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Abstract 

To study the mechanism of plant root water uptake, Magnetic Resonance 
Imaging (MRI) can be used to observe the roots while they grow in the opaque 
soil. However, the low signal-to-noise ratio and resolution of the 3D MRI images 
hinder the extraction of structural models from them. To deal with this, we use 
a 3D convolutional neural network to segment MRI images into root and non-
root while increasing the resolution of the output. 

The structure of our network is designed based on the 3D U-Net, a widely 
used segmentation method. Our network takes a 3D image crop as the input, 
and the segmentation outputs are assembled as the result for the whole image. 
For improving a previous dataset of synthetic noisy root images, we added 
randomly generated roots combined with real soil images. The network is 
trained and validated on this new dataset and evaluated on real MRI images 
with a special F1 metric that is robust against misalignments between the 
image and its annotation. 

Several experiments are done to improve the segmentation performance. We 
experimented with additional input channels, including the root image at a 
later time point and two types of location-dependent information. To remove 
the part of the learning task that is unnecessarily hard, we tried making the 
network ignore the root-soil border region during training. Besides, we tested a 
loss function that weights the root voxels more, to overcome the imbalance 
between the root and non-root voxels. Moreover, for faster learning convergence, 
we tried sampling image crops that have more root voxels. 

In the end, the structural models extracted from our segmentation results 
reconstruct the real roots successfully, except a small number of larger gaps in 
the roots and some minor false positives. 
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1 Introduction 

The mechanism of root water uptake is critical in understanding plant 
growth. In order to study that, one approach is to analyze root growth patterns 
under different soil watering conditions. For this, non-invasive 3D imaging 
methods are required, to observe the roots while they grow in the opaque soil. 
Such methods include X-Ray CT, neutron radiography and magnetic resonance 
imaging (MRI). Among them, MRI is the most suitable for studying root water 
uptake, because it is sensitive to the water content (Pohlmeier, Oros-Peusquens 
et al. 2008).  Since it is time-consuming and error-prone for human experts to 
reconstruct the root structures from the images, root extraction algorithms are 
developed for automatic extraction. However, the low resolution and signal-to-
noise ratio (SNR) of the MRI images often lead to the failure of such algorithms 
(Schulz, Postma et al. 2012). For the purpose of enhancing the SNR, semantic 
segmentation can be applied on the MRI images, so that each voxel will be 
labeled as root or non-root. As for increasing the resolution, image super-
resolution methods can be applied, which maps one voxel in the input to 
multiple voxels in the output. Both semantic segmentation and image super-
resolution are well-studied computer vision topics, and the state-of-the-art 
performance of both is achieved using deep learning methods.  

This thesis belongs to the second part of the project: “Advancing structural-
functional modeling of root growth and root-soil interactions based on the 
automatic reconstruction of root systems from MRI” (Schnepf and Behnke 
2015). The topic of this part is reducing the noise and improving the resolution 
in the MRI root images acquired from the first part of the project, to facilitate 
the extraction of the root structural model in the third part. 

For accomplishing both semantic segmentation and super-resolution 
simultaneously, a previous study used a customized RefineNet (Uzman, Horn et 
al. 2019), which is a deep learning model originally designed for 2D semantic 
segmentation (Lin, Liu et al. 2019). Due to the lack of training data and the 
inaccuracy of the human annotations, the model was trained on a synthetic 
dataset generated based on the annotations. Each 3D image was converted to a 
set of 2D image stacks each containing 3 layers, and input to the RefineNet 
model. Then, the 2D segmentation outputs were assembled into the 3D result. 
The trained model was able to detect roots from real MRI images with high 
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recall, but also generated a non-negligible amount of false positives. Another 
previous study to address these tasks used a 3D convolutional neural network 
(CNN), and the same synthetic dataset for training (Horn 2018). The 
segmentation results on the real images contained a lower amount of false 
positives, but the recall of thinner roots was significantly lower than in the 
results of the RefineNet model, resulting in large gaps in the roots.  

Based on the studies above, we hypothesize that more information in the 
depth dimension can be helpful for reducing false positives, but the synthesized 
dataset may not have imitated such features well enough. Moreover, due to the 
memory limitation, the structure of the previous 3D CNN model may be too 
shallow for the tasks. Therefore, in this thesis, we improve the root synthesis 
process by incorporating more depth dimension features, such as the aliasing 
effect of thin roots. Furthermore, real soil images are combined with virtual 
roots, for integrating more realistic soil noise information into the dataset. 
Regarding the network structure, a modified version of 3D U-Net is used, which 
is an image segmentation model that has been shown to achieve relatively good 
results given a small amount of training data (Çiçek, Abdulkadir et al. 2016). In 
order to overcome the memory limitation, 3D crops of the original images are 
used as inputs to the network. We assume that the local information of a crop 
should be sufficient to decide if a voxel is root or non-root. To speed up the 
training process, we experiment with importance sampling of the input crops 
based on their root percentage. Next, we try to make the task easier for the 
network by letting it ignore the vicinity of the root-soil boundary, because this 
part of the image is hard to learn and not so important. We do this by first 
labeling these voxels with the don't-care flag, and then ignore them during loss 
calculation. Moreover, additional information which may facilitate the network’s 
decision making is added as new input channels, to verify if the information can 
improve the performance of the network. The types of additional information 
used are location-dependent information and the image of the same root at a 
later growth stage. The 2 kinds of location-dependent information are the voxel-
wise distance to the pot central axis and the voxel-wise depth. In the end, the 
segmentation performance on the real MRI images is compared with the 
RefineNet model, and root structure extraction is performed on the 
segmentation results of our network. 

The thesis is structured as follows: Chapter 2 formally defines the semantic 
segmentation and super-resolution problems. Chapter 3 introduces some basic 
concepts about convolutional neural networks. Next, Chapter 4 summarizes the 
related work, including researches on semantic segmentation, super-resolution, 
and studies on noise reduction of plant root MRI images. Chapter 5 describes 
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the data generation process, and Chapter 6 describes in detail the method used 
for image segmentation and super-resolution. In Chapter 7, the results of 
different experiments are analyzed. Finally, Chapter 8 summarizes the 
contributions of this thesis and possible future work. 
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2 Problem definition 

The goal of this thesis is to apply semantic segmentation and super-resolution 
on 3D plant root MRI images, for reducing the noise and increasing the 
resolution. Because the voxels are to be segmented into 2 classes, root and non-
root, it is a binary segmentation problem. Here, the definitions of binary 
segmentation and super-resolution in our task are given as follows. 

Semantic segmentation is defined as mapping each pixel/voxel of an image to 
a certain class. In our case, a volumetric image   is represented with a 3D 
matrix of real numbers:  . The goal is to learn a mapping function  . 
For each voxel   of image  ,   maps it to the probability of   belonging to the 
positive class (root):  . Then, a threshold   is used to 
decide which class label will be assigned to voxel  : 1 (root) if  , 
otherwise 0 (non-root). 

For super-resolution, a scale factor   needs to be defined first. In our case, the 
definition of super-resolution can be formulated as learning a function   which 
maps each voxel   in image   to a 3D matrix  , where   is a 
possible super-resolution version of voxel  . As a consequence, the image 
  is mapped to its super-resolution version  . 

Since we want to achieve both binary segmentation and super-resolution 
simultaneously, the combined problem is to learn a mapping   that maps each 
voxel   of image   to a 3D probability matrix  . Next, a 
threshold   is applied on the probability matrix   to generate the label 
matrix   in super-resolution: for each element   in  , if  , the 
corresponding element in   is assigned with 1, otherwise 0. In the end, we 
obtain   for the whole image   as the super-resolution 
segmentation result. 

V
V ∈ IRx×y×z f

v V f v
Pv_root = f (v), f (v) ∈ [0,1] θ

v Pv_root ≥ θ

k
g

v ∈ IR V v′� ∈ IRk×k×k v′�
v

V ∈ IRx×y×z V′� ∈ IRkx×ky×kz

h
v ∈ IR V Pv′�_root ∈ [0,1]k×k×k

θ Pv′�_root

Lv′� p Pv′�_root p ≥ θ
Lv′�

LV′� ∈ {0,1}kx×ky×kz V
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3 Theoretical background 

3.1 Artificial neural networks 

The artificial neural network is a powerful method of learning multi-level 
representations of data, and it has achieved enormous success in various fields 
including visual object recognition, speech recognition, and machine translation 
(LeCun, Bengio et al. 2015). While traditional machine learning algorithms 
needs expert-engineered feature extraction from the raw data, artificial neural 
networks can work well with the raw data itself.  

An example of a very simple neural network is shown in Figure 3.1. The 
input information is linearly combined by each artificial neuron, and 
transformed by a non-linear activation function, and then becomes the input to 
the next layer.This layered structure of connected non-linear modules is 

 
responsible for extracting more and more high-level features from the raw data. 
The higher-level representation layers amplify the aspects of the input that are 
important for achieving the task. For example, for the image classification 
problem, the lowest layer usually extracts basic features such as edges, the layer 

Figure 3.1: An example of a simple multi-layer neural network. (LeCun, 
Bengio et al. 2015)
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following it extracts simple combinations of edges, and the subsequent high-level 
layers might represent more complete objects as the combinations of simpler 
motifs. Usually, methods which use neural networks with multiple layers of 
neuronal units are also called deep learning methods. 

Since deep learning methods need less domain expertise in engineering the 
features from raw data than classical approaches, with greater computation 
capacity and larger data, its performance can be easily improved. Moreover, 
nowadays new network architectures and learning algorithms are constantly 
being developed, enabling deep learning methods to produce even better results. 
Thanks to this characteristic, deep learning has made major advances in a 
broad spectrum of application fields.  

3.2 Convolutional neural networks  

Convolutional neural networks (CNN) are designed to process array data, 
which can be of different dimensions, such as 1D for speech (Abdel-Hamid, 
Mohamed et al. 2012), 2D for images and 3D for volumetric images or videos 
(LeCun, Bengio et al. 2015). The design of CNN’s structure was inspired by the 
animal’s visual neural system, mimicking the concepts of simple cell and 
complex cell in it (Hubel and Wiesel 1962). 

