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Abstract— Our work focuses on semantic place classification
and on navigation of outdoor agricultural robots equipped with
a 3D laser sensor. We classify the environment semantically
and use this information for monitoring, mapping and high
level navigation planning. On a field limited classes of locations
like crop rows, open field as well as the beginning and the
end of rows are expected. These different classes of locations
and the transitions between them can be encoded using a
stochastic automaton. To calculate the probability distribution
over its states and associated variables, we are using a particle
filter. This allows us to easily add further sensor data and
knowledge about the environment. Currently we determine the
probability to be in a state by using patterns based on 3D
laser sensor data and compare them with state specific patterns.
Further we are using the knowledge about the approximate row
length. Situations that cannot be predicted this way force the
automaton to switch to an error state which stops the robot
immediately. The experiments conducted using the simulation
environment Gazebo and real maize field data have shown that
we are able to classify the environment with rates of around
97%. If we compensate a short time delay the classification rate
becomes nearly 100%.

Index Terms— semantic mapping and place classification,
semantic robot vision, agricultural robotics

I. INTRODUCTION

In agricultural robotics and for the automatic guidance of
tractors mostly RTK-GPS based approaches for localization
and navigation are used. But these approaches have some
limitations: the vehicles need to be taught to the field, or have
to use previously recorded tracks or seeding positions, e.g.,
from drilling vehicles. The RTK-GPS devices are also very
expensive. Besides the pose of the autonomous vehicle the
environment around it is of interest. If the vehicle is able to
recognize its surroundings and to classify it, it improves the
localization, navigation and mission planning. If navigation
is based solely on position, classification of the surroundings
can also be used to monitor the execution of plans.

Our work focuses on the localization and navigation of
such autonomous vehicles in outdoor agricultural environ-
ments. Especially the case of row cultivations is of interest.
It is a part of the publicly funded project BoniRob [10],
a cooperation of academic and industrial partners, with the
goal to develop an autonomous mobile agricultural robot.
The key objective of BoniRob is the autonomously repeating
phenotyping of individual plants on plant breeder’s lots at
different days, to track the growth stage and the condition of
the plants. For that, a robust robot platform is needed which
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(a) BoniRob Platform

(b) Semantic Field Map

Fig. 1. The pictures in (a) show the BoniRob platform on the maize field
corresponding to the map underneath. The pictures were taken at the DLG
Field Days 2010. The diagram in (b) shows an example of a semantic map
of a maize field with a row length of around 6 m. The blue line indicates
the path traveled by the robot; the colored circles the semantic map. The
positions of these circles correspond to the position of the spot in front of
the robot sensed by the 3D laser sensor.

is able to navigate autonomously on unknown fields. The
robot platform developed by the project partners is shown
in Figure 1(a). It has four individual steerable and drivable
wheels and is able to adjust the height clearance of the
chassis as well as the track width. This enables the robot
to adjust to varying field conditions.

We think for the localization and navigation of such a
robot and for many other agricultural robotic applications,
an approach which does not only rely on detailed previous
knowledge about the crop positions is more sufficient. For
example, this is the case on small fields which are not
seeded with huge machines equipped with high precision
but expensive GPS devices. The robot should also run on
previous unknown fields. Due to that, we pursue an approach
which builds-up a topological semantic map of the field
(see Figure 1(b)) and uses these information for navigation
planning. To plot the semantic maps a high precise GPS
receiver is used, but for the navigation planning and the



monitoring only semantic information are required. Currently
we localize the robot according to the kind of environment
it is in, but the semantic information could also be used to
support the positioning.

On a field we are expecting a limited number classes of
locations like crop rows, open field as well as the beginning
and the end of rows. These locations can be encoded using
a probabilistic state automaton. The key idea of this paper is
to determine the semantic state of the robot based on such
an automaton which describes the transitions between the
different classes of locations. We calculate the probability
to be in a specific state by using a particle filter. This
approach enables us to easily add further sensor data and
knowledge about the environment. Each particle contains
a state-id and the probability to be in this state as well
as additional information like the distance traveled since
the last state transition. The transition probabilities between
the states were experimentally identified and depend on the
movement of the robot.

