points



Proposed Solution

Depth based doorway detection

Novel framework fusing 2D local and global features such as 
edges, textures and regions, with geometry data obtained from 
pixel-wise dense stereo

Room functionality hypothesis

Key algorithms

Wall detection

Real-time depth diffusion 

Depth segmentation algorithms – identification of depth edges

Grouping walls for room reconstruction and doorway detection

Room utility labeling



Solution Pipeline

Three tier process
Detection of walls: 
a) Walls and wall-like surfaces detected using 2D edge, texture and 

region features. 

b) Piecewise depth diffusion 

c) Depth segmentation to identify intra - wall depth orientation 
changes, discontinuities

Modeling of enclosing room: 
Built by selecting wall surfaces to fit approximate cuboidal
constraints 

Estimation of doorways: 
Doorways estimated by clustering of the dense stereo data pixels that 
do not conform to the concave room hypothesis.



Key Contributions

Innovative framework for functionality based room 
boundary detection

Scheme for room functionality determination and place 
learning based on structural semantics of the room

Integrated framework for complete functional room 
modeling from stereo range data 



Color Image Processing

Color Pre-processing
Range Registration

Bilateral Filtering

Intrinsic Reflectance Gradients Extraction
Gradient Classification – Reflectance and Shading 
components

Extension of Weiss – Tappen scheme
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2D Reflectance Gradient based Segmentation

Low complexity multi-scale edge analysis scheme

Based on need for real-time operation

Intrinsic Image Extraction and Segmentation (A) Input color image (B) Segmentation using the standard Felzenszwalb-Huttenlocher (FH) graph based algorithm – demonstrates high clutter in regions of the left wall

with lighting changes (C) Shading intrinsic image (D) Reflectance intrinsic image – note that C and D (obtained by inversion of input image gradients classified as shading or reflectance respectively) (E) Segmentation on

the input image using a low complexity multi-scale full gradient edge analysis scheme (F) Segmentation on the input image with the same scheme using reflectance-only gradients – shows superior performance in wall

regions affected by lighting changes in comparison with full-gradient image segmentation schemes such as the graph based FH. Similar values of gradient and region size thresholds were used for all three

segmentation scenarios.
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Region Isolation using Texture Analysis
Characteristics of walls: Low texture, High homogeneity, Large 
pixel spans (> Iw*Ih/15) and representations using high gray-scale 
intensity values (> 100/255)

Entropy (E), homogeneity (H), uniformity energy (U), correlation 
(R), contrast (C) 

Soft Thresholds: 

H>0.99 (1.0)

C<0.0275 (1.0)

R>0.9 (0.9, also undefined/ negative) reducing for walls with rough 
texture

U>0.6 (0.3) – unreliable, varies with lighting changes

E<5.5 (0.8)

Hard Thresholds:

H>0.96 (0.8)

C<0.0475 (0.7)

R>0.85 (0.6)

U>0.3 (0.1)

E<7.0 (0.5)

Positive Classification for > 3.0/4.0 : 95% Accuracy

Machine Learning for deployment scene

Segmentation and Regions of Interest Selection (A)

Input color image (B) Ground Truth (Manual

Segmentation) for walls and wall-like regions (floors,

ceiling etc.) (C) Results using FH (mislabeled pixels:

70292) (D) Results using our framework (mislabeled

pixels: 32069) – note the correspondence to Fig. 1B

and 1F respectively, mislabeled pixels are estimated

by XOR logical gating with the ground truth.

B
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Iterative Hysteresis Filtering and Morphological 

Reconstruction 

Input Image Input Depth Map Mode Filter Output

Median Filter Output Proposed Filter Output



Piecewise Isotropic Depth Diffusion

Heat Diffusion 

Formulation for Depth Diffusion
c is the binary image mask for piecewise isotropic 
formulation
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Piecewise Isotropic Depth Diffusion

where, the constant  ≤ 0.25 controls the overall rate of diffusion. In the 
steady state

Representing  (1/Φ) as λ and linearizing the tuple indices, a matrix 
system is obtained. Sample matrix for a 3x3 depth image
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Piecewise Isotropic Depth Diffusion

This results in a block-tridiagonal matrix system with fringes (blocks 
are red, tri-diagonals are blue and violet along with the main diagonal, 
upper fringe in green and lower fringe in orange)

a1(i,j) – the lower diagonal elements (blue), b1(i,j) – the middle diagonal 
elements, c1(i,j) – the upper diagonal elements (violet), a2(i,j) – the 
lower fringe elements (orange), c2(i,j) – the upper fringe elements 
(green)

Adaptation of Del’Osso IBS method: Pseudo-code
FringeTriDiagSolver := {
InitializeSolution,

InitializeMatrixComputation, iiter -> 0,
While[{CurrEps > EpsTol && iiter < MaxItr && AbsErr > AbsErrTol},{

iiter -> iiter + 1,
StorePreviousResult,
ForwardSubstitution,BackwardSubstitution,
ComputeMaximumResidual}] }



Piecewise Isotropic Depth Diffusion

Intermediate matrices are computed as

ForwardSubstitution and BackwardSubstitution modules are iterated 
until convergence of X estimated as

Multi-grid to enhance convergence
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Depth Segmentation

Low-complexity multi-scale edge detection and linking 
approach

Identifies wall junctions, boundaries, columns etc. 