An example of a typical CNN can be seen in Figure 3.2 (Sharma 2018). One 
basic component of CNN is the convolutional layers. A convolutional layer 
consists of a number of filters, which are used to convolve with local patches 
throughout the image (or the feature map from the last layer), producing 
intermediate feature maps. The function of these feature maps can be seen as 
capturing the existence of specific features corresponding to each filter.

 

Figure 3.2: An example of a typical convolutional neural network. (Sharma 
2018)
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There are 2 reasons for using this architecture, firstly it utilizes the fact that 
local values in array data (such as images) are usually highly correlated, which 
forms local motifs that can be captured by specific filters. The second reason is 
that these local motifs can exist anywhere in the image (location invariance), so 
the same filter is designed to scan and convolve with the whole image to form 
one feature map. 

Another important component of CNN is the pooling layer after the 
convolutional layer. It usually takes either the maximum or average value of a 
local patch on the feature map. One reason for doing this is to tolerate minor 
shifts and distortions of the feature in the image, thus the feature can be 
detected more reliably. Another reason for using the pooling layer is to increase 
the receptive field of each output neuron, so that more contextual information 
can be incorporated. The combination of a convolutional layer, a non-linear 
activation function, and a pooling layer usually are repeated and concatenated 
in order to capture different hierarchies of features. 

There are a large number of applications of CNN, for example in computer 
vision problems such as image classification and segmentation. Especially, in the 
ImageNet competition in 2012,  CNN lowered the error rates by half compared 
to the best competing approaches (Krizhevsky, Sutskever et al. 2012). Since 
then, it has become a state-of-the-art approach for most of the recognition and 
detection tasks in the field of computer vision. These big advances were 
possible thanks to the use of graphics processing units (GPUs) for efficient 
computation, the non-linear activation function rectified linear unit (ReLU) 
(Nair and Hinton 2010), a new regularization method called dropout, and data 
augmentation to generate more training data. The combination of the 
hardware and software progresses reduced the time required to train CNN from 
weeks to hours. 

Since our problem is to segment the 3D MRI image of a plant root into root 
and non-root voxels, CNN is the most promising approach to be used in our 
case.  
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4 Related work 

4.1 Semantic segmentation 

Semantic segmentation of images is also called pixel-level classification. As 
the name implies, the task is to assign a class to each pixel or voxel, and in the 
end the pixels or voxels of the same object class will be clustered together 
(Thoma 2016). There are a wide range of applications of semantic 
segmentation, such as detecting road signs (Maldonado-Bascón, Lafuente-
Arroyo et al. 2007), segmenting tumors from brain images (Moon, Bullitt et al. 
2002), and tracking medical instruments in operations (Wei, Arbter et al. 1997). 
The approaches for doing semantic segmentation can be divided into 2 
categories: traditional approaches and deep learning approaches. These 
categories will be briefly introduced below. 

Traditional approaches  Traditional approaches of semantic segmentation rely 
heavily on the concept of feature, which is a piece of information that is 
relevant for solving the problem at hand. Unlike deep learning which can 
automatically learn the relevant features, these methods require carefully 
designing the features using domain expertise. There are a large variety of 
different features that are developed for the semantic segmentation problem, 
such as Histogram of Oriented Gradients (HOG) (Dalal and Triggs 2005), Bag-
of-visual-words (BOV) (Csurka, Dance et al. 2004), and many more.  

The traditional approaches of semantic segmentation can be categorized into 
2 types depending on the task: unsupervised and supervised ones. In 
unsupervised approaches, there are no pre-existing labels of the data, which 
means no ground truth class is assigned to each pixel/voxel. One example is K-
means clustering, which aims at partitioning n samples (pixels/voxels) to k 
clusters. In supervised approaches, there is a ground truth label for each 
training data point, and the algorithm tries to infer a function which maps data 
features to the label. Among supervised approaches, undirected probabilistic 
graphical models such as conditional random field (CRF) achieve the best 
performance, partly because they also make use of the context information 
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around each pixel/voxel when making predictions (Lafferty, McCallum et al. 
2001). 

Deep learning approaches  Compared to traditional approaches, more recent 
deep learning methods have significantly enhanced segmentation accuracy. 
Since CNNs are specifically designed to extract representations from natural 
images, CNN-based models have become state-of-the-art methods for image 
segmentation. For example, fully convolutional networks (FCNs) replaces the 
fully connected part of the network with convolutional layers, allowing the 
network to produce the output of the same shape as the input (Long, 
Shelhamer et al. 2015). Another approach used for improving the performance 
is the dilated convolution, allowing multi-scale contextual information to be 
aggregated systematically (Yu and Koltun 2015). One advantage of using 
dilated convolution compared to downsampling-upsampling is that the former 
does not lead to a loss of resolution. Moreover, there have been some important 
advances in the backbone architecture, leading to performance breakthroughs. 
One such example is the use of residual modules in the network (He, Zhang et 
al. 2016). The function of the residual module is to force the network to learn a 
residual function, by adding the input of one module to its output. It has been 
widely tested that the residual model efficiently improves the performance of 
very deep networks. 

4.1.1 Semantic segmentation of 3D images 

The above mentioned new methods for getting better segmentation results 
are mostly applied to 2D segmentation problems. However, there are also needs 
for 3D image segmentation, such as detecting roots from noisy 3D images. 
Although the problem of 3D is similar to 2D, there are still some different 
requirements and constraints. For instance, 3D segmentation generally requires 
a larger memory for computation. In this section, I will introduce in more detail 
some deep learning networks specifically designed for segmentation of 3D 
images.  

Currently, there are broadly 2 categories of CNNs used to tackle the 3D 
image segmentation problems: 2D CNN based and 3D CNN based. The 2D 
CNN  based methods usually split the 3D images into slices, and then generate 
segmentation result for each slice with 2D CNNs (Havaei, Davy et al. 2017). 
Although there are plenty of powerful 2D CNNs that achieves good 
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performance on 2D images, they cannot incorporate the depth-dimensional 
spatial information of 3D images, thus the final results are likely to be 
suboptimal. Because of this disadvantage, 2.5D methods are developed. They 
use methods to incorporate some depth-axis information and compress it into 
2D slices, and then still use 2D CNNs as the segmentation method (Roth, Lu et 
al. 2014). Besides that, the more recent use of 3D CNNs overcomes this problem 
more thoroughly. However, one challenge of using 3D CNN is that the GPU 
memory requirement for training the neural network is much higher. Thus, it is 
difficult for the network structure to be as deep as many 2D networks, because 
of hardware constraints. Up until now, various architectures of 3D CNNs have 
been proposed, including 3D U-Net, V-Net, and many more. The 3D U-Net is 
shown to achieve good performance given a relatively small number of training 
data (Çiçek, Abdulkadir et al. 2016), and many newer 3D segmentation models 
are developed based on it. In what follows, the structure of the 3D U-Net will 
be briefly introduced. 

3D U-Net  The structure of 3D U-Net is illustrated in Figure 4.1 (Çiçek, 
Abdulkadir et al. 2016). Similar to its 2D counterpart, 3D U-Net has a 
downsampling encoder module followed by an upsampling decoder. The 
downsampling is achieved with max-pooling and upsampling with 
deconvolution.  Thus the encoder extracts more and more abstract features, and 
incorporates broader contextual information. As a result, the final result of the 
downsampling part is coarse. So in order to produce segmentation results with 
the same resolution as the network input, the decoder is used to increase the 
resolution (Long, Shelhamer et al. 2015). Shortcut connections are established 
between the encoder and decoder, on layers of the same resolution. 
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These shortcuts are helpful for providing the high-resolution features from the 
encoder part to the decoder part. Additionally, batch normalization (BN) (Ioffe 
and Szegedy 2015) is used in the network before each ReLU, for speeding up 
the learning convergence. BN was designed for mitigating the internal covariate 
shift which requires a low learning rate for training. With BN, the learning rate 
can be much higher, and the training becomes less sensitive to the initialization. 
Moreover, BN can act as a regularization method, helping the model to 
generalize better. Because the number of annotated training data is small, they 
are augmented with slight elastic deformations, under the assumption that the 
images are still biologically plausible. With the combination of the network 
structure and the data augmentation method, 3D U-Net was able to achieve 
good results with a relatively small number of data points.  

4.2 Image super-resolution 

Image super-resolution aims at restoring a high-resolution version of an image 
given its low-resolution version (Yang, Zhang et al. 2019).  It can be categorized 
into 2 types, single image super-resolution if the input is a single low-resolution 
image, and multi-image super-resolution if the input consists of multiple low-
resolution images of the same scene. The former is more widely used because of 
its high efficiency. Besides that, because there is only one image for each root, 

Figure 4.1: The architecture of the 3D U-Net. (Çiçek, Abdulkadir et al. 
2016)
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single image super-resolution is used in this thesis. Because images with higher 
resolution contain more informative details in it, super-resolution is useful in 
many fields, including medical imaging, satellite imaging and security imaging. 
However, image super-resolution is an ill-posed problem, because there can be 
many possible high-resolution images corresponding to the same low-resolution 
image.   

Approaches to tackle the super-resolution task are commonly divided into 3 
categories, interpolation-based, reconstruction-based and learning-based. 
Interpolation-based methods are fast because it’s simple and straight-forward, 
but the resulting accuracy is usually low compared to other methods. One 
example of it is the cubic interpolation method (Keys 1981). The reconstruction-
based methods make use of sophisticated image priors which defines the 
constraints when reconstructing the high-resolution image. An examples of 
such constraints is a certain level of smoothness in the output (Dai, Han et al. 
2009). The advantage of these methods is that they can generate flexible and 
sharp details. However, they are usually time-consuming and the quality of the 
outputs degrades quickly with increasing scale factors. The learning-based 
methods work by learning the statistical relationship between the low-
resolution image and its corresponding high-resolution image from training 
examples. It can be further classified into traditional machine learning methods 
and deep learning methods. One example of the traditional machine learning 
methods is the Markov Random Field (MRF) (Rajan and Chaudhuri 2002). 
However, similar to the cases of many other computer vision problems, the deep 
learning methods have shown performance superior to the methods mentioned 
before. Also, most of the deep learning methods of single image super-resolution 
are based on CNN. 