To classify the environment, we determine simple pat-
terns based on laser sensor data describing the environment
and compare them with predefined state patterns. All state
patterns together form the state pattern database, which
can be easily replaced by other databases. If available, we
are additionally using the approximate row length and the
traveled distance as an additional information for weighting
the particles. To encode unpredictable situations, the automa-
ton uses an error state which stops the robot immediately.
This is a step towards a more robust approach against
malfunctions and a more safe system. All situations that
cannot be explained by our semantic classification end to the
error state. Therefore the robot only moves in situations that
have been foreseen explicitly by the application developer.
Autonomous navigation in unclear states cannot be allowed
for safety-critical applications like ours.

This paper is organized as follows. In section II related
work dealing with semantic place classification, mapping and
localization are discussed. Our semantic place classification
and mapping algorithm is presented in section III. Section IV
shows the experimental results. The paper closes with con-
clusions and future work in section V.

II. RELATED WORK

Semantic mapping and classification of places is becoming
a big issue in mobile robotics and is of interest in a wide
variety of robotic applications. In the last years, several
authors considered the problem of adding semantic informa-
tion to places. For example Buschka et al. [1] have used a
virtual sensor to identify rooms using range data. Torrabla et
al. [11] presented a context based vision system for place and
object recognition. They aim to identify familiar locations,
to categorize new environments and use that information to
provide contextual priors for object recognition. Therefore
they used low-dimensional global image representation and
trained their system with over 60 in- and outdoor locations.
Another approach for location estimation was presented by
Oore et. al. [8]. They trained a neural network that maps

locations into likelihood distributions across possible ultra-
sonic readings. Kuipers et al. [4] used bootstrap learning for
place recognition which does not need any prior knowledge
of its sensors, effectors or the environment.

Besides using semantic information for object or place
recognition, these information can also be utilized to build
and interpret maps. Nüchter et al. [7] proposed a 3D mapping
algorithm for mobile robots using a high resolution 3D
laser sensor and coarse scene features like walls and floors
in buildings. More delicate objects are detected by trained
classifiers. Another work using a 2D laser sensor and a
mobile robot to build semantic annotated maps was presented
in [2]. They used and compared a hand-crafted and a learning
classifier to generate indoor grid maps and enhance these
maps with semantic information.

Approaches to improve the localization of a mobile robot
in a domestic environment using semantic information were
proposed by Rottmann [9] and Mozos [5]. They used super-
vised learning and boosting for semantically labeling differ-
ent locations. For that they trained a classifier using features
extracted from vision and laser range data. Afterwards they
applied a Hidden Markov Model (HMM) to increase the
robustness of the classification.

In contrast to the above described approaches, our algo-
rithm is using a particle filter, which enables us to easily add
further information describing the state as well as additional
sensor data. To classify the states, we distinguish very easy
and fast to calculate patterns based on 3D laser sensor data
and compare them with an exchangeable pattern database.
Due to that, we can easily switch, e.g., between the detection
of one or two rows. We also defined an error state to deal
with unpredictable and unforeseen situations, to make the
approach more robust against malfunctions.

III. SEMANTIC PLACE CLASSIFICATION AND MAPPING

A. Field Partitioning

By considering an agricultural field one sees that it can
be partitioned into a limited number of semantic locations.
Due to that, we partitioned the field into six different classes:
open field, crop rows, row gaps as well as the begin, the end
and the side of the rows (see Figure 2(a)). We define these
locations plus an error state as the state set

S = {open field, row, row start, row end,

row gap, row side, error}.

The row gap state indicates missing plants in rows and is
closely related to the row class. If the field is not seeded
in rows, the row and row gap class can be replaced by
other location classes. Because our robot can adjust its track
width it is able to drive over one or over two rows. Due of
that, the row and the row gap locations can show different
number of rows. The number and classes of locations depend
on the application the developer does consider. A possible
extension of the field partitioning is to break down open field
into headland and off-field, but this is not required for our
application.



(a) Semantic Field Partition

(b) Stochastic Field Automaton A

Fig. 2. The semantic field partitioning in (a) shows our proposed
segmentation of a typical row cultivation. The dashed square in front of
the robot displays the spot sensed by the 3D laser sensor. (b) shows the
automaton A which describes the field partitioning and transitions between
the field partitions. The additional error state is used for unpredictable
situations, e.g., if an obstacle is sensed. In each state there is a certain
probability to switch into this error state.

