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Abstract— This paper presents a concept for active scene
modeling by autonomous knowledge acquisition of a service
robot in a kitchen scenario. Perceiving complex scenes with
multiple objects at arbitrary positions is often difficult from
a single measurement due to object ambiguities, object occlu-
sions or environmental influences. The incorporation of several
sequential measurements helps to improve scene knowledge.

In this work a probabilistic active perception framework
is developed which plans future sensing actions with respect
to uncertainties in the current scene model, unseen spaces
and actuation costs of the service robot. Scenes consist of
an unknown number of objects, whose poses are modeled in
continuous 6D space. The object database contains 100 different
household items. The uncertainties in the recognition process
and of state transition are probabilistically modeled and basis
for planning future perceptions.

The active perception system for autonomous service robots
is evaluated in experiments in a kitchen environment. In 200 test
runs the efficiency and satisfactory behavior of the proposed
methodology is shown in comparison to a random and an
incremental action selection strategy.

I. INTRODUCTION

This paper focuses on an active perception system for a
household service robot acting in everyday environments.
The main scope is the precise scene modeling and sensor
action planning to improve scene knowledge. Autonomous
knowledge acquisition is essential to enhance the internal
representation of the environment of the robot. Figure 1
shows the robot operating in a kitchen scenario. The mobile
platform contains two arms with 3-finger hands each for
object manipulation. A stereo camera system is used to
perceive the environment.

The target operation environments of future service robots
are not tailored for automation, rather they are unconstrained,
non-cooperative and cluttered. The scenes might be complex
containing objects of diverse types in arbitrary 6D-poses,
which leads to effects like partial occlusion. High recognition
rates, acceptable speed and an accuracy of position < 1cm
(as prerequisite for successful manipulation) are required.
While many of today’s robots typically still live in blocks
worlds, it was the goal of this work to address more realistic
and hence more complex scenarios. The guiding principles
of our approach are a systematic probabilistic handling of
the uncertainties of object class and object pose, and the
exploitation of the robot’s motion capabilities via active
perception mechanisms.
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Fig. 1. The service robot, operating in an environment with a large number
of objects.

The outline of the paper is as follows. The next section
presents a brief overview of current approaches to active
perception planning. Section III describes the concepts of
scene modeling with probabilistic 6D poses. Section IV
describes the perception architecture in detail and emphasizes
the observation model, the inference model and the planning
model. This paper closes with an evaluation of the proposed
approach over a large number of experiments in Section V
demonstrating satisfactory perception results.

II. RELATED WORK

Literature provides many approaches to active recognition
and next best view planning. Surveys on perception planning
by Chen[1] and Dutta-Roy[2] list the current state of the art.
Here we discuss active perception approaches with respect
to their state modeling, the applicability to high-dimensional
continuous state spaces their planning concepts and their
exploration strategies.

The research in active perception brought up very so-
phisticated approaches for viewpoint evaluation and next
best view planning [3][4][5][6]. They vary in their methods
of evaluating sensor positions, in the strategies for action
planning and in their field of application. Their main focus
is on fast and efficient object recognition of similar and
ambiguous objects, but they do not address multi-object
scenarios and cluttered environments. These aspects of our
work are covered in [7].

The dimensionality of the state space varies among all pro-
posals. Most claim the possible applicability to continuous,
high-dimensional domains, but only some successfully prove



their theories [5] [8] [9]. The usage in high-dimensional state
spaces requires adequate probabilistic pose representations,
especially of the orientation. However, nobody tackles the
problem of reasonably modeling uncertainties of the ori-
entation for pose determination, which is essential for 6D
perception.

Active explorative strategies are mostly implemented when
dealing with active object reconstruction [10][11][12]. How-
ever, they aim at best covering all space but only consider
single object scenarios and do not treat the orientation of the
objects explicitly.

In this work scenarios are considered, which contain ar-
rangements of several objects, belonging to different as well
as to alike classes. Their pose uncertainties are represented
by 6D multivariate probabilistic distributions. The planning
bases on state distributions and explorative criteria.