Super-resolution CNN (SRCNN) is a simple example of a deep learning based 
approach (Dong, Loy et al. 2014). It first upsamples the input image with 
bicubic interpolation, and then process the upsampled image with 3 
convolutional layers to produce the high-resolution output. Mean squared error 
(MSE) is used as the loss function. Furthermore, some more advanced methods 
are developed on top of SRCNN. For example in some works, instead of directly 
using interpolation, convolutional layers with pooling or dilated convolution are 
used for downsampling the image, and then deconvolution is used to upsample 
the image into high-resolution (Dong, Loy et al. 2016). In this way, instead of 
using a specific interpolation method, the interpolation is learned from the data, 
resulting in better performance. Another development is to use much deeper 
network architectures because, in theory, the solution space of the network 
increases with its depth (Montufar, Pascanu et al. 2014). A different direction 
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for further improvement is to combine domain expertise with deep learning. 
For example, the combination of sparse coding of images with deep learning has 
achieved better performance both quantitatively and qualitatively (Wang, Liu 
et al. 2015). Although many of these optimization-based neural networks can 
produce results with a high signal-to-noise ratio, they often lack the high-
frequency details. In order to deal with this, generative adversarial nets (GANs) 
have been introduced. One example is the SRGAN (Ledig, Theis et al. 2017), 
which uses a CNN to generate the super-resolution image, followed by a 
discriminator network to distinguish between the super-resolution output and 
the original high-resolution image. The loss of SRGAN includes not only the 
pixel similarity but also the perceptual similarity, resulting in more realistic 
outputs. Another advantage of the SRGAN is that it also works successfully 
with large scale factor, which the other models often fail to achieve. 

4.3 Class imbalance 

Class imbalance is a problem that can occur in classification, when training 
samples of certain classes significantly outnumber the other classes. This is 
problematic because most of the classifier learning algorithms assume a 
relatively balanced distribution (Sun, Wong et al. 2009). In the case of deep 
neural networks, when there is class imbalance, it is often observed that the 
classification error of the majority class decreases rapidly with training, but the 
error of the minority class increases in the beginning and then decreases very 
slowly. This is because the gradient is dominated by the majority class (Anand, 
Mehrotra et al. 1993). This is the case of our root segmentation task, where the 
non-root voxels significantly outnumber the root voxels. Since image 
segmentation can also be seen as pixel-level classification, class imbalance is a 
problem we have to address in this work.  

The approaches to deal with class imbalance can be divided into several 
categories. The first one is data-level approaches, which include different ways 
of resampling the dataset. Widely used examples include randomly 
undersampling the majority class (Tahir, Kittler et al. 2009),  or randomly 
oversampling the minority class, or creating new synthetic samples of the 
minority class (Chawla, Bowyer et al. 2002). Another category is the algorithm-
level approaches, which use algorithm-specific modifications to deal with class 
imbalance. One commonly used example is cost-sensitive learning, which 
weights minority classes more than majority classes when calculating the loss 
function (Thai-Nghe, Gantner et al. 2010). The disadvantage of this approach is 

 16



that one needs to search for the best combination of weights to optimize for a 
certain evaluation function, which can be computationally expensive. Besides 
this, loss functions that are designed to be robust against class imbalance can 
also be used, such as the Intersection over Union (IoU) loss. Since calculating 
IoU involves thresholding the network’s output, IoU is not differentiable. 
Therefore, directly using IoU as training loss is infeasible. To deal with this, a 
differentiable approximation of the IoU loss was introduced, which can be used 
for back-propagation (Rahman and Wang 2016). 

4.4 Importance sampling 

Currently more and more big datasets enable deep learning methods to 
achieve state-of-the-art performance in many tasks, but at the same time, 
training takes significantly longer time with such huge datasets. For example in 
our case, training the 3D convolutional networks is time-consuming. When 
training neural networks, it is likely that a large amount of time is spent on the 
samples that can already be handled well by the network, but the harder 
samples are not given more focus. By sampling the harder samples more often, 
importance sampling can help the learning converge faster. The theoretical basis 
for the speedup by importance sampling is that it reduces the variance of the 
gradient estimates in stochastic gradient descent, so that the optimum can be 
reached more efficiently (Alain, Lamb et al. 2015). 

There are different ways of doing importance sampling, which can be 
categorized based on the metrics used for evaluating the ‘importance’ of each 
sample. For example, the ‘importance’ can be the loss or the gradient norm of 
each sample.  One example of using the loss to do importance sampling is 
ranking the data points by their losses every certain number of training epochs, 
and then select the data points which have higher losses with higher probability 
during training (Loshchilov and Hutter 2015). Using gradient norm for 
importance sampling is a more direct way to reduce the variance of gradient 
estimates, but it’s usually more expensive to compute (Alain, Lamb et al. 2015).  

4.5 Root structural model reconstruction 

Since the roots are hidden under the soil, some observation methods need to 
dig them out, wash and scan, or grow the plant in transparent agar (Nagel, 
Schurr et al. 2006). But all these disrupt the normal growth of the plants. In 
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order to allow observation during growth under more natural conditions, a non-
invasive imaging method needs to be used. MRI is one of the methods that 
allow non-invasive 3D imaging (Brown, Cheng et al. 2014), and the intensity of 
its signal reflects the water content, which is important for studying root water 
uptake. Therefore, it is chosen as the imaging method for our project. 

One goal of this project is to help automatically reconstruct the root 
structural model from the 3D MRI images. This is because it is time-
consuming to manually inspect each image and extract the relevant biological 
parameters such as the root length. In one of the recent efforts to automate this 
process, the algorithm automatically reconstructs the root models from 3D MRI 
images and provides further root phenotype calculations based on the models 
(Schulz, Postma et al. 2013). The algorithm consists of 3 steps: firstly, tubular 
structures are detected in the root image. Then, all root voxels in the image are 
connected to the root base through the shortest path, using Dijkstra’s 
algorithm. Here the distance measure is the Euclidean distance weighed with 
the tubularness measure. Finally, the constructed tree is pruned, such as 
removing root branches that are too short.  

An MRI measurement can be done with different spatial resolutions. When 
done with a low resolution, the measuring time is significantly reduced, but the 
resolution and the signal-to-noise ratio (SNR) of the results will also decrease 
(Brown, Cheng et al. 2014). In massive plant root studies that require repeated 
measurements over an extended period of time, the time cost needs to be 
considered, leading to a compromise of the resolution and SNR. However, the 
above-mentioned root extraction algorithm has worse performance when the 
resolution and SNR decreases. Therefore, enhancing the resolution and SNR of 
root images without increasing the measurement time is important for 
guaranteeing the quality of the root extraction. This is the goal of this thesis. 

More recently, NMRooting, a modified version of the above-mentioned 
algorithm, was developed (van Dusschoten, Metzner et al. 2016). It contains 
some additional features, including dilating the input image to bridge small 
gaps along root branches.  

4.6 Enhancing root image resolution and SNR 

As explained before, the resolution and SNR of root images need to be high 
enough to ensure a decent quality of the root extraction results. For this 
purpose, 2 research works have been carried out (Uzman, Horn et al. 2019) 
(Horn 2018). They both use deep learning methods for segmenting root images 
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into root and non-root, thus achieving a higher SNR. Their methods also 
output the segmentation with a higher resolution than the input.   

One work used RefineNet (Lin, Liu et al. 2019) with a pre-trained ResNet 
module (Figure 4.2) to apply the segmentation and super-resolution on 2D 
inputs (Uzman, Horn et al. 2019). To transform 3D images to 2D inputs, several 
consecutive image slices are merged together with principal component analysis 
(PCA) or averaging, for incorporating more depth dimension information. 
Because the amount of real data available for their work was very limited, the 
authors generated an augmented dataset from the annotations of the real data. 
These data are generated by combining the reconstructed root annotations 
with synthesized soil images that simulate the real soil features. The results on 
two real MRI images show that the model is able to detect the root structures 
quite completely, but produces a non-negligible amount of false positives 

 

Figure 4.2: The RefineNet architecture for semantic segmentation and super-
resolution. (Uzman, Horn et al. 2019)
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for the thinner root system (Figure 4.3).                     

The other work used a 3D CNN (Figure 4.4) and the same augmented 
dataset (Horn 2018). The model was able to detect the root well for the simpler 
root image (Figure 4.5, left), but with more false positives in the soil area 
compared to the result of the RefineNet model (Figure 4.3, left). In the result of 
the more complicated root image, there is a significant amount of false negatives 
which makes some root branches disconnected (Figure 4.5, right). Because the 
GPU memory requirement is high for training a 3D CNN, the 

 

Figure 4.3: The segmentation results of RefineNet on two real MRI images. 
True positive, false positive, and false negative predictions are marked with 
green, blue, and red, respectively. (Uzman, Horn et al. 2019)

Figure 4.4: The 3D CNN architecture for semantic segmentation and super-
resolution. (Horn 2018) 
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depth of the network was limited in this work, which may be one of the reasons 
why the performance is not as good as the RefineNet model. Another possible 
reason is that the features along the depth-axis in the real images are not well 
simulated in the augmented dataset, so the network cannot learn such features 
to help make correct predictions.  

Figure 4.5: The segmentation results of the 3D CNN on the same real MRI 
images. (Horn 2018)

 21





5 Data 

To experiment on the influence of the diversity of training data, there are 2 
data sources used for the experiments, including: 1) the original dataset from 
the previous work (Uzman, Horn et al. 2019), generated by combining virtual 
roots and virtual soil data which simulate real soil features; 2) A new dataset of 
randomly generated virtual roots, combined with real soil data.  

