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Abstract— In this paper we propose a novel approach for
the robust estimation of room structure using Manhattan
world assumption i.e. the frequently observed dominance of
three mutually orthogonal vanishing directions in man-made
environments. First, separate histograms are generated for
every major axis, i.e. X, Y and Z, on stereo data with an
arbitrary roll, pitch and yaw rotation. These histograms are
maintained in the fashion of quadtrees. Using the traditional
Markov particle filters and minimal entropy as metric on the
histograms, we are able to estimate the camera orientation
with respect to orthogonal structure. Once the orientation
is estimated we extract hypothesis of the room structure by
exploiting 2D histograms, i.e. X/Y , Z/Y , Z/X, using mean shift
clustering techniques. Finally, the hypotheses are evaluated with
the real data and false hypothesis are pruned. We also show
the robustness of our approach with respect to noise in real
world data.

I. INTRODUCTION

The estimation of room-structure, e.g. corridors, door
or walls, is a vital task for mapping or navigation. With
domestic robotics we face the problem of clutter and
visually weak by structured environments. Here the use
of 2D sensors like laser range scanners is limited, e.g.
if the environment is only partially known [1]. In the
last years the use of stereo cameras for perception has
become quite popular after the pioneering work of Jim
Little et al. [2] in 2000. The suitability of stereo vision for
indoor environments has been shown in various works, e.g.
VisualSlam [3], safe navigation [4] or obstacle avoidance [5].
Another trend is the use of the time of-flight-cameras, e.g.
the CSEM Swissranger 3000 [6] for this kind of applications.

The challenge with data from 2 1
2 D depth data is to cope

with noise and uncertainty due to the nature of the sensors.
The certainty of depth data from time-of-flight cameras
depends on the material (e.g. not shiny or light absorbing in
the infrared spectrum) of the environments, which usually
leads to noise in depth estimation. Depth data with stereo
vision is estimated by matching corresponding pixels (or
small patches) in the image pair. It is assumed that the true
corresponding pixels (or patches) are distinguishable from
those surrounding structure. Within the domestic robotics
domain the environments can be very ”non-discriminative”,
e.g. single-coloured walls or furniture, so it can result in a
few certain and many uncertain estimates. Certain estimates
can result from the boundaries of objects. Here the usage

Sven Olufs and Markus Vincze are with the Vienna University of
Technology, Automation and Control Institute, Gusshausstrasse 25-29 /
E376, A-1040 Vienna, Austria

(a) Financial District,
Manhattan / NY

(b) Broadway Street, Manhattan / NY

Fig. 1. Principle of the Manhattan like environments. Figure 1(a): The
structure is aligned to the three major axis, i.e. the walls are aligned parallel.
Figure 1(b) shows two Manhattan world configurations: The dominant one
is Manhattan itself, the other one is the Broadway Street which shows a
partial Manhattan-like structure.

of parametric fitting methods, e.g. the common RANSAC
based plane estimation [7], is limited due to the high
probability of false positives. Such false positives can be
plausible to fitting method because depth estimates are not
equally distributed. Another issue is that the sensor depth
resolution does not scale linearly in most stereo vision
systems. Due to the system depth estimate of far objects is
always less certain than of close objects.

Many approaches for room-structure estimation use the
concept of occupancy grids [8] or extensions to 3D, e.g.
[9]: The grid contains information on a quite primitive
level if a grid cell is a wall or ground. At this level there
is no information if certain parts of grid cells with the
label ”wall” are aligned to other ”walls” or if the ground
is parallel to other structures, e.g. a table top. This kind of
constrains is referred to in the computer vision literature
as the so-called Manhattan world assumption. I.e. the
frequently observed dominance of three mutually orthogonal
vanishing directions in man-made environments [10], see
figure 1. Many indoor environments can be considered as
Manhattan-like or quasi Manhattan-like, e.g. a couch can be
aligned to a wall or the walls within a corridor are usually
parallel to each other and orthogonal to the ground.

In this paper we propose a novel approach, for the robust
estimation of room-structure using Manhattan world assump-
tion. The approach extracts a structure which is parallel to
one of the major axis i.e. X, Y and Z. First the step of our
approach finds the initial camera orientation, namely roll,



(a) 3D Stereo Vision (b) Estimated Camera Orientation (c) Plane hypotheses (d) Final Output (after pruning)

Fig. 2. Overview of our approach for stereo vision data. Please note that the back of the couch is not extracted on purpose since its tilted.

pitch and yaw using the principle of minimum entropy in
histograms. Next we, extract hypotheses of the room struc-
ture by exploiting 2D histograms i.e. X/Y , Z/Y , Z/X using
mean shift clustering techniques. Finally the hypotheses are
evaluated with the real data and false hypotheses are pruned.
The paper is organized as follows: After discussing the
state of the art, we describe in section III the proposed
approach. Next we present experimental results, followed by
applications of the approach in robotics. Finally, we give a
conclusion in section V.