III. PROBABILISTIC SCENE MODELING

The state space consists of n object hypotheses each
represented by a tupel qi = (Ci, φi). Ci describes its
discrete class representation and φi its continuous pose. In
this work a Rodrigues vector representation is used to express
the orientation of a 6D pose. All I object-instance-tuples
build up the joint state q = (q1, q2, ..., qI). The entities are
assumed to be mutually independent. Since qi represents
both discrete and continuous dimensions it will be further
considered as a mixed state. The dimension of the state space
varies as the perception process proceeds with recognizing
new object instances.

In order to describe uncertainties of object hypotheses we
use the multivariate Gaussian mixture distribution of the form

p(pi|Ci) =
K∑

k=1

wi
kN (pi|µi

k,Σ
i
k), (1)

to describe the pose accuracy as a complex, multi-peaked
distribution for a given object class. K is the number of
Gaussian kernels. The mixing coefficient wi

k denotes the
weight of the mixture component with 0 ≤ wi

k ≤ 1 and∑K
k=1 w

i
k = 1. µi

k is the mean and Σi
k the covariance

of kernel k. The probability distribution over the class
P (Ci) is discrete and is described by a histogram over the
object classes. p(qi) is defined as the product of P (Ci)
and p(φi|Ci). More on the modeling of pose uncertainty
to represent 6D object poses can be found in [13]. The
application on the Rodrigues representation is explained in
[14].

IV. ACTIVE PERCEPTION ARCHITECTURE

Additional observations from different viewpoints can -
via a fusion process - reduce uncertainties with respect
to class or pose of objects in the scene or with respect
to unexplored regions. Our active perception component
determines possible best next views, even in the case of
partial occlusions. The framework for selecting the best
future action policy π is schematically illustrated in Figure
2. It consists of the Observation model, the Inference model
and the Planning model.

Fig. 2. Active perception framework

The observation model provides the measurement data
Ot(at) for state estimation. The expected observation is
predicted from the chosen sensing action and the predicted
state distribution after the transition update. For more accu-
rate observation prediction, object occlusions in the multi-
object scenarios are calculated. The measurement likelihood
p(Ot(at)|q′) as a probabilistic representation of the obser-
vation is fused in the state estimation process with current
scene information.

Perception planning reasons over estimated belief distri-
butions bt(q′) for finding the best action policy in order to
reduce the state uncertainty. In this paper we only consider
sensor positioning at different viewpoints as sensing actions.
The reward function of the planning algorithm takes into
account the expected information gain and the estimated
costs of the robot motion required. Proposed camera poses
are communicated as a Wish list to the robot system control
for final decision based on geometric-kinematic accessibility.

All these components of the active perception module are
explained in detail in the following sections.

A. Inference Model

This work uses the Bayesian state estimator and considers
uncertainties in the state transition and in the measurement
for state estimation. The probability distribution over the
state

bt−1(q) = p(q|Ot−1(at−1), ..., O0(a0)) (2)

is the a priori belief given previous sensor measurements
Ot−1(at−1), ..., O0(a0).

The posterior distribution bt(q′) is calculated according to
Bayes’ rule by updating the prior after the state transition,
which is described by its probability pat

(q′|q), with the new
observation Ot(at)

bt(q′) =
P (Ot(at)|q′)

∫
q
pat(q

′|q)bt−1(q)dq∫
q′
P (Ot(at)|q′)

∫
q
pat(q′|q)bt−1(q)dqdq′

. (3)

The rules of probability, the Markov assumption and the
theorem of total probability are applied to derive this expres-
sion. The observation Ot(at) is assumed to be conditionally



independent of previous measurements. For details refer to
[15].

