
  

  

Abstract—In situ functional detection and classification of 

rooms in indoor environments is an important aspect in the 

training and map building stages of deployment of robotic 

assistants in home environments. Traditional place learning 

methods do not perform functional room or unit identification. 

Explicit user labeling of places as well as map editing is required 

for practical applications. Alternative place learning schemes 

use feature based methods to detect typical objects and 

hypothesize room functionality/ learn places based on 

localization of these objects in the map. Besides extensive user 

intervention, these methods are unsuitable in dynamic 

environments or in unoccupied/ unfurnished homes. 

Furthermore, traditional indoor 3D structural environment 

modeling algorithms employ schemes such as clustering of dense 

point clouds for parameterization and identification of the 3D 

surfaces. RANSAC based plane fitting, extensions to feature 

based stereo, half-plane detection, real-plane or facade 

reconstruction, plane sweeping etc. have been used for 3D 

environment reconstruction. Noise in the range data, especially 

in low texture regions and accidental line/plane grouping under 

lack of cues for visibility tests can hamper efficiency of practical 

systems. In order to counter these issues, we propose a novel 

framework fusing 2D local and global features such as edges, 

texture and regions, with geometry information obtained from 

range data for reliable 3D indoor scene representation. The 

algorithm is shown to perform superior to RANSAC based 

plane fitting approaches. Functional room boundary detection 

and modeling is carried out using cues from the number of 

detected doorways and open boundaries. By avoiding the use of 

feature based place learning, robustness and versatility of the 

scheme is improved. 

I. INTRODUCTION 

unctional detection and classification of rooms in indoor 

environments is an important aspect in the training and 

map building stages of deployment of robotic assistants 

in home environments. Conventional methods for 

environment learning such as SLAM do not perform 

semantic functional room or unit identification. Furthermore, 

explicit user labeling of places as well as map editing is 
required for practical applications. There are also several 

different methods for place learning. These include schemes 

 
Manuscript received April 2 2011. The research leading to these results 

has received partial funding from the European Community’s Sixth 

Framework Programme (FP6/2003-2006) under grant agreement no FP6-

2006-IST-6-045350 (robots@home). 

Karthik Mahesh Varadarajan and Markus Vincze are with the Vienna 

University of Technology, Automation and Control Institute, 

Gusshausstrasse 30 / E376, A-1040 Vienna, Austria (email: {kv,mv} 

@acin.tuwien.ac.at). 

that use feature based methods to detect typical objects and 

hypothesize room functionality/ learn places based on 

localization of these objects in the map [31]. The 

RobotVision @ ImageCLEF challenge [30] is specifically 

targeted at place learning. Besides extensive user 

intervention, all these methods are unsuitable in dynamic 

environments or in unoccupied/ unfurnished homes. Other 

semantic cues based exploratory algorithms for map building 
have been presented in [32] and [33], but lack the direction 

towards the development of functional semantic definitions 

for rooms in domestic environments.  

With regard to indoor 3D structural modeling, traditional 
methods employ schemes such as clustering of dense point 

clouds for parameterization and identification of the 3D 

surfaces. RANSAC based plane fitting [1] is one common 

approach in this regard. Alternatively, extensions to feature 

based stereo have also been used, half-plane detection [2,3,4], 

real-plane or facade reconstruction [5], plane sweeping etc. 

have been proposed. Recent efforts at plane grouping based 

on PCA and visibility tests include [6] and [7]. Other 

techniques include line grouping [8] and model based 
recognition [9]. However, the performance of most of these 

techniques rapidly degrade in the presence of high amounts 

of noise (in range data such as stereo) under conditions of 

low illumination and in regions of low-texture or sparse 

features. Furthermore, accidental line/plane grouping (due to 

shelves/ cupboards), especially under lack of cues for 

visibility tests, presence of depth edges or discontinuities that 

are not visible in the 2D image and difficulty in adaptively 

estimating metrics for clustering can hamper efficiency of 

practical systems for door/doorway detection. On the other 

hand, traditional laser [10] or panoramic camera based 

[11,12] (multi-view) room modeling and doorway detection 
systems (often using piecewise planar modeling [13], 

triangulation [14] or space carving [15]) are often impractical 

for cost-effective domestic robots. Moreover, machine 

learning based door recognition systems (usually from only 

2D images) such as [16,17,18], perform poorly in cluttered 

scenes (especially with floor reflectance) and when the door 

is open, is viewed partially or the doorway is structurally 

similar to an arch, lacking the actual door or door frame. 