II. RELATED WORK

The literature proposes various techniques for estimating
room structure. Triebel et al [11] use a hieratical expectation
maximization method to extract planes from 3D laser range
scans. Other methods use an octree over segmentation [9],
RANSAC [12] or rely on split and merge plane strategies
[13]. A common approach is to first estimate the dominant
ground plane in the image in order to obtain the pitch angle
by exploiting the kinematics of the robot. Murarka et al [14]
use a parametric plane fit on segmented disparity patches to
obtain the camera pose. The segmentation is based on colour
and local homogeneity in the image and on exhausting
graph search. The plane fit is merged to a plane hypothesis
using graph cuts and energy minimization [15]. Graph cut
and segmentation are both computationally expensive with
O(n2) for n pixel. Yu et al. [16] use the normal vectors of
the disparity map to estimate planes by grouping similar
vector directions in the neighbourhood to planes with its
normal vector (mainly) pointing in Y-direction. The largest
plane with a dedication to the Y axis is used as an estimate.
Yu et al. assume that the ground is always the largest object
in the image. Another approach is proposed by Burschka et
al. [5] by learning the parameters of the ground plane for
re-detection. The approach is quite robust, but assumes a
ground parallel camera with very little roll rotations while
it is able to handle changing pitch.

The use of the Manhattan-World assumption is quite
popular in the computer vision literature, for instance, in
the use of multi view-reconstruction [17], [18], [19]. Gallup
et al. [17] use Manhattan-World assumption as prior for
plane sweeping i.e. using only orthogonal planes. Furukawa
et al. [19] use a similar approach for reconstructing piecewise
planar patches and Markov random field formulation for

exact planes. Sinha et al. [18] use a similar method, but with
a less strict model.

III. OUR APPROACH

The main idea of our approach is to use histograms to
extract room structure hypotheses rather than using the depth
data as voxel. One advantage of using histograms is that it
is relatively easy to estimate the Manhattan-like structure
within the data using the principle of minimum Shannon
entropy. We estimate the relative camera orientation to the
Manhattan-like structure (roll, pitch, and yaw) so that the
dominant structure is aligned to all three axes (X,Y and
Z). One disadvantage is that we lose spatial information
about the voxels i.e. post processing is needed to generate
hypotheses on the room structure on all three axis i.e. planes
aligned to the X, Y and Z axis. The hypotheses are finally
evaluated using the 2 1

2 D depth data in the fashion of plane
sweeping [17].

A. Pre-processing

The main issue with 2 1
2 D depth data from stereo vision or

time of flight cameras is uncertainty. One way to cope with
this is to use an ellipsoidal representation for uncertainty
of the individual voxels. Depending on the sensor we can
define a metric to estimate the uncertainty of the individual
voxel. For the sake of simplification we set the volume of
the ellipsoid always to 1. We use the 3D coordinates of
the individual voxels vi=1..n as centre of the ellipsoid. The
major axis the orientated to the focal point of the vision
system since we use only 2 1

2 D data. The length ai of the
major axis depends on the used sensor (see below). Finally,
we use a fixed 1:1 ratio for minor and vertical axis, the

Y

Focal Point

Fig. 3. The uncertainty of the data, shown as red ellipsoids, is approximated
using additional voxels.



length of these axes can be easily obtained due to the kown
volume and major axis length of the ellipsoid.

The mapping of the ellipsoids to the histograms is done
by approximating the ellipsoids as additional voxels, see
fig. 3: Here is the main idea to approximate the density
of the ellipsoid with additional set of voxels in the fashion
of particle filters. Since the minor and vertical axes of the
ellipsoid are fixed we only approximate the major axis with
voxels. This approximation is sufficient as histograms for
data processing are used. Additional voxels are drawn as
follows: Let m ∈ N be the level of interpolated voxels v′ =

{v−m, ..,vm} for one individual voxel v and let v j = {−m, ..,m}.
The new interpolated voxel v′ is given using the Gaussian
normal distribution as

v′ = v + aicg
1

√
2πσ2

e−
v2
w

2σ2

with cg as normalizing constant and vw =
v j

m+1 . The term
vw prevents that new voxels are drawn at the borders with
small m, e.g. m < 2. For the sake of simplicity we assume
the same σ = 1 for all ellipsoids. A similar approach has
been used by Sinha et al. [18].