Depth Diffusion and Segmentation (A) Input image – please note that the depth edge formed by the junction of wall plane parallel

to the observer (in front) and perpendicular to the observer (to the left) is hardly visible and hence color image segmentation

produces one single surface (B) Input depth map (C) Diffused depth map (after filtering & using mask from step C) – here the depth

edge is clearly visible (D) Segmentation in depth identifies the depth edge (between the blue and green segments)

B

C D



Functional 3D Room Detection

Surface Fitting

Plane fitting using Iteratively Re-weighted Least Squares 
Robust Linear Regression

Plane Selection

Functional Room Boundaries Detection 

PCA grouping

Cuboidal and Manhattan constraints

Convexity assumptions critical

No visibility tests required 
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Functional 3D Room Detection

Functional Room Boundary Detection
In domestic environments, barriers represent boundaries of 
functional separation 

American kitchen - usually separated from the hall by a simple barrier and 
not a doorway

Dining halls - typically sections of the hall separated from the functional hall 
area by an open boundary, i.e. while the functional hall area forms a convex 
shape such as a cuboid, the dining area forms a separate cuboid adjoining it

Planes ranked based on consistency, span, texture content and 
Manhattan constraints 

3D Room Reconstruction and Doorway Detection

Clustering of depth pixels at jump discontinuity



Functional 3D Room Detection

Room Functionality Hypothesis
Based on area, number of doorways, number and size of open 
boundaries and topology of the scene

Semantic Rules
Large areas with more than one door – halls/ living area

Parallel walls with low numerical values for the distance between the walls 
and open boundaries in orthogonal directions – Corridors
Areas adjoining halls with open boundaries leading to the hall – Kitchen or Dining –
based on size of open boundary

Regions with a single doorway - bedrooms or bath – based on area and depth

Label assignment to areas beyond doorways in the field of view

Single-shot image processing, extensible with metric SLAM maps or 
topological maps

Multi-frame processing, full 3D processing



Results

Complete Algorithmic Pipeline for 2 input scenes (columns 1-3 and 4-6) (Top to bottom) Left 
Row – Color image processing: (A) 2D input monochrome left image (B) 2D color image (C) 
Reflectance image (D) Image segmentation output (E) Region selection output (of wall-like 
structures) Middle Row - (A) Input depth map (B) Filtered depth map (C) Depth diffusion 
output (D) Depth segmentation output (E) Masked depth map Right Row - (A) Surface fitting 
results (near top view) (B) Surface categorization & PCA based boundary detection (C) 3D 
Reconstruction (top view (D) 3D Reconstruction (front view) (E) 3D map reprojected to 
camera plane 



Results

3D Room reconstructions for 3 scenes (row-wise) (Left to right) (A) 3D ground truth model of 
room along with camera viewpoint (B) Synthetic image from camera viewpoint (C) Input 
scene (D) Generated 3D model of the room with doorways denoted by cavities in the model 
leading to 3D data points from the room observed through the doorway. For the 3 cases, the 
functional labels output by the system are (1) hall and adjoining rooms as bedroom and bath 
(2) unknown (3) corridor



Results

Results from test environment (Top rows) Input scenes (Bottom
rows) 3D model reprojected on to the image plane. The percentage of
mislabeled pixels (w.r.t to manual segmentation) was 5%.



Results

Run-time comparison of Depth Diffusion solvers

Pixel mislabeling error is 5 times higher for RANSAC (our framework: 
~8713, RANSAC: ~40125)

Reprojection error is about 5% in typical scenes

Robust detection of room boundaries and doorways, even in conditions 
of heavy clutter , specular highlights and non-salient EO edges

Method Time in sec  System configuration 

Varadarajan, Vincze’10 0.048 Core 3.2 GHz, 512 MB 

Hestenes-Stiefel Conjugate Gradient Multi-grid
 a
 1.100 Core 3.2 GHz, 512 MB 

Yin, Cooperstock’04
 b
 3.600 PIII 1.1 GHz 

Zimmer, Bruhn‘08  21.50 PIV 3.2 GHz, 256 MB 

a 
Implemented using the library 'C++ Solvers for Sparse Systems', from University of Freiburg, 

b 
Reported from Matlab. The tests were carried out on a 

3.2 GHz single core PC with 512 MB RAM, across 5 320x240 depth image. The convergence criterion in all cases is an error threshold of 0.01 



Conclusion

Framework for functionality based room boundary 
detection and place learning in domestic environments

Integrated system for functional room boundary detection 
from stereo

Highly efficient with extremely sparse range data 

Preserves and detects depth edges in regions where there are 
no visible edges in color data 

Handles shadows and specular highlights effectively

Simple semantic features based on doorways and area used 
for room functional analysis

Future work: Improvements to model based on other 
semantic features, Full SLAM integration



Thank you !!!