Depth based doorway detection is more practical in such 

cases and also provides cues for place learning.  

In order to resolve these challenges, we extend out 
framework presented in [29]. We fuse 2D local and global 

features such as edges, textures and regions, with geometry 
data obtained from pixel-wise dense stereo for reliable 3D 
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indoor scene representation. The strength of the approach is 

derived from novel depth diffusion and segmentation 

algorithms resulting in superior surface characterization. 

Unlike earlier schemes, our methods enable identification of 

depth edges critical to surface isolation, while rendering 

visibility tests superfluous.  

The proposed framework follows a three tier process – 

detection of walls, followed by the enclosing room and 

finally doorways. Walls and wall-like surfaces are detected 

using 2D edge, texture and region features. The 3D surfaces 

corresponding to the walls are then generated using piecewise 
depth diffusion techniques followed by depth segmentation to 

identify intra - wall depth discontinuities. The room model is 

built by selecting wall-like surfaces to fit approximate 

cuboidal constraints. Doorways in the room are estimated by 

clustering of the dense stereo data pixels that do not conform 

to the concave room hypothesis. Finally, room functionality 

is determined based on number of doorways, room area and 

topology. 

II. OVERVIEW 

This paper offers a number of novel contributions. The 

main contributions are listed below. Firstly, this paper 

presents an innovative framework for functionality based 

room boundary detection. Secondly, this paper offers a 

scheme for room functionality determination and place 

learning based on structural features of the room. Thirdly and 

most significantly, this paper offers an integrated framework 

for complete functional room modeling from stereo range 

data.  

The images used for evaluating the developed algorithms 

have been obtained in an indoor environment, from an 

experimental robot at a height of about 1m from the ground 

plane. A high dynamic range monochrome stereo camera is 

used to estimate the range images along with a centrally 

mounted inexpensive color camera. Note that the algorithms 

presented here are well suited for fusion of data from distinct 

color and range (stereo or otherwise) sensor systems. In order 

to simplify the algorithmic framework, it has been assumed 

that the fixed pose of camera and its height above the ground 

plane are known accurately, thereby establishing the 

approximate ground plane in any scene without further 

processing. The approach for 3D room reconstruction and 

doorway detection presented in this paper follows a 3 stage 

modeling pipeline comprising of wall modeling, room 

modeling and doorway modeling. The various assumptions 

for the modeling/ hypothesis at each stage are: 

A. Wall Modeling 

Walls are typically characterized by  

1. Homogeneous regions or areas with regular texture, 

usually with high numeric intensity values. 

2. Largest single color regions in a given scene, especially 

with no large occluding obstacles in the vicinity. 

3. Hold pixels with the farthest visible range information 

on planes parallel to the ground plane. 

4. Frequent loss of homogeneity in color values owing to 

lighting and shading effects.  

B. Room Modeling 

Rooms are characterized by 

1. Combination of walls approximating a cuboid. 

2. Largest and most consistent of all possible cuboids in the 

scene (helps exclude walls internal to the room). 

3. Often encompasses all extreme range pixels in the 

horizontal dimensions (along the image width).  

4. Room fitting can be reduced in most cases (based on 

assumptions of known floor and ceiling) to fitting of a 

maximum of just three (largest) vertical walls.  

C. Doorway Modeling 

Doorways are characterized by 

1. External outliers (or exclave points in range images) to 

the room model, that can be grouped to form regions 

with size bounds similar to that of typical doorways.  

2. These outliers should be at a jump discontinuity to the 

modeled room surfaces.  

3. Floors are typically uniform across doorways. 

III. ALGORITHM 

The algorithmic pipeline presented in this paper follows 

from the above sequence of modeling. The framework has 

three main sections. The first section deals with color image 

processing, wherein after pre-processing, reflectance image 

gradients are extracted from the 2D image and segmentation 

(along with region selection) is carried to identify walls and 

wall-like regions. The second section details dense stereo 

depth data processing in a number of steps that include 

denoising, piecewise diffusion to reconstruct depth surfaces 

and depth segmentation to identify intra-object depth bounds. 

The last section deals with functional indoor structure 

generation by fitting planes to the wall-like surfaces and 

grouping them to find room boundaries followed by room 

functionality hypothesis. This 3D reconstruction of the room 

leads to detection of doorways and other negative spaces. 