In our case we are aiming to navigate autonomously over
row cultivations, e.g., maize. While the robot is traversing the
rows it should follow them until it reaches the end of the rows
followed by a turn on the open field. Afterwards it searches
for the begin of a row and starts the row following again.
Using the semantic place classification the robot is able
to derive navigation instructions to execute this navigation
plan. Besides for generating navigation instructions the place
classification can be used to monitor the navigation. E.g., a
turn maneuver should be only carry out, if the robot is on
the open field.

B. Semantic Place Classification

As Figure 2(a) shows only a limited number of transitions
between the different states are possible. These states and
the possible transitions between them are encoded using
the probabilistic state automaton A (see Figure 2(b)). A
consists only of transitions between states which are possible
according to the semantic field partitioning and reasonable
for the navigation. For example, the robot should not drive
from row side into row. To deal with such circumstances
and other not predictable situations we implemented an
error state. If this state is reached the robot should stop
immediately until the situation is cleared.

The state probabilities and transition probabilities between
the states were determined by using a large number of
example data recorded using a simulation environment. For
that, we vary field parameters like the row length, the

(a) Average State Probability Distribution

(b) State Transition Probabilities for Amove

Fig. 3. The diagrams (a) and (b) show the experimentally determined state
and transition probability distributions. Astay is not displayed because the
probabilities to stay in the same state are 100%. The probabilities for the
error state are also not displayed because they cannot be determined by
experiment.

plant height, the gap probability and the number of rows.
Two different state automata Astay and Amove, similar to
the approach in [9], were determined. Astay indicates the
transition probabilities if the robot stays at the same place
and Amove if the robot moves. Figure 3 shows the average
state probability distribution and the transition probabilities
for Amove. For Astay the probability to stay in the same
semantic location is set to 100%. To all of the states of both
automata a certain probability to switch into the error state is
added. We defined this probability uniformly distributed over
the states and used 10% in our experiments. By changing
these percentage we can influence the probability of error
detection.

The probability distribution over the states is calculated
using a particle filter with particle injection. Each particle in
the filter contains a state-id sid ∈ S and an importance factor
w ∈ [0,1], but can also contain additional information, like
the distance traveled since the last state switch of the particle,
which are used in the observation model. For calculating the
probabilities, the standard particle filter equation

bel(xt) = η p(zt ,xt)
∫

p(xt |xt−1,ut−1)bel(xt−1)dxt−1

is used. With x, the importance factor distribution, z, the
measurements, and u, the robot motion. u is set to stay
or move depending on the robot movement. Depending on
u, Astay or Amove is chosen to calculate the motion model
p(xt |xt−1,ut−1). In the observation model p(zt ,xt), the prob-
abilities of the sensor measurements are multiplied. For the
start distribution of the filter and for the injection of new
particles the state probability distribution in Figure 3(a) is
used. The particles change their sid in the sampling step of
the particle filter each time a new velocity observation is
received. These observations should be time-equidistant. For
this state switch the transition probabilities of Astay respec-



tively Amove are used. In the measurement step the particles
weights are recalculated. These weights are determined using
the probability of a measurement according to the current sid .
Currently we are using a 3D laser sensor and the approximate
row length for the particle weighting.

This probabilistic approach enables us to easily add addi-
tional information by using further sensors in the measuring
step, like vision or GPS. If we would only use the probability
of the states a HMM approach is sufficient, but we would like
to be able to use further multi modal distributed information.
In such a case a particle filter gives us the freedom to do
so. If required, additional variables are added, like the GPS
position or the traveled distance since the last state switch.
But many more are imaginable. The number of particles in
the filter depended on the number of additional variables. In
our experiments we used 200 particles.