1) Stereo Vision: The length ai of the major axis is
calculated as follows: First we back-project the vi voxel
to a disparity value di ∈ N of the stereo vision system.
Next we calculate the offset in the disparity space with
di = di − (1 + ci f ) where ci is the confidence of the voxel
from the stereo matching and f is a normalizing constant.
Here we assume that a small disparity value represent a
farther distance than a large one. Finally, we back-project
the new disparity value di into the Cartesian space and
let be ai the Euclidian distance of vi and the shifted back
projected disparity value. We want to emphasize that the
stereo vision does not scale linear in the conversion from
disparity values and 3D voxels.

2) Time-Of-Flight Cameras: In the case of the ToF sensor
the length ai of the major axis is calculated using the
corresponding amplitude of the individual depth data. The
length ai is approximated using a Lorentz function [7] using
the amplitude vi

a as input

ai = y0 +
2A
π

w
π

w
4(vi

a− xc)2 + w2

with A as area1, xc as centre2 , w as weight3 and y0 as offset4

of the Lorentz function. The parameters have been estimated
through a nonlinear Marquardt-Levenberg optimization and
representative ground truth data.

B. Minimum Entropy in Histograms
The main idea of our approach is to estimate the camera
orientation using the principle of minimum entropy of his-
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Fig. 4. Basic Idea of estimation using minimum entropy: Both figures
contain the same data, but with different rotation. The entropy of the
histograms in the right figure is significantly smaller than the entropy on
the left histograms.

tograms. First three independent 1D histograms for X, Y and
Z are built from an arbitrary configuration (α,β,γ) i.e. the
data is rotated with γ yaw, then β pitch and α roll. Next the
Shannon entropy H(X) of all three normalized histograms
Xx,Xy,Xz is calculated with

H(X) = −

k∑
i=1

p(xi) log10 p(xi)

where k is the number of bins of the histogram and p(xi)
is the value in the histogram at bin i. In the case of
pi = 0 for some i, the value of the corresponding summand
0log10 0 is taken to be 0, which is consistent with the limit
limp→0+ p log10 p = 0.

The Manhattan configuration estimate is obtained with

argmin(H(Xx) + H(Xy) + H(Xz)

i.e. the configuration with the lowest entropy. Similar
approaches have been used by Gallup et al. [17] for multi
view reconstruction and Saez et al. [20] for vision based
SLAM.

In practise we use a particle filter to estimate and track the
camera orientation (configuration) using 50 particles in the
(α,β,γ) state space instead of using non-linear optimizers
like Levenberg−Marquardt algorithm [7] which is typically
used for argmin in the computer vision literature. There
are two reasons we do not use non-linear optimizers: First,
with particle filters we can easily incorporate the motion of
the robot and improve the robustness of the tracking. The
second reason is that the output of the optimizers depends
on a ”good’ initialisation and can get stuck in local minima
while we initialise the particles in the Monte Carlo fashion.
In this case we favour robustness instead of accuracy.

Figure 4 depicts the overall concept: If there are parts in
the image which are orthogonal to one of the X,Y,Z axis,
i.e. Manhattan world assumption, then it is possible to find
a configuration using minimum entropy. It is not necessary
that all parts in the image are Manhattan-like or directed to
its main axis as long there is some structure orientated to
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(d) Edge grouping with hysteresis

Fig. 5. Constrained mean shift clustering on the X/Y histogram of Figure
2(a)

the major axis. Please note that fig. 4 shows the concept
for the 2D case for the sake of simplicity. We also want to
emphasize that our approach can also deal with occlusions
due to the fact we build histograms direct on voxel in
contrast to many monocular vision based approaches [17],
[18], [19].

C. Generating Plane Hypotheses

Once the camera orientation is known, we can generate
plane hypotheses from the upsampled voxel data. This is
done in three steps: First, generate individual 2D histograms
on all possible X,Y,and Z combinations i.e. X/Y , Z/X and
Z/Y . In the next step, extract line segments in the 2D
histograms and group them to planes in the last step.