Color Image Processing 

A. Color Pre-processing 

The color image, obtained from the centrally located 

camera is rectified and used as the reference image. As a pre-

processing step, the noise in the color image is reduced using 

a bilateral filter that preserves salient gradient values and 

hence sharp edges that are crucial for algorithms in the 

following stages of processing, including 2D segmentation.  

B. Intrinsic Reflectance Gradients Extraction 

The gradients of the filtered color image are estimated and 

these gradients are decomposed into shading and reflectance 

components. The shading component captures the lighting 

and shadows in the scene while the reflectance component 



  

captures the distinction in the material surfaces. This step is 

helpful to eliminate the highlights and shadow patterns 

created by light fixtures typically mounted on walls. The 

algorithm we employ is based on the intrinsic image 

extraction algorithm developed by Weiss [19] and extended 

by Tappen [20]. In the presented framework, gradients in the 

intensity channel of the color image are classified as 

‘shading’ or ‘reflectance’ gradients by modeling an 

asymptotic linear color variation across neighboring pixels. 

The formulation for intrinsic image extraction [20] is ���, �� = ���, �� x ���, ��     �1� 

where ���, �� is the shading image, ���, �� is the reflectance 

image and ���, ��is the input image defined in the 

dimensions �and �. Using a logarithmic transformation and 

applying multiple scale selective gradient/ derivative filters 
� , 
� we have the gradient images �� and ��, the ��, �� 

components of which can be classified as shading if the color  

Figure 1.  Intrinsic Image Extraction and Segmentation (A) Input color 

image (B) Segmentation using the standard Felzenszwalb-Huttenlocher (FH) 

graph based algorithm – demonstrates high clutter in regions of the left wall 

with lighting changes (C) Shading intrinsic image (D) Reflectance intrinsic 

image – note that C and D (obtained by inversion of input image gradients 
classified as shading or reflectance respectively) 

pixels satisfy the constraints ���� = ��� and ���� = ���  

respectively and as reflectance otherwise. The component 

images can be reconstructed as  

Figure 2. (A) Segmentation on the input image using a low complexity 

multi-scale full gradient edge analysis scheme (B) Segmentation on the input 

image with the same scheme using reflectance-only gradients – shows 

superior performance in wall regions affected by lighting changes in 

comparison with full-gradient image segmentation schemes such as the 

graph based FH. Similar values of gradient and region size thresholds were 

used for all three segmentation scenarios. (C) Results using FH (mislabeled 
pixels: 70292) (D) Results using our framework (mislabeled pixels: 32069) 

���, �� = � ∗ ��
��−�, −�� ∗ ���� + �
��−�, −�� ∗ ����]  �2� 

where, * represents convolution, ���and ���are component 

(shading/ reflectance) gradients and � is obtained from � ∗ ��
��−�, −�� ∗ 
���, ��� +  �
��−�, −�� ∗ 
���, ���]
=  �  �3�  

 

The shading and reflectance components as defined by 

equation (2) are shown in Fig. 1C and 1D. In our framework, 

the reflectance image gradients  !" and  !# are used directly 

in the segmentation process. One possible disadvantage of 

using intrinsic gradients is that gradients at edges pertaining 

to surface orientation changes in walls and other structures 

may not be captured in the reflectance component. However, 

this is limitation is overcome in the presented framework as 

the additional step of depth segmentation detects these 

gradients, from the depth image.  