In the original dataset, the virtual roots are reconstructed human annotations 
of 4 real MRI images. These roots are then augmented to increase the diversity, 
with augmentation operations including radius multiplication, rotation, 
horizontal axis flipping and swapping. The virtual soil data are generated by 
simulating the observed features in the real MRI images, for example, the big 
foggy chunks of noise are simulated with the Perlin noise (Perlin 1985). In the 
final dataset, there are 384 training samples, 192 validation samples, and 81 
visualization samples. The test set consists of 2  usable real MRI images, 
Lupine Small and Lupine 22. 

The generation of the new dataset from random roots and real soil will be 
described in detail as follows. 

5.1 Generation of the new dataset 

5.1.1 Caveats of the original dataset 

One problem of the generated virtual root in the original dataset is that 
there is a feature of the real root that was ignored: for some thinner roots which 
grows in a almost horizontal direction, they appear slightly disconnected 
(Figure 5.1). This is due to the aliasing effect: each horizontal slice of the real 
MRI image contains information of a thin horizontal slice of the real 3D space, 
but the corresponding real space slices of 2 adjacent image slices are not 
directly adjacent. This leads to disconnections in some roots in the image, 
because the spatial information is lost between the 2 adjacent image slices. 
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This may not influence the 2D convolutional network so much, but might cause 
problems for 3D network, where the disconnections is obvious. In some 
experiments we observe that similar disconnections also exist in the test output 
of the 3D convolutional network, when the test input is one real image  with 
such disconnections (e.g. Lupine 22 in Figure 5.1). And the network used was 
trained completely on the dataset mentioned in part 1, which fits tubular 
structure along the root without simulation of such disconnections. Therefore, 
we speculate that if we add this feature in training data, and use the connected 
super-resolution ground truth, the network may be able to learn to bridge these 
disconnections in the input data.  

Another problem is that the dataset in part 1 are based on only 4 root 
annotations, although augmented to increase the diversity, the randomness is 
still limited. And because the validation and test dataset are also based on the 
same annotations, there might be the possibility that if there's new test data 
from a completely different root, the network's performance would degrade. 
This creates the motivation to generate some random virtual roots that are 
different from each other while still looking realistic. 

5.1.2 Random virtual root generation 

In order to deal with the problems of aliasing and potential overfitting, 
random virtual roots with the aliasing effect to simulate the disconnections are 

Figure 5.1: The aliasing effect observed in the real MRI image of Lupine 22. 
Examples of roots with the aliasing effect are marked in red boxes.
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generated. This tool used Gaussian process to virtually imitate the growth of 
the root. From the point of plant shoot where a initial radius is defined by the 
user, the root coordinate goes to the next point in the direction of growth with 
a predefined step size. The initial direction of growth changes after every 
growth step, according to the sum of a random vector and a gravity vector 
which always points downwards. Thus the root grows in general downwards 
with some randomness. The root radius also shrinks by a predefined factor 
while growing, and then randomly upscaled a little. Once the radius decreases 
below a predefined small value, or the root grows above or below the allowed 
range, the growth ends. Along the growth of each branch, there’s a predefined 
probability of branching out a new root at each growth step. The direction of 
the new branch is controlled by the current growth direction of the parent 
branch, plus a predefined angle between parent and child branch, and a gravity 
vector that points downwards. Moreover, if the growing root reaches outside the 
predefined pot border, the growth step is shortened to keep the root within the 
pot, and then the growth continues as described above. This makes sure that 
the root always grows inside the pot. Once the root growth is complete, we 
obtain a list of anchoring points along the branches, with location coordinates 
and radii. Based on the list, 3D Gaussian blobs are generated based on the 
location and radius to voxelize the root structure, which results in the 
occupancy grid of the root. Afterwards, the ground truth is obtained by 
binarizing the occupancy grid with a threshold of 30% of the maximum 
intensity: any voxel with an intensity larger than the threshold gets the root 
label 1, else non-root label 0. 

Besides increasing the diversity of the root structures, we also introduce the 
aliasing effect in the 1× resolution data which will be used as network inputs. 
This is achieved by first generating the random root with higher depth axis 
resolution (6×), and when downsampling to 1× resolution, take 1 slice from 
every 6 horizontal slices, instead of using the average of the 6 slices. On the 
other hand, the 2× super-resolution file used as ground truth is obtained by 
taking the average of every 3 slices, thus generating ground truth without 
disconnections (Figure 5.2). By providing aliased input data to the network and 
using super-resolution non-aliased ground truth, we expect the network to learn 
to bridge these disconnections in the input data. 

By adjusting the predefined parameters, different kinds of root structure can 
be generated, such as ones that look like the real data Lupine Small or Lupine 
22. Examples are shown in Figure 5.3.  In the end, 10 random Lupine Small-like 
roots, 10 random Lupine 22-like roots and 10 random roots generated with 
parameters between the previous 2 root types are created.  
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5.1.3 Combining virtual root with real soil 

For better imitation of the real data, we use the real soil samples to combine 
with these virtual roots. There are in total 10 real soil samples, including 8 with 

Figure 5.2: The aliasing effect simulated in the random root generation. Left 
is the aliased 1× resolution root used as the network input, compared with 
the non-aliased 2× resolution root used as the ground truth (right). Both 
images are projections on one of the horizontal dimensions.

Figure 5.3: Examples of generated root imitating different real roots. The 
images shown here are super-resolution ground truths, imitating the root 
structure of Lupine Small (left) and Lupine 22 (right), respectively.
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the dimension of 256×256×70 and 2 with the dimension of 256×256×121. 
Since the input to the network is a 3D crop of the whole input data, it needs to 
be combined from a crop of the virtual root data and a crop of the real soil 
data. The combination method used is described as follows: Firstly, the root 
crop is noised with some random Gaussian noise. Then, its brightness is 
rescaled, with a random factor between [0.8, 1.3]. Next, the root and soil crops 
are added together to generate the combined crop, where the transparency of 
the root is control by a factor in the range of [0.7, 1]. Finally, the combined 
crop is multiplied with a random factor in the range of [0.2, 1.4]. Example 
horizontal slices of some combined crops are illustrated in Figure 5.4, in which 
we can observe different contrasts between root and soil, and also different 
overall intensities. 

During training, other augmentations on both the root and the soil crop 
before combining can be applied on-the-fly, such as flipping one axis and 
swapping the horizontal axes, further increasing the variety of the training data. 

  

5.1.4 Splitting the dataset 

Among the 30 random virtual roots, we randomly select 24 roots as training 
data, and the rest for validation. Because we are only interested in the 
segmentation result on the real MRI images, we did not use these virtual data 
as test data. There are 3 possible ways to augment each soil crop, including 
flipping x axis, flipping y axis and swapping x-y axes. So, for the real soil data, 
there are 8 (2×2×2) distinct ways of augmentation in total. For each real soil 
image, we use one specific augmentation of it only during validation (flipping x 

Figure 5.4: Example horizontal slices of combined crops virtual root and real 
soil. Darker spots in the images are cross sections of the root branches.
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axis, flipping y axis, and swapping x-y axes simultaneously), and use the other 
augmentations in training. It is done this way instead of using some real soil 
images only for validation because the amount of data is highly limited, and it 
would likely worsen the performance if the variety of training data is sacrificed. 
Because we randomly take small crops (such as 60×60×60) for training, this 
dataset can already provide a large diversity of input crops for training.  

As will be shown later, the validation loss curves (also the validation F-score 
curves) during training are roughly equivalent when either using the whole 
image or crops from those images for validation. Thus, for faster validation, we 
use the crops in most of the experiments. Because of this, there is no need to 
generate the whole combined images, but combined crops are enough for the 
purpose of validation. Furthermore, in order to make use of all the previously 
generated dataset and thus cover a broader distribution in the datasets, we 
combine our dataset with the original dataset (Uzman, Horn et al. 2019), in the 
hope to improve the network's performance. During training,  the number of 
crops from the combined data (new) is made to be roughly the same as the 
number from the original dataset, to balance the influences of both datasets. 

For testing and visualization, we still mainly focus on the real MRI images at 
hand. Right now, there are more real MRI images provided by our collaborator, 
but unfortunately due to certain technical difficulty, many annotations of the 
real images contain large misalignments or errors. Therefore, these images that 
cannot be used for testing. This is especially the case when the root structure is 
complex. Thus we try to select some of the real data that has simpler root 
structure and the misalignments between the annotation and the MRI image 
are not severe. Finally, except Lupine Small and Lupine 22_August, the 
following new real data are also included in the test pipeline: 
I_Sand_3D_DAP5, I_Soil_1W_DAP7 and I_Soil_4D_DAP7  (Figure 5.5). 
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5.2 Additional input channels 

Apart from the noisy root image as network input, adding some additional 
information as other input channels may help the model extract more relevant 
features and improve the segmentation performance. We selected the additional 

Lupine Small Lupine 22

I_Sand_3D_DAP5 I_Soil_4D_DAP7 I_Soil_1W_DAP7

Figure 5.5: The 3D visualizations of the 5 real MRI images in the test set. 
The cylinders in Lupine 22, I_Soil_4D_DAP7 and I_Soil_1W_DAP7 are 
test tubes, which are used for calibration when merging image parts.
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information based on if there’s a reasoning that it is associated with the 
distribution of roots. The 2 types of additional information that are tried in the 
experiments are: noisy root image from a later growth time point, and location 
dependent information, including the voxel-wise depth and distance to pot 
central axis. 

