Semantic Place Classification for Autonomous Agricultural Robots

Authors:Ulrich Weiss and Peter Biber
Corporate Research, Robert Bosch GmbHDate:10/22/2010

Overview

- Background and Motivation
- → Semantic Place Classification
- → Experiments
- → Future Work

- → State of the art in automatic guidance of agricultural machinery
 - Highly precise but expensive GPS devices for navigation
 - Guidance of huge machinery
 - Need to teach vehicle to field
 - Suitable for plowing, seeding and harvesting
 - Not suitable for individual plant treatment and fully autonomous navigation

CR/AEG-Weiss | 10/22/2010 | © Robert Bosch GmbH 2010. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

→ Our focus

- Autonomous navigation of "small" agricultural vehicles
- Individual plant treatment
 - Conduct the right treatment, at the right place and at the right time
 - Selective phenotyping
 - Selective crop harvesting
 - Selective spraying
 - Selective fertilization
 - Selective weeding

- → Our focus
 - Autonomous navigation of "small" agricultural vehicles
 - Individual plant treatment
 - Conduct the right treatment, at the right place and at the right time
 - Selective phenotyping
 - Selective crop harvesting
 - Selective spraying
 - Selective fertilization
 - Selective weeding

Hey Joe, you look better today! You have grown 2 cm since last week.

- → Our focus
 - Autonomous navigation of "small" agricultural vehicles
 - Individual plant treatment
 - Conduct the right treatment, at the right place and at the right time
 - Selective phenotyping
 - Selective crop harvesting
 - Selective spraying
 - Selective fertilization
 - Selective weeding
 - Reduction of fertilizers and pesticides
 - Increase crop yield
 - Need for
 - Automation
 - Environment sensing

→ BoniRob Project (funded by the German Agricultural Ministry) Autonomous crop scout for individual plant phenotyping Academic and industrial partners Localization and Navigation Robert Bosch GmbH **Phenotyping Sensor System / Plant Cultivation Field Robot** University of Applied Science Osnabrück Amazonen-Werke H. Dreyer GmbH & Co. KG

CR/AEG-Weiss | 10/22/2010 | © Robert Bosch GmbH 2010. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

- → BoniRob use case
 - Row cultivations
 - Previously unknown fields
- → Sensors for Navigation
 - No expensive GPS device
 - 3D lidar sensor
- Localization of the robot
 - Metric localization
 - According to its environment
 - Semantic place classification
 - Partition field into semantic classes of places
 - Probabilistic approach

Semantic Place Classification : Partitioning

→ Place partitioning

CR/AEG-Weiss | 10/22/2010 | © Robert Bosch GmbH 2010. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Semantic Place Classification : Partitioning

→ Transitions between the places

CR/AEG-Weiss | 10/22/2010 | © Robert Bosch GmbH 2010. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

- → Applications
 - Navigation commands
 - Monitor execution of the navigation
 - Improve metric localization
- Place classification
 - Calculate probability over all states
 - Transport probabilities using the automaton
 - Reweight the probabilities using sensor measurements
 - Use further state independent information

- → Applications
 - Navigation commands
 - Monitor execution of the navigation
 - Improve metric localization
- Place classification
 - Calculate probability over all states
 - Transport probabilities using the automaton
 - Reweight the probabilities using sensor measurements
 - Use further state independent information

=> Particle filter

- → Particle filter
 - Particles **x**_t:
- State id

- ...

- Importance factor
- Additional information
- Traveled distance
- Turned angle
- Sampling $p(x_t | u_t, x_{t-1})$
 - State transition using robot movement u_t and state automaton
- Measurement $p(z_t | x_t, k_t)$
 - Reweight probabilities using sensor measurements z_t and knowledge k_t

- → Sampling: $p(x_t | u_t, x_{t-1})$
 - Transport particles using the state automaton and the robot movement u_t

=> calculate new state id

- Transition probabilities for different movements:
 - Robot stays: A_{stay}
 - Robot moves: A_{move}
- Experimentally determined probabilities

- → Measurement: $p(z_t | x_t)$
 - Calculate probability of measurement depending on the state id
 - Currently usage of 3D lidar sensor
 - Sensing ground ahead of robot
 - Low resolution (59x29 rays)
 - Determine simple patterns and compare them with expected patterns

- → Pattern matching
 - Pattern database
 - Defines several pattern for each class
 - Application specific
 - One or two rows
 - Row displacement
 - Easily exchangeable
 - Probability calculation
 - Compare detected pattern with whole database
 - Calculation of correlation (normalized SSD)
 - Probability = Maximum correlation for each class

CR/AEG-Weiss | 10/22/2010 | © Robert Bosch GmbH 2010. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

→ Pattern matching

CR/AEG-Weiss | 10/22/2010 | © Robert Bosch GmbH 2010. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

→ Pattern matching

CR/AEG-Weiss | 10/22/2010 | © Robert Bosch GmbH 2010. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

→ Measurement: p(z_t | x_t, k_t)

- Calculate probability of measurement depending on the state id and additional knowledge k_t
- **k**_t: row length, turn angle, field borders, ...
- Use knowledge about estimated row length
 - Distinguish row end and start from row gap
 - Add traveled distance variable to particles
 - Cumulate the traveled distance in row and row gap state
 - Reset traveled distance on open field
 - Calculate measurement probabilities
 using state specific functions

Semantic Place Classification : Error Detection

- → Deal with not predictable situations
- Improvement of robustness and safety
- → Possible errors
 - Obstacles like persons
 - A turn in the row state
 - Wrong row displacement
 - Not allowed transition
- Add error state to automata
 - Connect each state with **error** state
 - Sampling step: Fixed probability to end in the error state
 - Measurement: Fixed correlation value

CR/AEG-Weiss | 10/22/2010 | © Robert Bosch GmbH 2010. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Experiments

- → Experimental setup
 - Real and simulated Robot
 - Ground truth localization using RTK-GPS, IMU and Odometry
 - Test fields with different complexities
 - Plant height: 0.1 1.5 m
 - Row length: 5 40 m
 - Gap probability
 - Weed density

CR/AEG-Weiss | 10/22/2010 | © Robert Bosch GmbH 2010. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Experiments

- → Results
 - <u>Video</u>
 - Classification rates
 - Similar results for simulation and real field experiments
 - Around 96 % in average
 - Nearly 100% for state sequence
 - Error detection
 - Error state is repeatedly reached in error situations
 - More evaluations have to be done

Future Work

- → Do more analysis for error detection
- Use additional sensor data and knowledge
 - Vision
 - Low resolution GPS and field borders
- → Use semantic classification to improve metric localization
- → Adjust transition probabilities online
- → Distinguish between more different state automata

Thank you for your attention!

CR/AEG-Weiss | 10/22/2010 | © Robert Bosch GmbH 2010. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