C. 2D Reflectance Gradient based Segmentation and Region 

Isolation using Texture Analysis 

 Using the gradients ��� and ��� obtained in the previous 

stage, segmentation is carried out using a low complexity 

multi-scale edge analysis scheme. The scheme links edges 

found at various scales (by analysis of reflectance only 

gradients) using proximity and similarity measures to form 

enclosed regions or segments. The choice of the 

segmentation algorithm is based on the goal of meeting real-

time constraints for deployments on robots, which excludes 

the possibility of using algorithms like the Felzenszwalb-

Huttenlocher (FH) graph based algorithm. It can be seen from 

Fig. 2C and 2D that the output of the proposed ‘reflectance 

gradient only’ segmentation approach is superior to 

traditional full-gradient algorithms like FH (with gradients as 

grid graph edge weights) given the given context of wall 

detection with lighting and shading changes. The segmented 

regions are then subjected to a region selection algorithm to 

select walls and wall-like structural surfaces that are expected 

to support the room model. The characteristic features of 

walls such as low texture, high homogeneity, large pixel 

spans and representations using high gray-scale intensity 

values are used in region selection. The current framework 

employs 2 levels of thresholds (hard and soft) on measures of 

entropy (E), homogeneity (H), uniformity energy (U), 

correlation (R), contrast (C) and other constraints based on 

the Grey Level Co-occurrence Matrix (GLCM) to select wall-

like surfaces. Estimated soft threshold values, along with the 

assigned confidence values of the measures on condition 

conformance (in brackets) for the two-class separation 

(positive wall classification) are H>0.99 (1.0), C<0.0275 

(1.0), R>0.9 (0.9), U>0.6 (0.3) and E<5.5 (0.8). The hard 

threshold values are H>0.96 (0.8), C<0.0475 (0.7), R>0.85 

(0.6), U>0.3 (0.1), E<7.0 (0.5). The surface is classified as a 

wall if the aggregate confidence value exceeds 3.0 out of a 

maximum of 4.0. On a representative data set of 80 image 

chips of various material textures found indoors, such as 

wood, tile, brick, rock, vegetation, carpet, cloth, curtain, 

steel, bronze, tree bark, granite etc., besides painted wall 

surfaces, the simple classifier achieved a classification rate of 

95%, with a wall detection rate of 97.87%. Thresholds on 

pixel spans of the surfaces (> Iw*Ih/15, where, Iw is image 

width and Ih is image height) and average gray-scale intensity 

(> 100/255), further help reduce the detected segments to the 

set of primary room surfaces. The region masks thus obtained 

(Fig. 2D) are used for piecewise isotropic depth diffusion. 



  

 Stereo Depth Image Processing 

D. Depth Pre-processing 

Depth pre-processing involves noise removal done using a 

novel sparse de-noising algorithm, employing iterative 

hysteresis filtering & morphological reconstruction [29].  

E. Depth Diffusion 

Since the input depth map from the range sensor can be 

quite sparse, it is required to convert it into a dense cloud for 

reliable and coherent surface estimation. This step is 

important since the span of the surfaces (in terms of pixels) is 

crucial for reliable weighting in the fitting and room 

reconstruction process and for outlier rejection. Diffusion of 

depth values is carried out using a Piecewise Isotropic 

Laplacian Partial Differential Heat Linear Equation (PDE) 

Solver that operates only in regions identified by masks 

obtained in step C. By combining Multi-grid and Iterative 

Back Substitution (IBS) schemes to solve the PDE equation, 

rapid convergence is obtained. 

The PDE representing the flow of heat in a 2 dimensional 

isotropic medium [21] is given by $%�r, '�
$' = � ($)%�r, '�

$�) +  $)%�r, '�
$�) *   �4� 

where, %�r, '� represents the heat measured in the two 

dimensional space r(x,y) at time t.  

Traditional isotropic diffusion solvers smooth out edge 

regions, while direct application of anisotropic diffusion to 

depth data smoothens depth edges in regions where image 

gradients are weak (e.g. wall intersections). In the piecewise 

isotropic diffusion solver, the calculation of the forward and 

backward substitution modules is suppressed for known 

depth pixels, thereby propagating and preserving segment 

boundaries as well as depth edges across iterations (Fig. 4).  

While the IBS solution is reasonably fast (of the order of 

0.5 sec on a 3.2 GHz single core PC with 512 MB RAM, for 

a 320x240 depth image), the convergence rates are to be 

further enhanced for real-time operation on resource 

constrained systems. In our framework, we use a variant of 

the multi-grid approach (that employs solutions to equation 

systems at smaller scales as pre-conditioners for higher 

scales) to speed-up calculations of the IBS.  

F. Depth Segmentation  

An additional step of depth segmentation is necessary to 

detect depth discontinuities and hence surface boundaries that 

are not captured in 2D edge segmentation. A good example is 

the case of a discontinuity in a wall surface as a result of a 

pillar or column like structure or a depth edge created at the 

intersection of two wall faces of a room. Since the faces of 

the room are expected to be of the same color, it is possible 

that a reliable edge is not detected at the junction of these 

faces or at locations of surface orientation changes on a 

column during color processing. As explained in the previous 

section, our novel diffusion step renders these edges 

detectable and regions separable to segmentation. In our 

approach, the simple, low-complexity multi-scale edge 

detection and linking approach explained in section C is 

sufficient for intra-object (here intra-wall) depth 

discontinuity. This approach is chosen to keep computation 

requirements low. This also removes noisy depth surfaces. 