The generation of the 2D histograms is straight forward:
First, an inverse rotation is applied to the upsampled
voxels using the known camera orientation. This aligns
the voxels to one of the three major axis. Usually not all
parts of an image are aligned to the major or dominant
axes. Here we assume that the majority of data is aligned
to the dominant axes. It is possible to recover all local
Manhattan configurations, but this is not feasible due to the
problem beeing NP hard. For the histograms itself we use
a resolution of 5cm per bin. Please note that the resolution
of stereo cameras does not scale linearly, but we are able to
overcome this, by using voxel upsampling .

As we use Manhattan-like environments the line extraction
can be constrained to vertical and horizontal lines only. The
extraction itself is done on all in two steps: First, we group
segments in the histogram together using the mean shift
algorithm [21] and edge grouping with hysteresis in the
fashion of the canny edge detector [22].
Mean shift itself is a procedure for locating the maxima
of a density function given discrete data sampled from that

function. In our case we use it for detecting the modes of
this density. This is an iterative method, and we start with an
initial estimate x. Let a kernel function K(xi − x) be given.
This function determines the weight of nearby points for re-
estimation of the mean. We use the Epanechnikov kernel

K(x) =

1− ||x||2 i f ||x|| ≤ 1
0 i f ||x|| > 1

on the distance to the current estimate,

K(xi− x) = ec||xi−x||

The weighted mean of the density in the window determined
by K is

m(x) =

∑
xi∈N(x) K(xi− x)xi∑

xi∈N(x) K(xi− x)

where N(x) is the neighbourhood of x, a set of points
for which K(x) , 0. The mean-shift algorithm now sets
x← m(x), and repeats the estimation until m(x) converges
to x or a the maximum of iterations is reached.

Instead of applying the mean shift on the entire 2D his-
togram, we first reduce the 2D histograms to two 1D
histograms and apply the mean shift separately (due to the
Manhattan world assumption), see figure 5. We use a pa-
rameterized Epanechnikov kernel with a size that represents
7.5cm in the real world. In the next step we use the output
of the mean shift clusters as input for the line boundary
detection using to ”other” 1D histogram: For instance we
use a X/Y histogram. We apply the mean shift on the X
1D histogram to determine the height of the line and use
the Y to estimate the boundaries of the line or lines. The
boundaries are estimated in the hysteresis fashion e.g. as
used in the canny edge detector. The algorithm assigns first

Fig. 6. Principle of the plane hypothesis generation of Figure 2(a). The
line segments of two orthogonal aligned histograms are used to generate
planes. The intersected area is the actual output. Note that it is possible that
more than one plane hypothesis is generate per one line.



labels ”no edge” (0) ”maybe edge” (1) and ”edge” (2) to each
pixel within one line. Instead of using only the pixels within
one mean shift cluster we use the maximum value within
the variance of the mean shift cluster, e.g. in a horizontal
cluster ”line” we also consider pixels that are ”above” and
”below” the line. The variance is calculated using simple
backtracking, see [21] for details. Let Tm and Th,Th < Tm
be two thresholds. Tm denotes the ”edge” threshold while
Th is the hysteresis threshold. Let qi be pixel value from the
cluster at position i and

C(pi) =


2 i f ||pi|| ≥ Tm

1 i f ||pi|| ≥ Th

0 i f ||pi|| < Th

be a function that assigns labels to the pixels p. Next the
algorithm assigns the label ”edge” to labels with ”maybe
edge” if an ”edge” pixel is nearby within the recursive
function

C′(pi) =


2 i fC(pi) = 2
2 i fC(pi) = 1∧ (C′(pi−1) = 2∨C′(pi+1) = 2)
0 i fC(pi) = 0

Finally we group all ”edge” pixels to line segments using
simple run length encoding, see figure 5(d).

Now we group the line segments to plane hypothesis. Since
each line segment is aligned with one major axis (X, Y, or
Z), we can generate plane hypotheses by projecting planes to
the normal axes of the parent 2D histograms of two axes. For
example ”horizontal ground planes” can be generated using
the X/Y and Z/Y histograms and their corresponding line
segments (for X and Y line segments with the same height
from the ground). All ”X” line segments of X/Y histogram
are projected orthogonally to the Z axis. Next we project the
”Z” line segments of the Z/Y histogram and build planes
the same way. The intersected area of two planes is used as
plane hypothesis in the fashion of plane sweeping methods
[17]. The generation of the X and Y planes is done the same
way, figure 6 depicts the overall concept.