Data association is accomplished by combining a global
nearest neighbor (GNN) approach and geometry-based data
association to find corresponding measurement components.
Both build up association tables. GNN data association
uses the Mahalanobis distance measure to probabilistically
compare Gaussian kernels of pose distributions. This is
only applicable for components of the same object classes.
Geometry-based data association accomplishes the associ-
ation task over classes by checking object constellations
for physical plausibility, meaning object instances must not
intersect. If the entries of the association tables are within
the validation gate, the corresponding measurements are
associated. Otherwise, unassigned measurements establish a
new object instance distribution which is fused in the Bayes’
update with a uniform prior, resulting in an increase of the
dimension of the joint state.

B. Observation Model

The observation model aims at estimating the observation
likelihood P (Ot(at)|q′) for the current measurement Ot(at).
Under the assumption of using interest point detectors this
observation can be expressed as the detection of a set of N
features

Ot(at) = {f1(at), ..., fN (at)}, (4)

as a subset of all database features. These features are
considered to be the currently visible interest points.

We generate this set of features explicitly when predicting
an observation, where we simulate the measurement. Feature
characteristics and occlusion events are considered [7]. While
for a real measurement the set of features is acquired directly
from the detector, during the simulation of the observation
we estimate the visibility of a features based on the current
scene knowledge. Given the set of expected visible features,
P (Ot(at)|q′) is computed by applying the naive Bayes rule
and assuming the features to be conditionally independent:

P (Ot(at)|q′) =
∏
j

P (fj(at)|q′). (5)

C. Perception Planning

Sequential decision-making consists of the processes of
evaluating future actions and finding the best action sequence
with respect to a specific goal. The probabilistic planning
concept is realized in form of a partially observable Markov
decision process as proposed in [15]. The probabilistic
planner reasons by considering information theoretic quality
criteria of the expected belief distribution bOt(at)

t (q′), which
is abbreviated by b′ in the following equations, and control
action costs. The objective lies in maximizing the long term
reward of all executed actions and the active reduction of
uncertainty in the belief distributions. The value function

Vt(b′) = max
at

(
Rat(b

′) + γ

∫
Vt−1(b′)P (Ot(at)|q′)dOt

)
(6)

with V1(b′) = maxat
Rat

(b′) is a recursive formulation to
determine the expected future reward for sequencing actions.
γ denotes the discount rate for penalizing later actions and
Rat

(b′) is the reward. The continuous domains and the high-
dimensional state spaces make the problem intractable. As
the value function is not piecewise linear, it is evaluated at
specific positions, which demands the online calculation of
the reward for these specific actions and observations.

The control policy

π(b′) = argmax
at

(
Rat

(b′)+γ
∫
Vt−1(b′)P (Ot(at)|q′)dOt

)
(7)

maps the probability distribution over the states to actions.
Assuming a discrete observation space the integral can be
replaced by a sum.

The prospective action policy π is determined by maxi-
mizing the expected reward

Rat(b
′) =

∑
j

αjErel(Rj
at

(·)) (8)

with

Erel(Rj
at

(·)) =
E
(
Rj

a(·)
)
−minat

E
(
Rj

a(·)
)

minatE
(
Rj

a(·)
)
−maxatE

(
Rj

a(·)
) (9)

which relates the relative expected values of several quality
criteria j with the respective relation factor αj .

In this work three different criteria are incorporated, one
based on the belief distributions of hypotheses (RB

at
(b′)),

another on the costs for executing an action (RC
at

(b′)) and
one on the exploration state of the environment (RE

at
(b′)).

All three are explained in the following.
1) Information gain from belief distributions: In percep-

tion problems the quality of information is usually closely
related to the probability density distribution over the state
space. The information theoretic measure of the differential
entropy is suitable for determining the uncertainty of the
belief distribution. Thus, the expected reward from reducing
the uncertainty of the state estimates is determined from the
expected information gain expressed by the difference of the
differential entropies of prior and posterior distribution:

E(RB
at

(q)) = hbt
(q′|Ot(at))− hbt−1(q), (10)

Since the computation of the differential entropy both,
numerically or by sampling from parametric probability
density distributions is costly in terms of processing time, the
sum of the upper bound estimates over the object instances

hU
bt

(q′|Ot(at)) ≥ hbt(q
′|Ot(at))

=
∑

i

Ki∑
k=1

wi
k[−logwi

k +
1
2
log((2π exp)D|Σi

k|)]
(11)

is used to approximate and determine the expected benefit
[16]. D denotes the dimension of the state, |Σk| denominates
the determinant of the kth component’s covariance matrix.
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Fig. 3. Sample scenes for experimental evaluation. The objects are selected from the large object database and arbitrarily positioned.