Functional Room Detection  

G. Surface Fitting 

The detected wall-like depth segments are then fit to planar 

surfaces. This process helps parameterize the depth surfaces, 

rendering surface orientation analysis easier. All surfaces that 

do not conform to planar constraints are eliminated based on 

quality of fit. Since walls are expected to satisfy Manhattan 

constraints and the floor plane is approximated to be 

perpendicular to the image plane, all depth surfaces that are 

not perpendicular to the floor plane (within tolerance limits) 

are also excluded from further analysis. 

The plane fitting is carried out using Iteratively Re-

weighted Least Squares Robust Linear Regression. To 

prevent the effect of propagation of errors to the 3D planar 

coordinates - X & Y (ideally independent variables) from the 

depth coordinate Z (ideally dependent) during point cloud 

estimation; the 3D fitting is carried out using a reprojected 

equation (12) in the image plane. The equation is solved 

using a transformation of variable (1/Z) to a temporary 

reciprocal variable, with x and y being image coordinates. 

 
�
, = - .

/012 � + 3− 4
/516 � + 37

1 − .��870�
/01 + 49�875:

/51 6 �5� 

where, A, B, C and D are the true plane equation coefficients 

in the 3D world, 
� and 
� are camera focal lengths, while 

���, ��� is the principal point (The additional negative sign is 

due to an inverted Y reference system). 

H. Functional Room Boundaries Detection  

The depth surface planes are projected onto the ZX plane 

and PCA is used to find the principal orientation of each wall 

like surface. The planar surfaces are then classified by 

orientation and mapped to a cuboidal structure (with angular 

deformation – to permit some deviation). Planes that do not 

support the cuboid hypothesis are rejected. The choice in the 

usage of a convex shape (cuboid) is significant. In the case of 

domestic environments, it can be expected that barriers in the 

environment represent boundaries of functional separation. 

One example would be the case of the kitchen, which is 

usually separated from the hall by a simple barrier and not a 

doorway. Furthermore, dining halls typically sections of the 

hall that are separated from the functional hall area by an 

open boundary, i.e. while the functional hall area forms a 

convex shape such as a cuboid or rectangle (on the plan), the 

dining area forms a separate cuboid adjoining it. Planes are 

ranked based on consistency, span, texture content and the 



  

degree of meeting Manhattan constraints. Higher ranked 

planes are preferred (in a rule based framework) for the room 

boundary establishment. This permits use of wall-like 

surfaces (doors at consistent orientations and cupboards, with 

suitable contention resolution) for approximating the room 

structure whenever the current camera viewpoint does not 

contain significant wall surfaces. The active room sector is 

also identified by the scheme. This framework renders any 

visibility tests and constraints superfluous. This is because 

the depth diffusion uses the values of all know depth pixels 

(noise suppressed) to build the depth surfaces, irrespective of 

the curvature and the depth segmentation step breaks those 

surfaces that would not have satisfied visibility constraints. 

Also, the PCA ensures that the most consistent and visible 

surfaces are used in the room modeling process (Fig. 3). 

I. 3D Room Reconstruction and Doorway Detection  

Using the detected room sector map, height of the camera 

above ground and standard room height measurements, the 

3D structure of the room is reconstructed. Doorways are 

detected by clustering depth pixels that do not support the 

concave room structure hypothesis. Typical measurements of 

doors are used to improve localization of doorways. These 

doorways are modeled as open regions in the 3D 

representation with the exclave pixels (those belonging to the 

room seen through the doorway) as sparse 3D points. Bounds 

on the depth discontinuity ranges (between current room 

boundaries and exclave pixels) help identify pixel surfaces in 

rooms beyond doorways making the scheme robust to 

presence of cupboards and other enclosures, leading to high 

recognition rates for true doorways (Fig. 3 and 4).  