5.2.1 Simulating roots at different time points 

We have a hypothesis that if we can provide the network with not only the 
root image, but also the same root imaged at a later time point, the network 
can perform better. This is under the assumption that during growth, the root 
branches do not change their positions, but only increase the radii and lengths 
of the root tips. In this case, the earlier root voxels are a subset of the later root 
voxels, so the network can learn to infer from the later root image to confirm 
the segmentation of the earlier root image. However, this is difficult to do with 
the real image. This is because, firstly, there are misalignments between the 
MRI images and the annotations. Besides, there are also distortions and 
misalignments between the MRI images of different time points. Therefore, 
before we can apply this on the real images, it is more reasonable to first test 
the hypothesis on virtual data with perfect alignment. If providing the later 
growth stage of the same root helps in this case, it would be worth the effort to 
try to obtain real images with better alignments, and use the same method to 
improve the segmentation results. 

In order to generate virtual roots of 2 different growth time points, the above 
method of generating the random virtual roots is used, with some further 
adaptions. First, the root of the later time point is generated, and the root 
structure is stored in a tree, where each node represents one branch. The tree 
hierarchies is the same as the root branch hierarchies, with the children nodes 
representing the sub branches growing from their parent branch. Each node 
contains the information of the coordinates and radii of all the anchoring points 
along the branch, which are needed for voxelization of the branch. Once the 
whole tree structure is complete, we assume the total growth time is  , and the 
growth speed of the main branch is  . Then we can calculate the time points at 
which the secondary branches start growing, based on their branching positions 
from the main branch. Now with the growth start time point, the total growth 
time of each secondary branch can be also calculated. Then, the growing speed 
of each secondary branch can be calculated, because the branch length is 

t
v
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known. By iterating this process, the growth start time   and growth speed   
of any further sub branch   are calculated.  

The next step is to generate the same root of an earlier time step. A random 
ratio   between [0.7, 0.9] is generated, and the earlier time point   is assigned 
with the product of the total growth time   and  . Then we iterate through each 
node (representing a branch) of the tree, and calculate its length   at  . After 
that, we delete the anchor points on the branch which goes beyond the current 
length  . At the same time, the root radius at each anchor point shrinks 
proportional to the ratio  . Also, any child node with a growth start time 
  is deleted from the tree. Finally, the voxelization is done based on this 
pruned tree structure, obtaining a shorter and thinner root as outcome (Figure 
5.6). 

Once we have obtained the roots of different growth time, they are combined 
with random crops of real soil image as described before. For both time points, 
the random crops are taken from the same real soil image, to ensure that the 
soil noise distribution between the time points are similar. This is done because 
we assume that the soil content would not change too drastically during root 
growth. 
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Figure 5.6: The generated root at different time points. Left and right are 
the same root, at an earlier and later time point, respectively.
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5.2.2 Location dependent information 

Another assumption is that the location of the root in the pot may follow 
certain patterns. For example, we observe that many root branches tend to 
grow horizontally in the beginning, and once they reach the pot border, they 
grow along the border. Therefore, the location information as additional 
information channel may provide useful hints of the probability of root 
existence, thus may facilitate the network’s learning process. 2 types of location 
dependent information are tested in the experiments, the voxel-wise depth and  
the distance to the pot central axis. 

The voxel-wise depth information is used, because we observed that in some 
real data, the noisiness of the soil seem to change along the depth axis. This 
changing noisiness may be the effect of gravity on the soil water content. 
Furthermore, root structures may look different depending on the depth. The 
depth information is calculated for each voxel input the input image crop. 
Therefore, it is a 3D array of the same shape as the input crop, with the same 
value for each horizontal slice. 

The voxel-wise distance to the pot central axis is used because of the above 
mentioned observation that many roots seem to follow the vicinity of the pot 
border when growing, far from the pot central axis. This phenotype is also 
simulated to some extent in the random root generation (in Section 5.2.2). 
Because the location of the pot central axis is known for the generated roots, 
for each voxel of the input image crop, the Euclidean distance to the central 
axis is calculated. The result is also a 3D array with the same shape as the 
input crop. The reason to use the distance to the central axis instead of the 
distance to the pot border is that, although the latter is easy to calculate for 
the generated virtual roots, it is hard to calculate for the real root images, 
because of the distortions of the real images. In the real images, the pots are 
not in a perfect cylinder shape but rather stacked barrels with changing radii. 
Moreover, the pot shape may appear elliptic instead of circular in one 
horizontal slice of the real image (Figure 5.7).  
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Figure 5.7: The pot shapes in real images. The left is a 3D image projected 
on a horizontal dimension, showing changing radius along the depth axis. The 
right is one horizontal slice of one real image, showing a elliptic pot shape 
(compared to the circle in red).
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6 Segmentation method 

6.1 Network: 3D U-Net 

CNNs has been shown to be the most successful choice for solving computer 
vision problems such as semantic segmentation and super-resolution, since they 
are originally designed to extract hierarchical visual features. Although the 2.5D 
CNN approach of a previous study (Uzman, Horn et al. 2019) has achieved 
decent results, we hypothesize that the depth dimensional information which is 
difficult to be fully utilized in 2.5D CNNs may be important for improving the 
segmentation result. Therefore, 3D CNN is experimented in this work. 
Furthermore, because now we are using small crops of the whole image as 
network input, the memory consumption is much lower, allowing the use of 
deeper network structures than another study that also uses a 3D CNN (Horn 
2018). As described in the related work section, 3D U-Net is the base network 
structure which inspired many further network variations successfully used in 
3D image segmentation. It’s relatively simple, but still powerful enough to 
achieve decent performance when the number of training data points is limited. 
Thus we choose it as the network for our task.  

6.1.1 Network structure 

The original network structure contains a downsampling encoder and an 
upsampling decoder part, as described in the related work section (Figure 4.1).  
The same basic structure is used in our network, with some minor adaptions 
(Figure 6.1). The input to the network is a 3D crop of a noisy root image. In 
the encoder part of network, the input goes through 3 convolutional modules, 
with maxpooling layer (red arrow) between each pair of adjacent convolutional 
modules. Each convolutional module consists of 2 convolutional layers with 
increasing channels numbers. After the final convolutional module in the 
encoder part, the tensor is upsampled using 2× transposed convolution to 
double the size, keeping the channel number constant. Then the upsampled 
tensor is concatenated in the channel dimension with the output of previous 
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convolutional module which has the same image resolution. The concatenated 
tensor then goes through 3 convolutional modules with decreasing channel 
numbers, each containing 2 convolutional layers. Adjacent convolutional 
modules in the decoder part of network are connected with 2× transposed 
convolution layers for further upsampling to reach the final 2× resolution of the 
input. In the end of the network, the number of channels is reduced to 1, and 
followed by a sigmoid function which outputs probability values between (0, 1). 

6.1.2 Valid convolution 

For the convolutional layers in this network we tried both padding and not 
padding the input. No padding during convolution is also called valid 
convolution, in which case no additional information which does not belong to 
the original input image will be introduced to the network. We expect that by 
using valid convolution, the network would not be confused by unrealistic 

Figure 6.1: The modified 3D U-Net structure used in this work. The 
numbers above the tensors represent the number of channels. The final output 
doubles the resolution of the input.
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information, thus producing better results. However, one outcome of valid 
convolution is that the output of the network is smaller than 2× the input size, 
because without padding, the tensor size decreases a little after each 
convolutional layer. So the more no-padding convolutional layers there are, the 
greater the decrease of the output tensor size. In our case, when the size of the 
input crop is 60×60×60, the output crop size will be 34×34×34, much smaller 
than 120×120×120 when using padding. During visualization and testing, this 
leads to the need of cropping the whole image into overlapping crops, so that 
the output crops can be assembled into the whole 2x resolution image without 
gaps.   

6.2 Training pipeline 

6.2.1 Data loading: random crop sampling 

Unlike the previous work (Horn 2018) which also used 3D CNN for 
segmentation, the network input used in this work is 3D crops of the whole 
image, instead of the whole image or big chunks of the whole image. In this 
way, we can use deeper neural networks under the constraints of limited GPU 
memory. Based on observations in the early data exploration, we think the local 
information in the crop of a reasonable size (such as 60×60×60) already 
contains a sufficient amount of information for deciding if a voxel is root or non-
root. The context information is important for making correct decisions, but the 
context that’s too far away from the voxels of interest does not play a part in 
whether these voxels are root. Moreover, when using a big input, due to 
memory constraints, the network structure has to be shallow. For a shallow 
network, one voxel in the output corresponds to a relatively small receptive field 
in the input, thus the broader context cannot be utilized by it. Therefore, 
during training, we randomly sample crops from the training images. Two 
different methods are used for random sampling: importance sampling and 
uniform sampling. 

6.2.1.1 Uniform sampling  

Uniform sampling is a simple sampling method, which is done by randomly 
drawing the location of a certain vertex of the crop, so that each crop has the 
same probability of being chosen. This is ensured by sampling the coordinate of 
each dimension of the vertex from a uniform distribution. With uniform 
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sampling, any part of the training images has the same probability of becoming 
the input of the network.  

6.2.1.2 Importance sampling by root percentage 

On the other hand, importance sampling samples data with varying 
probabilities depending on their importances. Here in this work, the basis for 
importance sampling is the percentage of root voxels within each crop. For a 
given whole image, crops which contain more root voxels are sampled with 
higher probability, so that the visibilities of them to the network are increased. 
Our reasoning for doing this is that compared to the large varieties of the soil 
noise signals, the root has a more clear structural pattern to be learned by the 
network. When we use the crops with more root voxels more often, the network 
may learn to achieve a higher ability to detect the distinctive structural 
features of the roots. This may lead to a better segmentation result and less 
sensitivity to unknown soil noise varieties. Another potential benefit of using 
importance sampling is that, it may speed up the convergence of the training 
process, by making the network focus more on the more important training 
samples, thus wasting less time on easy or unimportant samples.  

The critical part of implementing importance sampling is to obtain the crop 
importance (in this case root percentage) distribution for each image, from 
which the sample crop will be drawn. This is done by calculating the root 
percentage of every possible crop of one image and generate a multinomial 
distribution in which the probability assigned to each crop is proportional to 
its root percentage. And then randomly sample one crop from this distribution. 