D. Pruning Plane Hypothesis

Finally, we use a pruning strategy to remove plane hy-
potheses with no or little support of the upsampled voxels.
First, we sort the plane hypotheses f according to the joint
probability p( f ) = p(ln, lm) of the line pair ln, lm and the size
(largest first). The individual p(ln) and p(lm) result from
the mean shift clustering and are normalized weights, see
[21] for details. Next all plane hypotheses are evaluated by
reprojecting them back into the 3D state space, counting the
number of inliers per plane in RANSAC fashion. Planes with
no support count < 0.1% are then removed from the set. This
step removes 90% of all false planes. Another approx8.5%
can be removed in the fashion of plane sweeping: If a plane
with a low probability occludes the visibility of a higher one,
it is removed from the set. The visibility check is ego centred
at the focal point.
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Fig. 7. Average angle error of the tours with different levels of artificial
Gaussian noise.

IV. EXPERIMENTAL RESULTS

For our experiments we use a non-holonomic mobile robot
manufactured by Bluebotics with an additional SICK LMS
200 laser range finder mounted to its front. We use the
AIT Stereo Camera, with two b/w HDR sensors, a colour
sensor in the centre and approx. 100 degrees field of view.
Only the two left and right HDR sensors are used for
dense stereo vision, the output image is projected onto the
centre camera. The sensor is oriented approx 35 degrees
downwards woth respect to the robot’s driving direction and
mounted at a height of a 100 cm over the ground. We use
a GPU implementation of the CENSUS AIT Stereo Engine
[23] for dense stereo-data calculation at a resolution of
720x480 and using 80 disparities. The GPU implementation
of the engine enables us to work up to 120fps on a NVIDA
Geforce GTX 280 and 40fps on a MacBook Pro with an
Nvidia Geforce 9600.

We choose a typical home environment (see fig. 2) for data
acquisition using the stereo camera system and laser data.
Ground truth for roll and pitch is obtained using Nicolas
Guilbert’s [24] structure from motion toolbox5, yaw is ob-
tained from the robot pose of the laser-based self-localisation.
While structure from motion approaches determine only
relative motion we use an additional IMU for roll and pitch
initialisation. The data of all sensors is recorded at 25 frames
per seconds. All stereo data is calculated off-line from the
previously recorded images. We recorded representative six
tours through our lab with a total length of approximately
250 meters. Three tours have a Manhattan like environment
while the other ones represent a quasi Manhattan like envi-
ronment. The robot moves with an average travelling speed
of 0.65 m

s .
Figure 7 shows the average angle error for all tours
using our approach with different amounts of Gaussian
noise. One can see that the upsampling of voxels has an
impact on the noise level. The Swissranger shows faster
convergence due to the data is more dense than stereo vision.

Finally, we consider the runtime of our approach: Table
I depicts the runtime for various configurations. Our code
is run on 2.4 GHz QuadCore PC, while the code is not

5http://www.maths.lth.se/matematiklth/personal/nicolas/
octave-vision.html



TABLE I
Average Runtime of our approach using histograms with 1024 bins. The
time measurements are normalized for 100000 voxels and m = 3 upsampling

voxel upsampling 2ms
camera orientation estimation (50 particles) 38ms
2D Histogram generation 1ms
Mean shift clustering 5ms
Edge Grouping with hysteresis 1ms
Plane hypothesis generation 2ms
Plane hypothesis pruning 21ms
Sum 72ms

optimized and uses only one CPU (except for the particle
filtering). The extension of the code to multithreading, i.e.
using multiple CPUs, is straightforward. One can see that the
bottleneck of our approach is the calculation of the entropy
due to the usage of histograms and particle filters. Using
smaller histograms will result in a lower constant runtime,
but will also influence the accuracy negatively.

V. CONCULSION
In this paper we presented a new robust method for estimat-
ing planes in 2 1

2 depth data in a Manhattan like environment.
Once the orientation is estimated we calculate the dedication
of every voxel to the 3 major axes and we can extract planes
using histogram voting. We also showed that the method
is robust to noise using an upsampling technique, based on
the a-priori known uncertainty of the voxels. Our methods
works with dense stereo vision and time-of-flight cameras
(SR-3000), but can also be applied to 3D laser scanners or
ladar sensors.
At this point we want to emphasize that our method is only
appliable to 2 1

2 D depth data and can not be applied to dense
3D data: Even if many false hypothesis are generated, they
can easily be pruned due to missing support of voxel data i.e.
only one sensor reading per 2 1

2 point. Our next steps will be
to aim for an extended model to extract planes from a single
view based on graph cuts [15].
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