2) Active exploration: Active exploration aims at maxi-
mizing the expectation of the reward RE

at
(x). The state x

describes a single volumetric element of the total volume
X in the scene. In order to model this volume a grid-based
approach in form of a probabilistic octree occupancy grid
is used to represent the 3D environment of the translational
domain [17]. Each cell in this grid - or also denoted as voxel -
has a probabilistic value assigned for its possible stage. The
belief bt(x) is the measure for the degree of exploration.
While for the probability bt(x) = 1 the volumetric element
x is considered as occupied, for bt(x) = 0 it is entirely free.
bt(x) = 0.5 signifies that the state is unknown or unexplored.
Initially all probabilities are set to the state unexplored.

In analogy to the determination of the information gain
for the hypotheses distributions, the information theoretic
measure of the discrete entropy is suitable for determining
the uncertainty associated with x[18]. The expected reward
from exploration E

(
RE

at
(x)
)

is set equal to the difference of
the prior and posterior entropy of the unexplored volume

E
(
RE

at
(x)
)

= Hbt
(x)−Hbt−1(x). (12)

3) Costs for executing actions: The execution of each
action is associated with the assessed costs RC

at
(b′) from the

movement costs of the robot. Thus, the sensor displacement
costs are calculated, similarly to [19], by taking into account
the robot joints and the drive trajectory.

V. EXPERIMENTS

In this section the proposed approach is compared with
two other strategies, random viewpoint selection and an
incremental strategy, where the robot either moves clockwise
or counterclockwise around the table. The characteristics of
the random strategy are plotted in grey in all sequencing
figures, of the incremental strategy in orange. For the pro-
posed approaches three different strategies are selected, one
for n-step planning (red) and two using a greedy planning
horizon, where one has explorative behavior (green). The
curves of the simple 1-step strategy are drawn in blue. The
evaluation bases on 200 experiments with perceptions of
different scenes with varied complexity of up to 10 objects.

Figure 3 shows a sample viewpoint constellation of an
arrangement of 8 circularly aligned sensing actions and some
sample scenes of the experimental series.

Before demonstrating the perception results, the recog-
nition principle which bases on SIFT interest points is
described.

A. Object Recognition Principle

Object recognition comprises the tasks of object class
identification and pose determination. The challenges of
dealing with realistic scenes imposes high demands on the
precision of 6D object localization. In this work Lowe’s
SIFT algorithm [20] is used for determining local, scale-
invariant features in images. The application of the SIFT
algorithm on stereo images from a camera pair enables
the calculation of 6D object poses. This appearance- and
model-based approach consists of two separate stages, model
generation and Object recognition and pose determination.

Model generation is an off-line process, where the object
database is established by determining essential information
from training data. We consider a set of 100 household items
of different or alike appearance. The challenges lie in the
reasonable acquisition and efficient processing and storing
of large data sets.

Object recognition and pose determination aims at sat-
isfactory object classification results, low misclassification
rates and fast processing. The precise detection of the object
pose allows the accurate positional representation of objects
in a common reference frame which is essential for proposed
planning approach.

Both steps are extensively explained in [21]. The measure-
ment uncertainty is determined from a series of recognitions.
The shape of the covariances is assumed to be identical for
all objects, their size is dependent on the number of detected
interest points and the viewing direction.

B. Number of Iterations and Average Costs

This analysis examines the strategies with respect to the
number of iteration steps and actuation costs. The results are
plotted in Figure 4a), which compares the average number



(a) Average number of observation-planning iterations per-
formed for each experiment.

(b) Average robot movement costs when executing a viewpoint
change.