When generating the probabilities of the multinomial distribution, a small 
offset value is added to the calculated root percentages. It’s done this way 
because otherwise, the probability corresponding to image crops without root 
voxels will be 0, then the network never has the chance to learn from them. We 
don’t want the sampling process to completely ignore the crops without root, 
because only learning from positive samples may lead to a high false positive 
rate in the end. And this offset is one hyperparameter that can be adjusted. 
The higher the offset, the higher the chance of sampling pure soil crops without 
root, as shown in Figure 6.2. In this figure, for each voxel, the number of rounds 
it gets sampled is color-coded, the warmer color meaning a higher number. 
Here, the dark blue areas represent the voxels that are sampled at least 4 times. 
We can observe that for an offset of 1/255, the closer one voxel is to the root 
ground truth (darker shape at the center of each image), the higher number of 
rounds it gets sampled, and only a small proportion of the peripheral area 
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which does not overlap with the root gets sampled 4 or more times. However, 
when using a higher offset 10/255, most of the peripheral area gets sampled at 
least 4 times, and the central area which overlaps with the root is being 
sampled less frequently than before. This shows that by adjusting the value of 
the offset, we can balance the sampling frequency of the root containing crops 
and pure soil crops. 

  

6.2.2 Loss function 

6.2.2.1 Weighted binary cross entropy loss 

For our segmentation and super-resolution task, binary cross entropy (BCE) 
loss is used as the loss function. It is the simplified binary version of the 
negative log-likelihood (NLL) loss, which is commonly used as the loss function 
for training multi-class classification models. For a single input data  , the 
formula of BCE loss is given as follows:  

                                     
  

Lupine Small, offset=1/255 Lupine Small, offset=10/255

Figure 6.2: The distributions of sampled crops when using different offset 
values in importance sampling. There are in total 2000 sampling rounds in a 
Lupine Small image, with a crop size of 60×60×60. Colors denotes the 
number of rounds each voxel gets sampled. Darker shape in the center is the 
ground truth root of Lupine Small.

i

Li = − (yi log2(pi) + (1 − yi)log2(1 − pi)) (6.1)
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Here,   is the ground truth class (1 if root else 0),   is the estimated 
probability that the input data   belongs to the positive class 1. If the true label 
is 1, when   approaches 1, the loss approaches 0. When   approaches 0, which 
means the model makes a wrong prediction, the loss increases and the rate of 
increase gets much higher as   getting closer to 0 because of its logarithmic 
property (Figure 6.3). This logarithmic property overcomes the saturation 
problem of the Sigmoid function used at the end of the network. The Sigmoid 
function has a very small gradient when the input to it is not in the vicinity of 
0, making the network optimization too slow. By overcoming this problem, the 
BCE loss facilitates the training process. 

  
Formula 6.1 is for a single input data (i.e. one voxel), and for a batch of 

input images, the BCE loss is calculated as the average loss among all the 
voxels in it: 

                                   

  
in which   represents the total number of voxels in the mini-batch. However, 
since in our dataset, the number of non-root voxels heavily outnumbers the root 
voxels, if we directly use the naive BCE loss as in formula 6.2, the contribution 
of the non-root voxels will be significantly larger than the root voxels, which 
may force the network to focus more on improving the prediction accuracy of 
the non-root part. This imbalance problem might lead to results with a high 

yi pi

i
pi pi

pi

Figure 6.3: The BCE loss with respect to the probability estimation.   
represents the estimated probability that sample   belongs to the class 1, 
when the true label is 1.

pi

i

L = −
1
N

N

∑
i=1

(yi log2(pi) + (1 − yi)log2(1 − pi)) (6.2)

N
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false negative rate, which tends to have root voxels predicted as non-root. In 
order to deal with this problem, we introduce a weighting factor for the root 
voxels in the BCE loss: 

  

in which   is the root weight,   is the ground truth label of voxel with 
coordinates  , and   is the probability estimated by the network that it 
belongs to the positive class.  

One special case when calculating the weighted BCE loss is when using 
importance sampling, in which the sampled crops would contain significantly 
more root voxels than the expectation in the whole data. In order not to bias 
the model towards predicting too many false positive roots, the loss of each crop 
in one mini-batch is divided by its relative importance before calculating the 
average loss of the whole batch, as shown below: 

     

where   is the relative importance of crop  ,   and   are the 
probabilities of sampling the crop by importance sampling or uniform sampling, 
respectively.    is the average loss of the whole mini-batch consisting of   
number of crops, and   is the BCE loss of crop  . For crops containing higher 
percentage of root, the loss of it will be divided by a larger relative importance, 
thus contributing less to the computation of gradient during backpropagation. 

6.2.2.2 Don’t-care flag 

Due to the noisiness of the input image, it is difficult for the network to learn 
to accurately distinguish the borders between the root and soil, so it takes a 
long training time to refine them. Moreover, there is a problem with the virtual 
data we use for training: currently we use a threshold of 0.3 to decide which 
voxels in the occupancy grid should be labeled as root (see 5.2.2), but this 

L = −
∑i, j,k (Y i, j,k ⋅ log2 Pi, j,k ⋅ r w + (1 − Y i, j,k) ⋅ log2(1 − Pi, j,k))

∑i, j,k (Yi, j,k ⋅ r w + (1 − Yi, j,k)) (6.3)

r w Y i, j,k

(i, j, k) Pi, j,k

Lbatch =
1
N

N

∑
c=1

Lc

Ic
(6.5)

Ic =
Pc_imp

Pc_uni
(6.4)

Ic c Pc_imp Pc_uni

Lbatch N
Lc c
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threshold choice is arbitrary. This could be confusing information to the 
network. Even if we label all voxels with positive intensity as root, the root 
voxels at the root-soil border will have low intensity, so adding noise to it will 
make these voxels too hard to be recognized correctly as root by the network.  

At the same time, our collaborating plant scientists do not require the root 
surface to be extracted precisely but are more interested in the completeness of 
the 3D root structure extraction. Therefore, we can adjust the network to 
ignore the unnecessary confusing details and focus on more important aspects. 
For this purpose, we introduce the so-called don’t-care flag to mask the vicinity 
of the border between root and soil. And when calculating the training loss, 
voxels within this mask are ignored. By doing this, the optimization process 
ignores this difficult part and updates the network based on the more reliably 
labeled parts of the input image. This mask is generated by labeling voxels close 
to the root-soil border with 1, on both the root side and the soil side. Any other 
voxels are labeled with 0. Here, the definition of the root-soil border is the 
boundary between zero and non-zero in the occupancy grid. Figure 6.4 shows 
one example of the don’t-care mask. 

   

Figure 6.4: Occupancy grids of a random root (left) and the don’t-care mask 
of it (right). The don’t-care mask is marked with blue shade, illustrating the 
border area between root and non-root.
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6.2.3 Other training settings 

The implementation of this work is done with PyTorch (Paszke, Gross et al. 
2017), because the dynamic graph it uses provides transparency on runtime, 
which makes it convenient for keeping track of what is going on during training 
and easy to debug. Moreover, it is easy to distribute computation work among 
multiple GPU cores with PyTorch. 

Optimizer  Adam (Kingma and Ba 2014) is chosen as the optimization 
algorithm for training the network, because of its stability of performance and 
fast convergence speed compared to stochastic gradient descent. 3 different 
initial learning rates are experimented, 1e-3, 1e-4 and 1e-5. Default values are 
used for the beta1 and beta2 coefficients, which are 0.9 and 0.999, respectively. 

Training epoch  In each training epoch, the number of data points (image 
crops) used is defined as a hyper-parameter before training starts. By default, 
the number 100000 is used. Each training crop is obtained by randomly 
sampling one data from the training set, and from the data randomly sampling 
one crop using either uniform sampling or importance sampling as described 
before (see 6.2.1). The random crops used in different epochs are the same, but 
with shuffled order. 

6.3 Performance evaluation 

6.3.1 Validation 

Validation on random crops  After a certain number of training batches, we 
validate the network’s performance on some validation data, in order to check if 
the model is overfitting. When for a certain amount of time the validation loss 
stops decreasing or starts increasing while the training loss continues to 
decrease, the training process is considered to have converged and will be 
manually stopped. Usually, the validation is done on the whole images of the 
validation set, which takes a considerable amount of computation time. In order 
to speed up the process, we use one random crop from each validation data for 
validating the network instead. As long as the crop is uniformly randomly 
sampled from the data, the expectation of the validation loss of it should be the 
same as that of the whole image. It can be observed that despite small 
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fluctuations, the overall validation loss curve is roughly the same. Therefore, in 
the following experiments, we use the random crops for validation. 