J. Room Functionality Hypothesis (Place Learning) 

Based on the number of doorways and the topology of the 
scene, it is possible to hypothesize the functionality of the 

room in the domestic environment. As stated earlier, the 

functional room boundary detection module estimates rooms 

or room sections that are expected to provide functional 

separation from other areas in the domestic environment. The 

categorization of these functional areas is then carried out 

using size of the area, number of doorways, number and size 

of open boundaries. Large areas with more than one door are 

categorized as halls. Corridors are identified based on parallel 

walls with low numerical values for the distance between the 

walls and open boundaries in orthogonal directions. Kitchens/ 
dining halls are identified as areas adjoining living area with 

open boundaries leading to the hall (categorized based on 

distance of open boundary). Thresholds on areas and depth 

regions with a single doorway help categorize into bedrooms 

and bath.  It should be noted that it is also possible to yield 

room functionality labels to areas that are observed beyond 

the doorways based on this scheme. While the current 

framework uses a single-shot image frame processing to yield 

a response on the room functionality type, it can be extended 

to use metric maps of SLAM or topological maps to refine 

the hypothesis on the room type. The reliability of the single-

shot scheme declines when the robot is close to the doorway. 
Multi-frame processing or full 3D analysis based on the 

metric maps can yield reliable solutions in such cases. 

Results of room functional analysis are presented for various 

scenarios in Fig. 4. For the 3 cases in Fig. 4, the output labels 

obtained from the system are (1) hall and adjoining rooms as 

bedroom and bath – the classification between bedroom and 

bath has been made based on the depth of points through the 

doorway (2) unknown – since the doorway is too close to the 

camera (3) corridor – since 2 parallel wall surfaces are 

obtained with open boundaries orthogonal to the walls.   

Figure 3. Complete Algorithmic Pipeline for 2 input scenes (columns 1-3 and 4-

6) (Top to bottom) Left Row – Color image processing: (A) 2D input 

monochrome left image (B) 2D color image (C) Reflectance image (D) Image 

segmentation output (E) Region selection output (of wall-like structures) Middle 

Row - (A) Input depth map (B) Filtered depth map (C) Depth diffusion output 

(D) Depth segmentation output (E) Masked depth map Right Row - (A) Surface 

fitting results (near top view) (B) Surface categorization & PCA based boundary 

detection (C) 3D Reconstruction (top view (D) 3D Reconstruction (front view) 

(E) 3D map reprojected to camera plane  

 

Figure 4. 3D Room reconstructions for 3 scenes (row-wise) (Left to right) 

(A) 3D ground truth model of room along with camera viewpoint (B) 

Synthetic image from camera viewpoint (C) Input scene (D) Generated 3D 

model of the room with doorways denoted by cavities in the model leading 

to 3D data points from the room observed through the doorway. For the 3 

cases, the functional labels output by the system are (1) hall and adjoining 

rooms as bedroom and bath (2) unknown (3) corridor 



  

IV. ANALYSIS 

The results presented in the previous section demonstrate 

the robustness of the framework. This framework 

outperforms the traditional RANSAC based plane fitting and 

room boundary detection algorithm that uses the output of 

our surface segmentation approach. The pixel mislabeling 

error is 5 times higher for RANSAC. Our algorithm is shown 
to be robust for a variety of complex scenes. Fig. 3, 4 and 5 

describes robust and consistent performance in large 

environments with multiple doorways and heavy clutter such 

as cupboards and closets. Results are presented in Figure 5 in 

the form of reprojections of the generated 3D models on to 

the image plane. Dark blue and red regions denote doorways 

and the floor, while walls are labeled in other colors. The 

reprojection error, measured here in terms of a rough metric -

number of mislabeled pixels (with respect to manually 

labeled doorway, floor and wall region pixels) is about 5% in 

typical scenes and exceptions are due to large and dynamic 

occlusions (such as humans).  

V. CONCLUSION AND FUTURE WORK 

In this paper, we have demonstrated an innovative 

framework for functionality based room boundary detection 

and place learning in domestic environments. This paper also 

offers an integrated framework for complete functional room 

modeling from stereo range data. The strength of the 

approach is derived from the novel depth diffusion and 

segmentation algorithms that result in better surface 

characterization as opposed to traditional feature based stereo 

or RANSAC plane fitting approaches. It should also be noted 

that in the context of indoor 3D room reconstruction, the 

presented framework is (a) highly efficient with extremely 

sparse range data (b) preserves and detects depth edges in 

regions where there are no visible edges in the color data and 

(c) handles shadows and specular highlights effectively, 

unlike other related sensor fusion schemes like [27] and [28]. 

While simple semantic features based on doorways and area 

have been used for room functional analysis, improvements 

to the model based on other features forms future work. 

Integration of the system into a full SLAM framework is 

ongoing work.  
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Figure 5. Results from test environment (Top rows) Input scenes 

(Bottom rows) 3D model reprojected on to the image plane. The 

percentage of mislabeled pixels (w.r.t to manual segmentation) was 5%. 