Extra Slides



Iterative Hysteresis Filtering and Morphological 

Reconstruction 

Algorithm
1. Divide the input depth map into core-blocks (sqrt. Iw/10) and macro-

blocks (Iw/10) based on expected spans of surfaces at mean ranges 
from camera (for given FOV) - typical block sizes of 50x50 and 7x7

2. σc and σm. estimated using values of depth pixels with high 
confidence measures (in the confidence map)

3. Logical maps of valid pixels (falling within a pre-determined 
threshold times σc and σm) are estimated. Rough rule of the thumb 
calculation for the macro-block and the core-block thresholds are 
0.25/P and 0.175/P (P is the percentage pixel density, typical 
threshold values being 1.0 and 0.7 for 25% pixel density)

4. Valid pixels in the core-block flagged true in both maps retain 
original values. These pixels are well-behaved; satisfy topological 
smoothness constraints and are likely to belong to the same surface.



Iterative Hysteresis Filtering and Morphological 

Reconstruction 

5. Pixels flagged true in only one map are categorized as hysteresis 
pixels - might belong to surfaces at a depth discontinuity with 
respect to the most prominent surface in core-block. Neighborhood 
pixels are ascertained (based on limits on depth values - set at 300 for 
the 16-bit depth pixel range and connected component analysis) in 
the macro-block map. 

6. Hysteresis pixel along with the neighborhood pixels are added to the 
filtered map if neighborhood region is significant. 

7. Above steps are iterated for the entire depth map until the number of 
pixels classified as noise pixels between iterations falls below 
threshold. 

8. The final noise filtered depth map obtained by morphological 
reconstruction of the marker under the mask map, where the 
iterative hysteresis filtered depth map obtained in the previous step 
is used as the marker and the original depth map as the mask.



Depth Refinement

(a) 2D Color image from Middlebury dataset (b) Ground truth (c) Noisy depth map 
from stereo-system (MSE = 2307) (d) De-noised depth map (MSE = 1752) (e) Depth 
map obtained by IBS based diffusion in estimation mode – note that sharp edges are 
preserved (MSE = 1507). (f) Depth map obtained by IBS based diffusion in filtering 
mode (MSE = 1184) - note that in the filtering mode noise removal is superior, though 
at the cost of lost edges

a b c d e f

Image gradients guided anisotropic depth diffusion



Depth Refinement

(a) 2D Color Image (b) Segmentation map (c) Input depth map

Piecewise isotropic IBS depth diffusion based on segmentation cues

(d) De-noised depth map – note the change in dynamic range (e) Estimation mode results– note
the smooth transition of depth values on the wall to the left and clear depth edge at the intersection
of the side and the front wall surfaces. This edge is only visible in the diffused depth map and not in
color image (f) Filtering mode results – note that the depth surfaces are smoother.

a b c

d e f



Results

P

Complete Algorithmic Pipeline (A) 3D ground truth scene (yellow arrow shows position of camera) (B) Synthetic view from camera location – shows corner of a room with two intersecting wall

planes and a doorway leading to a second room (C) 2D input image (D) Image segmentation output (E) Region selection output (of wall-like structures) (F) Input 3D point cloud (G) Input depth map

(H) Depth diffusion output (I) Depth segmentation output (J) Surface fitting results (near top view) (K) Surface categorization & PCA based boundary detection (L) Comparative results with RANSAC

based plane fitting on segmented point clouds (M) Ground truth room sector (N) Room sector results of our framework (mislabeled pixels = 8713) (O) Results for RANSAC (mislabeled pixels =

40125) (P) 3D Reconstruction (top view – note similarity to 5N) with exclave points through the doorway

A B D E F

G H I J K L M N O

B1 B2 B3

D1 D2 D3

A1 A3A2

C3C1 C2

3D Scene Reconstruction and Doorway Detection - Sets A and B are scenes with true doorways, while sets C an D are cluttered scenes with plenty of negative spaces but no doorways. Images indexed

1 present 3D ground truth of the scene, 2 are 2D input images and 3 are final reconstructions. Note that while true doorways have been estimated in sets A (at the intersection of two perpendicular

wall faces) and B (2 doorways - a large one leading to the brighter room directly in front and a small one at the extreme left), the algorithm builds the 3D scene in sets C and D without detecting any

doorways, demonstrating the robustness of the scheme to clutter.



Results

Results from test environment (Top to bottom) (a) Input scenes (b) 3D model reprojected on to the

image plane (c) Ground truth. The percentage of mislabeled pixels were 5, 4, 17, 12 and 5 respectively.