Validation metrics  Besides the root weighted BCE loss which is computed the 
same way as training data, the validation F1 score is also calculated to evaluate 
the changes of network performance on the validation data, for that it is 
relatively robust against class imbalance. The formulas are shown below: 

                                            

  

Here TP/FP/FN represent the number of true positives, false positives, false 
negatives, respectively. Since the output of the network is the estimation of the 
probability of each voxel being root, which are continuous values between 0 and 
1, a threshold of 0.5 is used to binarize the output into positive and negative 
predictions. When calculating the validation metrics of whole images, the F1 
score is calculated for each whole image, and then averaged to get the F1 score 
for the validation dataset: 

                                                   

  

Here, V is the validation dataset, v is one image in it, and |V| is the total 
number of images in V. But when validating on random image crops, the TP/
FP/FN are accumulated for all the image crops, and the F1 score for the 
validation dataset is directly calculated based on them. This is done because, 
for a large number of random crops, there will be no roots in them, then the 
number of TP is 0. In this case, both the numerator and denominator of the F1 
score are 0, making the calculation not valid. However, if TP is accumulated for 
all random crops in the validation dataset, when the validation set size is big 
enough, TP will almost certainly be positive in the end. 

precision =
TP

TP + FP
(6.7)

recall =
TP

TP + FN
(6.8)

F1 =
2 ⋅ precision ⋅ recall
precision + recall

(6.9)

F1_avg =
1

|V | ∑
v∈V

F1_v (6.10)
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6.3.2 Testing 

Unlike validation, testing is done on the whole images of the real test dataset. 
Currently, there are 5 real MRI images used for testing, including 
Lupine_Small, Lupine_22_August, I_Sand_3D_DAP5,  I_Soil_1W_DAP7, 
and  I_Soil_4D_DAP7. F1 score is also used in testing performance 
evaluation, but because of the misalignments between the human annotations 
and the real images, the TP/FP/FN numbers cannot be directly calculated. To 
deal with this problem, distance tolerant F-score is used as described in a 
previous study (Uzman, Horn et al. 2019). The basic idea of it is to tolerate 
minor misalignments by ignoring the false positives which lie close to the 
ground truth root, and the false negatives which lie close to the predicted root. 
This is done by making the ground truth bigger when calculating precision, and 
making the root prediction bigger when calculating recall (Figure 6.5). As 
shown in the figure, both the distance tolerant recall (the percentage of the 
brown area in the black box on the left) and precision (the percentage of the 
brown area in the black box on the right) increased compared to original results 
without dilation. The distance tolerance can be adjusted by changing the 

 

Figure 6.5: Illustration of the calculations of distance tolerant recall and 
precision. The left shows the dilation of the segmented root to calculate the 
distance tolerant recall, and the right shows the dilation of the ground truth 
root to calculate the distance tolerant precision. Green represents the ground 
truth root, pink represents the segmented root, and brown denotes the 
overlapping between green and pink, which is the numerator in both recall 
and precision calculations. The black border delineates the denominator in 
either recall (left) or precision (right) calculation.
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dilation distance. Since there is no best distance tolerance for calculating the 
test F score, multiple distance tolerance values will be used,  and the model’s 
performance on the test data will be evaluated by analyzing the plot of distance 
tolerance F scores against increasing distance tolerances. 

In testing, the test tube (a tubular object inserted in the soil, used for 
calibration) part is ignored by masking the tube region with a zero mask, in 
both the ground truth and the segmentation output. This is done because the 
trained models tend to predict the test tubes in real images as roots. The 
reason for this is that the test tubes in the synthetic training data are always 
perfect cylinders, which is not a realistic simulation of the real images. The real 
test tubes are often twisted and with uneven thickness. Therefore, when trained 
with this dataset, the network learns to segment a test tube as non-root only 
when it’s a perfect cylinder. On the other hand, it is easy to manually remove 
the test tube from the real images because it has a fixed location and radius, so 
the correct prediction of the test tube as non-root is not necessary. Therefore, 
we just ignore the test tube region during testing.  
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7 Results 

In most of the models, we use a training mini-batch of 25, and 100000 
random image crops (60×60×60) from the training set in each training epoch. 
Thus, there are 4000 mini-batches in each epoch. 

7.1 Effects of using the combined dataset 

As described in section 5.1, to the original dataset of synthetic noisy root 
images, we added randomly generated roots combined with real soil images. To 
demonstrate the effect of using the combined dataset, here we compare two 3D 
U-Net models, one trained with the original dataset (denoted as Model O), the 
other trained with the combined dataset (denoted as Model C). All other 
hyperparameters of the 2 models are the same, which are already fine-tuned to 
ensure relatively good performance. In the combined dataset, the number of 
training input crops from each dataset is the same. Both models can reach high 
validation F1 scores after training convergence, which is 0.967 for Model O and 
0.964 for Model C (table 7.1). However, the validation set used to validate the 2 
models are not entirely the same, because Model C was also validated on some 
combined data. Therefore, we compare their performance based on the 
segmentation results of the real MRI images, which are the same for both 
models.  

The visualization of the real Lupine Small data shows that the result from 
Model O has significantly more false positives in the soil area (Figure 7.1, left). 
This may suggest that the soil noise simulation in the original dataset does not 
mimic the real noise well enough in the depth dimension. In comparison, Model 
C is able to produce segmentations with fewer false positives (Figure 7.1, right).   
The quantitative comparison with the distance tolerant F1 scores also shows  
that Model C (orange curve in Figure 7.1) has a better segmentation on Lupine 
Small. This improvement of Model C is probably because it’s also trained with 
real noise data, so it learns from more diverse and realistic soil noise. When the 
false positive rate is too high, non-existing branches may be extracted in the 
root extraction algorithm. Such a risk can be reduced when the combined 
dataset is used for training.  
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On the other hand, the results of real Lupine 22 show that Model C can 

produce a more connected root structure compared to Model O (Figure 7.2).  
The comparison between the distance tolerant F1 scores also shows a slightly 
improved performance of Model C (orange curve in Figure 7.2). This might be 
the benefit of integrating more diverse root structures in the dataset. Also, 
because the aliasing effect is incorporated in the randomly generated roots, the 
combined dataset mimics the thin roots in real images better.  

Figure 7.1: Comparison of segmentation results from models trained with 
the 2 different datasets, on the real Lupine Small data. The upper row shows 
the results thresholded at 0.5. The lower image compares the distance tolerant 
F1 scores of Model O (blue) and Model C (orange).

original dataset combined dataset
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For the overall comparison of the 2 models’ performance, we plot the average 

distance tolerant F1 scores of all 5 real MRI images, under different distance 
tolerances (Figure 7.3). Because larger distance tolerance tolerates bigger 
misalignments between the segmentation result and the ground truth, the F1 
score increases with the distance tolerance. Figure 7.3 shows that, the average 
test F1 score of Model C is higher than Model O, no matter what value the 
distance tolerance takes. This complies with the qualitative comparison between 

Figure 7.2: Comparison of segmentation results from models trained with 
the 2 different datasets, on the real Lupine 22 data. The upper row shows the 
results thresholded at 0.5. The lower image compares the distance tolerant F1 
scores of Model O (blue) and Model C (orange).

original dataset combined dataset
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the visualized outputs above. In further experiments of this thesis, Model C will 
be used as the control model, if a different one is not explicitly mentioned.  

  

7.2 Effects of importance sampling 

To speed up the learning convergence, importance sampling was used to train 
the network more frequently on the crops with more root voxels. In this 
experiment, the sampling probability is positively correlated with the 
percentage of root voxels in each crop. At the same time, we make sure that 
any crop has a non-zero probability of being sampled, by adding a small offset 
(0.02 is used here, see 6.2.1.2 for more details). Here we compare one model 
trained with uniform sampling and one with importance sampling in terms of 
the validation loss, to see which one converges first. The validation loss can be 
separated into 2 components: validation root loss and validation soil loss, which 
are the losses calculated from only the root voxels or only the soil voxels, 
respectively.  

The validation soil losses of both the importance sampling model and the 
uniform sampling model are at the same level, but the validation root loss of 

Figure 7.3: Comparison of distance tolerant F1 scores between Model O and 
Model C. Blue represents Model O, and orange represents Model C. The error 
bar shows the 95% confidence interval around the mean.
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the importance sampling model reaches a fast decreasing phase earlier than the 
uniform sampling model (Figure 7.4). The difference between the number of 
training batches needed to reach the plateau is around 5k, slightly more than 
one training epoch. This agrees with our expectation: because the importance 
sampling allows the model to learn from more root containing crops, the model 
can learn faster to detect root-like structures in the input, leading to faster 
convergence of validation root loss. 

 
  

Figure 7.4: Comparison of the validation root loss curves between models 
trained with uniform sampling or importance sampling. The initial soil loss 
above 0.013 is clipped for a clearer presentation of the later training stage.
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However, when we look at the distance tolerant F1 scores of these 2 models, 
there is no significant difference between them, no matter which distance 
tolerance value is used for computation (Figure 7.5). This can also be directly 
observed from the segmentation results on the test data, where there is no 
qualitative difference between these 2 models. 

  
The result shows that importance sampling only speeds up learning 

convergence in terms of the number of training epochs, but does not improve 
the final performance on the test data. Moreover, the faster convergence speed 
is offset by the overheads of calculating the sampling probabilities for all 
possible crops in each image. This makes the actual time needed for the 
importance sampling model to converge even slightly longer. As a result, for 
further experiments, uniform sampling is used. 

7.3 Effects of using don’t-care flag 

It is hard for the network to learn to accurately predict the root-soil border 
area. To make the model focus more on recognizing the main part of the roots 
instead of these unimportant details, we tried using the don’t-care flag. It is 

Figure 7.5: Comparison of distance tolerant F1 scores between the models 
trained with uniform sampling and importance sampling. Error bar shows the 
95% confidence interval around the mean.
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used to label the root-soil border area, and voxels with this flag are ignored 
during training loss calculation. In what follows, we denote the model trained 
with the don’t-care flag as the don’t-care model. 

The highest validation F1 score of the don’t-care model is 0.993, higher than 
0.964 of the control model (Table 7.1). However, this is because, for the don’t-
care model, the validation F1 is calculated only on voxels without the don’t-
care flag. These voxels are easier to segment, thus resulting in a higher F1 score. 
This is done to be consistent with the training process, for clearer observation 
of the learning convergence. 

The result on the test dataset shows that when the distance tolerance is 
lower, the F1 score of the model trained with don’t-care flag is slightly higher 
compared to the control model (Figure 7.6, upper plot). When the distance 
tolerance is high, this difference disappears. This increase of the F1 score comes 
from a higher recall and a slightly lower precision, which is less significant than 
the increase of the recall (Figure 7.6, lower plot). Therefore, applying the don’t-
care flag can indeed increase the recall of roots in the test dataset, which 
complies with our expectation. 

