Acting and Interacting in Natural Environments

Danica Kragic, Jeannette Bohg, Dan Song, Javier Romero, Matthew Johnson-Roberson and Gabriel Skantze

> Centre for Autonomous Systems Computer Vision and Active Perception Laboratory KTH, Stockholm, Sweden

IROS 2010 Workshop: Semantic Mapping and Autonomous Knowledge Acquisition, Taipei, Taiwan

A Point Cloud! And Now?

- From Stereo to Object Hypotheses
- Uncertanties

"Scene Representation and Object Grasping Using Active Vision", Gratal et al., IROS Workshop 2010

D. Kragic et al. (KTH Stockholm) Acting and Interacting in Natural Environmer

How do we Plan Grasping and Manipulation under Uncertainty?

- Example Tasks:
 - Prepare the dinner table!
 - Pour me a cup of coffee!
 - Clean the table!
 - Unload the dishwasher!
- \blacksquare Partially unsolved \rightarrow challenges
- Robot needs to understand the environment (human activities, obstacles, objects and their poses etc.)
- Fill in the gaps in the knowledge e.g. scene model

Recognition of Objects and Pose Estimation

The Necessity of Geometric Scene Understanding

- Example Tasks:
 - Prepare the dinner table!
 - Pour me a cup of coffee!
 - Clean the table!
 - Unload the dishwasher!
- Collision detection, reachability
- Pre-grasp manipulation, pushing objects in the scene
- Placing things at certain positions
- Free and occupied spaces need to be known

Multi-Modal Scene Exploration

- "Strategies for Multi-Modal Scene Exploration", IROS 2010
- Predict scene structure of unobserved spaces from the observed space
- Confirmation of this prediction through haptic exploration
- Scene representation:
 Occupancy Grid from Initial Stereo Reconstruction
- Scene prediction: Gaussian Processes

An Example on Synthetic Data

(a) Ground truth (b) Measurement (c) Prediction (d) One Row Predicted

Figure: Example for the prediction of a 2D map from camera measurements using GPs.

- Prediction through a Gaussian Process
- Sampling of Known Grid Cells
- Squared Exponential Covariance Function

Exploration Strategies Compared

Goal: Minimise the number of explorative actions

- Spanning Tree Coverage
- Each cell gets explored once

Figure: Occupancy Grid After 250 Measurements

- Active Learning Scheme with PRMs
- Minimise the uncertainty in the scene

Figure: Occupancy Grid After 250 Measurements

Demonstration on the Robot

See www.csc.kth.se/ \sim bohg/IROS2010Grasp.mp4

Experimental Results

- 1 Gaussian Process produces a valid scene prediction
 - Task: Classifiy each grid cell to be empty or occupied
 - Classification Performance in Occupancy Grid: 77%
 - Classification Performance in Predicted Map: 91% = Increase of 14%
- 2 Active Learning scheme produces a better scene prediction early on in the exploration process

10 / 27

Scenes for Task Planning and Execution

- So far:
 - Scene model suitable for planning manipulation and grasping
 - Free and occupied spaces
 - Representation of known and unknown objects
- Example Tasks:
 - Prepare the dinner table!
 - Pour me a cup of coffee!
 - Clean the table!
 - Unload the dishwasher!
- Given these tasks, grasps fulfilling specific constraints required
- \blacksquare One way: Learn from humans \rightarrow Programming by Demonstration

Learning Task Constraints for Robotic Grasping

- Correspondence problem in imitation learning How to map the human grasp to the robot hand?
- Task constraints:

Characterize task requirements Can be independent of embodiment

If task can be recognised from human demonstration, then this task can be performed by a robot through its own means!

A Graphical Model for Learning Task Constraints

"Learning Task Constraints for Robot Grasping Using Graphical Models", Song et al., IROS 2010

- Task label T
- Object Features O
- Action Features A
- Constraint features *C*
- Bayesian Network (BN) for modelling joint distribution of these variables
- Training BN with labeled training data
 - 1 What is the task the human is doing?
 - 2 Given a task, how should this object be grasped?
 - 3 How to perform for example pouring?