C. Place Classification using a 3D Laser Sensor

In this section the pattern detection and environment
classification using a 3D laser sensor are described. Our
robot is equipped with a low resolution 3D laser sensor with
29x59 pixels. It is mounted on the front of the robot and is
pointing towards the ground with a pitch angle of around 45◦.
By using this sensor we determine simple environment
describing patterns. For calculating these patterns, we detect
the ground plane using the RANSAC algorithm. The plane
detection algorithm was already described in the previous
publication [12]. Afterwards we transform the point cloud
into the plane coordinate system and place a squared grid of
20x20 cells and a side length of 2.0 m on this plane. For each
grid cell the maximum height of the points above the ground
plane is determined and a binary image using a fixed height
threshold of 0.075 m is calculated (see Figure 4(a)). Using
the measured plant height, this threshold could be adjusted,
but our experiments had shown that this fixed threshold
works fine for all of our tested cases with plant heights
between 0.15 and 1.5 m.

To classify the state we compare the binary images with a
pattern database. In this database for each state — except the
error state — a number of patterns are defined. Figure 4(b)
shows an example pattern database. These patterns have to
be aligned to the application. E.g., in maize row cultivations
the row displacement is standardized to 0.75 m. This enables
the robot to detect if the field looks like as expected. A
big advantage of this approach is, that we are able to
easily exchange or create new databases, for example if
we would like to drive over two instead of over one row.
For each of the patterns in the database we automatically
calculate some additional variants by translating and rotating
them. These whole database is correlated with the currently
detected binary image using sum of squared differences.
Finally, the maximum of the correlation for each state is
determined. These maxima are used as the probabilities in the
measurement step. For the error state a constant correlation
value of 0.5 is used. Figure 5 shows the correlation values
of an example run and the resulting state distribution of the
particle filter.

(a) Pattern Calculation

(b) Pattern Database

Fig. 4. The scheme in (a) shows the steps of the laser pattern calculation.
First a grid is placed on the sensed ground. Afterwards the points are
projected on this grid. Finally, we determine a binary image by comparing
the maximum values of each cell with a fixed height threshold of 0.075 m.
This images are correlated with a pattern database. Table (b) shows a subset
of this database. For each state of S — except for the error state — a
set of patterns is defined. For the states row, row start, row end and row
gap different patterns for one and two rows are used. Depending on the
application different subsets of this database can be chosen.

(a) Pattern Correlation

(b) State Probability Distribution

Fig. 5. The diagrams (a) and (b) display the pattern correlation and state
probability distribution for a typical run over a row, followed by a turn on
the open field and starting row following again.



Fig. 6. Row length weighting functions for the different field locations
and an estimated row length of 6 m, with a high certainty.

D. Particle Weighting using the Row Length

If many plants are missing in a row, such gaps can look
similar to row end or row start. To improve the semantic
classification we use the knowledge about the approximate
length of a row and add an additional variable to the particles
which cumulates the driven distance. This variable gives
us a distribution over the driven distance for all particles
in the same state. The particles are weighted using the
driven distance and the estimated row length. Of course, this
weighting is only possible, if the approximate row length is
known. But the row length can be easily measured using the
robot, e.g., by marking the first row end by the operator.

For each particle the weights using the row length are
calculated as follows. If the sid of the particle equals to
open field or row side we set the distance variable to 0
and cumulate the driven distance in all other cases. In the
measurement step the weight of the particle is multiplied with
the calculated weight using the the driven distance variable
and the functions shown in Figure 6. These functions depend
on the row length and the uncertainty about it.

IV. EXPERIMENTS

The goal of the experiments is to demonstrate that our
approach provides a robust localization of an agricultural
robot on a field in a semantic manner. The experiments were
conducted using the BoniRob platform. For environment
sensing we used the low resolution FX6 laser sensor [6],
which was already introduced in the previous publica-
tion [12]. The proposed algorithm has been implemented
and tested using the simulation environment Gazebo [3] and
was evaluated using real field data. Figure 7 shows these
testing environments. The simulation environment allows us
to use different field setups and to record a large number of
example data. Using this data we were able to derive the state
and transition distributions. Because our use case focuses on
fields of plant breeder’s we used fields with a row length of
around 6 m, but we tested our algorithm also on fields with
longer and short rows, receiving similar results. To evaluate
the results hand-crafted ground truth data for the simulation
environment as well as for the real maize field were used.