Fig. 4. Comparison of the proposed approach with the random and
incremental strategy with respect to their number of action-planning com-
binations and their execution costs.

of required iteration steps to complete the task for each
strategy. Despite that the strategy with exploration is weakest
among the proposed ones, it still outperforms the other
approaches. Less iteration steps signify that less perception-
planning tasks have to be performed and less robot actuation
is necessary.

Another crucial aspect are the costs, which are involved
for each planning concept. According to Figure 4b) which
depicts the average costs for each experiment the random
strategy with many large action steps is worst. The incre-
mental planning approach is slightly better than the proposed
with exploration in the average costs as the step width is
very small. The 1-step and n-step planning strategies without
explorative behavior are most efficient with respect to the
perception and actuation costs.

C. Object Recognition Rates

The quality of the perception sequences is evaluated in
form of recognition rates. Generally we have to look at
different rates, one with respect to the total number of objects
in the scene the other regarding all visible object. Generally,
the latter rate is higher for one-shot recognition with an
average of 72% for detecting the object class under partial
occlusions as the number of reference objects is smaller.

When referencing the ground truth data of all objects in the
scene - even fully occluded and invisible ones - about 60%
of these objects are properly recognized with respect to their
class properly. When evaluating the class and pose accuracy,
which has to be within a certain range, this rate drops to
about 38% after the first observation. These rates are fairly
constant for all strategies as the initial viewpoint is arbitrarily
chosen and the same recognition methodology is applied.

The diagram in Figure 5 shows the recognition rates for the
different strategies over the perception-planning iterations.
As the approach with exploration explicitly aims at discover-
ing unexplored areas, it is of no surprise that it outperforms
all others in the average class detection rates. In contrast,
the planning criterion, which bases on belief distributions,
targets on improving pose estimates and differentiates objects
according to their object class. One can see the slightly
steeper slope in the pose recognition rate for the 1-step and n-
step planning strategies. Generally, the recognition rates are
fairly similar for all approaches. Due to the higher number
of observations which are performed by the random and
incremental strategy, their recognition rates grow at later
iterations, while the proposed approaches often terminate
earlier.

Fig. 5. Class detection rate and recognition rate (where in addition to the
correct class the pose deviation from ground truth data is minimal also)
with respect to all objects in the scene. Invisible or occluded objects are
included in the ground truth basis.

D. Explorative Behavior

Explored and unseen volumes are explicitly modeled. The
effect of the planning strategies on these volumes are plotted
in Figure 6. As the explorative strategy explicitly aims at
reducing the unexplored volume it performs best. The strate-
gies with 1-step and n-step planning horizon which do not
intentionally reduces the volumetric uncertainty terminate
with an average of about 90% of all volume explored, the
other strategies explore almost all volume on average. The
average explored volume for the incremental and random



Fig. 6. Variation of the total explored volume for the evaluated strategies

strategy is high due to the large number of sequential
observations from different viewpoints, though.

VI. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

In this work we presented a concept for autonomous
environmental perception. The recognition of objects bases
on SIFT interest points, the active planning system uses
measures for the recognition uncertainty, the size of unex-
plored volume and robot actuation costs to improve scene
knowledge. The module is integrated into the DESIRE two-
arm mobile platform and evaluated on hundreds of test
scenes, which are composed of up to 10 objects out of
a 100-object database, which are randomly arranged on
a table. The system performed well, so we consider our
approach as a contribution towards robots that are able to
operate successfully and do useful things in real everyday
environments.

B. Future Works

In order to extend the possible range of use, future work
will have to address other object types (e. g. poorly textured,
partially transparent, shiny) which are not covered by algo-
rithms which are based on texture. Additional recognition
and localization algorithms and a deliberate fusion of their
results will be required. Again probabilistic methods will
have to play a decisive role. They also provide the appro-
priate platform to utilize a-priori knowledge like physical
constraints (e.g. objects do not interpenetrate or levitate).
Furthermore, the autonomous learning of new object models
has to be tackled to enable the service robot to cope with
realistic scenes.
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