Given a task, how should this object be grasped?

How to perform pouring?

Goal-directed imitation:

Achieving same task based on robot's own motor capabilities.

From Synthetic to Real Data

- System on learning task constraints has been shown to work on synthetic data
- Future Goal: Apply it to Real Data
- Needed:
 - 1 Object features e.g. 2D/3D visual respresentation
 - 2 Action features \rightarrow observation of human hands

16 / 27

Real-Time Hand Pose Estimation

Real-Time Hand Pose Estimation

See www.csc.kth.se/~jrgn/2010_ICRA_rkk.mpg

Database Composition

- Synthetic images generated with PoserTM
- 5 timesteps of 31 different grasp types
- 648 viewpoints
- The images include a prototypical object in order to include typical occlusions

Hand tracking system

- Appearance Likelihood
 - 1 Skin-color hand segmentation
 - 2 HOG computation
 - 3 Database Nearest Neighbor search based on HOG
 - 4 Appearance Likelihood: Gaussian weight based on HOG distance for NN
- Temporal Likelihood: Kernel density estimation based on previous frame
- The likelihood of each pose is the product of temporal likelihood and appearance likelihood

J .Romero et al., Hands in Action: Real-Time 3D Reconstruction of Hands in Interaction with Objects, ICRA10

Improving temporal likelihood

- 1 The temporal likelihood should encapsulate human dynamics
- 2 Human demonstrations of the grasps in the database were recorded with a magnetic tracker
- 3 The mapping of those demonstrations to a lower dimensional space can be used to predict the next frame pose
- "Spatial-Temporal Modelling of Grasping Actions" Romero et al., IROS 2010

A Short Re-Cap of the Talk

- So far:
 - Scene model suitable for planning manipulation and grasping
 - Free and occupied spaces
 - Representation of known and unknown objects
 - Task model taught by a human demonstrator
- \blacksquare Vision cannot give us everything! \rightarrow wrong scene segmentation, wrong labels
- Can we bootstrap scene understanding by human input?

21 / 27

Enhanced Visual Scene Understanding through Human-Robot Dialog

See www.csc.kth.se/ \sim bohg/Enhanced.mp4

22 / 27

How is the scene segmentation refined?

- Initial Scene Segmentation
- Questions:
 - 1 | can see *n* objects. Is this correct?
 - 2 Which segment is incorrect?
 - 3 How are the objects in the wrong segment positioned?

"Enhanced Visual Scene Understanding through Human-Robot Dialog", Johnson-Roberson et al, AAAI Fall Symposium 2010 ICRA 2011 Submission

Which segment is incorrect?

- Segment analysis: point and colour distribution
- Observation: Single objects are homogenous in their attributes
 → Undersegmented Regions are not → Captured by Entropy
- SVM to classify incorrect segments based on Feature Vector with Entropy Values
 - 264 segments in the database (127 incorrect, 137 correct)
 - Training on 25 incorrect and correct examples; Testing on 214 examples

■ Area under ROC Curve: 98%

How are the objects in the wrong segment positioned?

- Query the user
- Three options:
 - 1 On top of each other
 - 2 Next to each other
 - 3 In front of one another
- Split the bounding box along the user specified axis
- Re-label initial segmented points and re-segment in an energy minimisation framework

"Mechanical Support as a Spatial Abstraction for Mobile Robots", Sjöö et al., IROS 2010

Human in the Loop

How much does the Initial Segmentation improve?

Conclusion

- Example Tasks:
 - Prepare the dinner table!
 - Pour me a cup of coffee!
 - Clean the table!
 - Unload the dishwasher!
- Vision is hard!
- Grasping is hard!
- Scene understanding through
 - Segmentation, Recognition and Classification
 - Multi-Modal Interaction (Speech, Haptic, Vision)
- Markerless understanding human actions
- Bayesian Learning for Modelling of Complex Tasks