(a) Simulated Field (b) Real Maize Field

Fig. 7. Testing environments

TABLE I
STATE ESTIMATION RESULTS

Pattern Particle Particle
field type gaps Correlation Filter Filter + Row

[%] [%] Length [%]
real field without 93 96 97
sim. field without 94 96 97

some 83 85 90
many 59 62 82

The result of the classification are shown in Table I.
Using the simulation environment we performed our tests
driving over one and over two rows simultaneously. Also,
we used different field setups with no, some and many gaps
in the rows. The real field data (see Figure 7(b)) does not
show any gaps, so we just got results for no gap situations.
Table I shows the average results of several test runs with a
few thousand laser scans. The table compares the results of
the classification using pattern correlation, the particle filter
with pattern correlation, and the particle filter with pattern
correlation and the row length measurement. In both cases
we used 200 particles.

For the simulation and real world experiments we received
almost the same results. If no gaps are shown in the rows
the pattern correlation yields good results. The more gaps the
classification decreases, because the gaps are false classified
as row end or row start. Using the particle filter the classi-
fication rate increases. If there are many gaps the additional
knowledge about the row length increases the classification
rate.

Because there is a short time delay the table misleads
about the real classification quality. The more state switches,
the more this circumstance takes effect. This gets more obvi-
ous if the gap number increase. In Figure 8 one can see these
delay for an example state sequence. The offset between
the ground truth and the classification data is approximately
constant. These offset is varying slightly because of the
low pass nature of the particle filter and subjectiveness of
the ground truth data generation. Also, there is a smooth
transition between two field locations. By determine the
average offset and shifting the particle filter sequence the
classification rate increases to nearly 100%. This is sufficient
enough for navigation.

If we consider the sequence of states and filter out the
states which are only detected for one or two time steps we
are able to derive high level navigation commands using the
semantic place classification. Figure 9 shows two resulting
maps of a simulation and a real world experiment. To plot



Fig. 8. The Figure shows a detected state sequence using the particle filter
and the corresponding state sequence of the ground truth data. For each
state switch a delay of the particle filter can be recognized.

(a) Simulated Field (b) Real Maize Field

Fig. 9. (a) shows the resulting semantic map using a simulated field with
rows of 5.5 m length. The small green points display the plant positions. In
this experiment the robot droves over one row. (b) shows the semantic map
of a real maize field corresponding to the image in Figure 7(b) and driving
over two rows.

these maps we localized the robot using a Kalman filter
fusing GPS, odometry and IMU data.

We also did some tests concerning the error detection
using the error state. This state was reached several times
in situations where the robot turned in the middle of the
rows or when a person stepped into the area sensed by the
laser sensor. But a qualitative evaluation has not yet been
conducted, but will be done.

V. CONCLUSIONS AND FUTURE WORK

A. Conclusions

In this paper, we presented a novel approach to classify
different places in an agricultural environment. For that,
we partitioned the field into different classes of semantic
locations and used a stochastic automaton describing the
relations between them. Using this automaton and a particle
filter we determine the probability to be in one of these
semantic locations. This approach can be used to improve
the localization, navigation and mission planning as well as
to monitor the execution of plans. To deal with unpredictable
situations, we added an error state. This error state is a
step towards a greater robustness against malfunctions. We
are using a 3D laser sensor to determine fast and easy to
calculate patterns. These patterns are used to classify the
semantic locations. We compare these patterns with a pattern
database, which can be easily replaced by other databases.
For example, when the robot should drive over two rows

simultaneously instead of over one row other patterns for
row classification are required. Our approach allows us to
easily add additional sensor data or knowledge about the
environment. Such knowledge could be the row length or
the field borders.

Our algorithm has been implemented and tested on a
real robot as well as in simulation. The experiments have
shown that we are able to classify the environment with
classification rates of around 97%. If we compensate a short
time delay this rate becomes nearly 100%, sufficient for
navigation planning.

B. Future Work

Because our work is still in progress there are many ideas
and things to do. For example, we would like to compare the
particle filter approach with a HMM. Currently we are using
experimentally specified transition probabilities. Learning
these probabilities online is a future topic, also the learning
of the state pattern is of interest. Because we are using an
omnidirectional robot it may improves the classification if
we distinguish between more different kind of movements.
Also, we are currently working on the state classification
using further sensor data and additional knowledge like a
vision sensor or the field borders. Further, more analyses
have to be done, e.g, how reliably errors can be detected.
And of course a further big issue is to integrate the semantic
classification in the positioning of the robot.
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