When we look at the result of the real Lupine 22 data as one example, it can 
be observed that the root predictions by the don’t-care model are significantly 
thicker than the control model. The proximate region of the root-soil border is 
more likely to be predicted as root by the don’t-care model (Figure 7.7). The 
thickening of the root prediction can be explained as follows: The root 
prediction is slightly thicker than the ground truth, so the false negatives are 
likely to decrease. But the increased false positives will get ignored because 
they are most probably within the don’t-care area. As a consequence, the 
network is penalized less. This root thickening effect is the most obvious in 
thinner roots such as Lupine 22, in which the root-soil border constitutes a 
larger proportion of the total root volume. Therefore, one reason why the recall 
is higher is that the thicker root prediction contains the ground truth inside it, 
thus the voxels of the root surface are less likely to be miss-predicted as non-
root. Moreover, the predicted root structure of the don’t-care model appears to 
be more connected than the control model, although several major 
disconnections in the control model result are still present in the don't-care 
model result. However, the price for thicker root predictions is that more non-
root voxels in the vicinity of the root surface are also predicted as root, 
resulting in a lower precision. 
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Our original intention of using the don’t-care flag is to increase the recall of 

roots so that some roots which were not detected before can be recognized. The 
actual results show that the increased recall is partly due to increased root 
thickness in the prediction, partly due to the correct detection of previously 
undetected roots. However, only some small gaps are bridged when applying 
don't-care mask. One drawback of using the don’t-care flag is that the radii of 
the segmented roots are thicker than reality, which introduces an unwanted bias 
for the further root radius analysis. 

Figure 7.6: Comparison of evaluation metrics between the don’t-care model 
and the control model. Error bar shows the 95% confidence interval around 
the mean.
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without don’t-care flag with don’t-care flag

Figure 7.7: Comparison of the segmentation results on Lupine 22 between 
the don’t-care model and the control model. In the upper images, root 
predictions (green) are overlapped with the ground truths (red shade). The 
lower images are the comparisons of the distance tolerant recall and precision, 
respectively.
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7.4 Effects of adding root at a later time point 

Under the assumption that roots do not change their locations during 
growth but only increase the radii, the root at a later time point will contain all 
root voxels of an earlier time point in it. Therefore, one hypothesis is that 
adding the root image of a later time point may help the segmentation model 
confirm the detection of root voxels at an earlier time point. To test this 
hypothesis, we generated random virtual roots at 2 different time points, one 
earlier and one later, and combine with the real soil image to make them noisy. 
The noised roots of 2 different time points are then concatenated in the channel 
dimension, and used to train a 3D U-Net model (referred to as the multi-time 
model in the following). Another 3D U-Net model is trained with only the 
earlier roots for comparison (referred to as the control model in the following). 
The only difference between the model structures is that the first convolutional 
layers, which receive the input, have one more input channel for processing the 
root of the later time point. 

The highest validation F1 score achieved by the multi-time model and the 
control model are 0.973 and 0.978, respectively. Both F1 scores are high, and 
the difference between them is not significant. One observation of the training 
process is that the validation loss of the multi-time model converges 
significantly faster than the control model (Figure 7.8). The difference in 
convergence time is roughly 6 epochs. This is probably because, with the help of 
the later root information, it is easier for the multi-time model to learn.  

For testing, 6 randomly generated roots which are different from the training 
and validation ones are used. The real MRI images are not used here because 
we do not have the same roots imaged at a later time point. Although some 
new root data from our collaborator have different time points, they cannot be 
utilized because the roots at different time points have significant 
misalignments.  

Because the test data here is virtual, there are no misalignments between the 
ground truth and the noisy image. Therefore, the F1 score on the test data can 
be calculated directly. The result shows that there is no significant difference 
between the 2 models in F1 scores as well as in recall (Figure 7.9). One 
observable difference is that the multi-time model result has slightly higher 
precision, which can be observed from the visualized output (Figure 7.10): for 
the output of the control model (left), there is a soil area detected as root (the 
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top right part of image), but the output of the multi-time model does not have 
such a false positive prediction. This is probably because the network can infer 
from the image of the later time point which has a different noise pattern in the 
same area. When different noise patterns are present in the same area, the 
network may have a higher tendency towards predicting the voxels as non-root.  

  

Figure 7.8: Comparison of the validation loss curves between the control 
model and the multi-time model.

Figure 7.9: Comparisons of F1 score, recall, and precision, between the 
control model and the multi-time model.
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Moreover, although the average recall of the multi-time model is at the same 

level as the control model, the segmentation performance of the thinner roots 
seems better than the control model. For example in Figure 7.10, the thinnest 
root tips are more completely recovered in the multi-time model output.  
Overall, the segmentation result of the multi-time model appears to be finer and 
more detailed. However, because thinner roots contribute less to the recall 
compared to thicker roots, this improvement is not reflected in the overall recall 
value. Therefore, the results indicate that it is helpful for the network’s 
performance to add the root at a later growth stage as the additional 
information. 

noisy test image ground truth

control model output

Figure 7.10: Comparison of the thresholded segmentation outputs on one 
virtual test image, between the control model and the multi-time model. The 
threshold applied to the segmentation is 0.5. The ground truth is shown on 
the upper right. Each of these images is the 2D maximum projection of the 
original 3D image along one horizontal dimension.

multi-time model output
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As mentioned above, in order to reduce the disconnections in the detected 
roots, the aliasing effect is added to the randomly generated roots in the 
dataset. It can be observed from Figure 7.10 that, some root disconnections in 
the input image are indeed connected in both model outputs. 

7.5 Effects of adding location-dependent information 

From the observation of the real MRI images, we found some location 
information which may correlate with the existence of roots, and they may help 
improve the network’s performance. Since these patterns are easy to compute,  
they can be provided directly as additional input channels for the network the 
learn from. Two different types of location-dependent information are tested 
individually. The same network structure is used as the control 3D U-Net 
model, except that the convolutional layers which directly receive the input 
have one more input channel, for processing the additional information channel. 

7.5.1 Voxel-wise distance to the pot central axis 

The voxel-wise distance to the pot central axis is used because of the 
observation that many root branches tend to grow along the pot border, away 
from the pot central axis. Meanwhile, the roots closer to the central axis grow 
almost horizontally in these real images. This distance information cannot be 
directly inferred from the input data by the network, because image crops 
instead of whole images are used as inputs. However, adding this new input 
channel did not change the highest validation F1 score significantly, which is 
approximately 0.964 for either model trained with or without this new channel 
(table 7.1). This may be partly due to the fact that the original validation F1 
score is already high, which does not have much room for further improvement. 
The results on test data also show no significant difference after adding the new 
input channel (Figure 7.11). Also, no qualitative difference can be observed 
from the test segmentation outputs of the 2 models.  

These results indicate that, at least in the current dataset, the distance to 
the central axis does not have enough correlation with the distribution of roots, 
thus is not able to provide much help in deciding if a voxel is root or non-root. 
But since the current dataset contains only 4 root structures from the real data 
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annotation and some randomly generated virtual roots, it may not represent the 
situation of the real roots so comprehensively. Therefore, in the future, we can 
try to imitate the observed relationships between this distance information and 
the root growth pattern in data generation. Or when it’s possible to train with 
real data in the future, adding the distance information to the central axis is 
still worth trying. 

7.5.2 Voxel-wise depth from the top of the pot 

The voxel-wise depth information is used because we observed some features 
of the real root changes along the depth dimension. For example, the radii of 
roots tend to decrease and the roots at the top tend to grow horizontally until 
reaching the pot border.  

The highest validation F1 score is 0.962 for the model trained with the depth 
information, which is similar to 0.964 of the control model (table 7.1). 
Furthermore, the distance tolerant F1 scores on test data show no significant 
difference from the control model trained without the additional information 
(Figure 7.12). These results suggest that adding the voxel depth information as 
input does not lead to improved segmentation performance. Similarly, the 
correlation between the depth and the root distribution is not deliberately 

Figure 7.11: Comparison of distance tolerant F1 scores between the model 
trained with and without the voxel-wise distance to the pot central axis. Error 
bar shows the 95% confidence interval around the mean.
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incorporated in the training dataset, which may be the reason why the network 
couldn’t make use of this additional information. Therefore, in the future, such 
features can be introduced in the random root generation for a new dataset. Or 
if we can use the real data for training, we should still try adding these location-
dependent information channels then. 

  

7.6 Effects of using a higher root weight 

The dataset we use contains many times more non-root voxels than root 
voxels. To deal with this class imbalance, a value larger than 1 can be used to 
weight the predictions of the root voxels more heavily than the non-root voxels, 
in loss calculation. Here, we compare the segmentation performance of 2 
models, one trained with a root weight of 10, the other the control model 
trained with root weight of 1. We observed that in the results on the real MRI 
images, the average F1 scores under different distance tolerances are similar for 
these 2 models. The tiny improvement of the model trained with the higher root 
weight is mainly due to the improved recall, with the cost of a slightly lower 
precision when the distance tolerance is low (Figure 7.13). It can be 

Figure 7.12: Comparison of distance tolerant F1 scores between the model 
trained with and without the voxel-wise depth information. Error bar shows 
the 95% confidence interval around the mean.
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observed from the segmentation output of Lupine 22 that the root predictions 
are more connected but also more noisy (Figure 7.14). The explanation is that 
because the network gets punished more heavily when predicting a root voxel as 
non-root than the other way around, so it learns to favor the prediction as root 
when uncertain. This leads to a slightly increased recall.  

F1 score

Recall Precision

Figure 7.13: Comparison between the 3D U-Net model trained with a root 
weight of 10 and 1. Error bar shows the 95% confidence interval around the 
mean.
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7.7 Performance comparison with RefineNet 

The segmentation performance of the 3D U-Net model is compared with the 
RefineNet model in a previous study (Uzman, Horn et al. 2019). The 3D U-Net 
model used for comparison is the same model as the one mentioned in Section 
7.1, trained on the combined dataset. The performances are evaluated on the 
current test dataset of real MRI images, with the distance tolerant F1 score, 
recall, and precision (Figure 7.15). The F1 scores of the 2 models are similar 
when the distance tolerances are relatively low, but the F1 scores of the 3D U-
Net model become slightly higher with increased the distance tolerance. This is 
mostly because the precision values of the 3D U-Net are higher than the 
RefineNet model while the recall values are lower, but the differences are not so 
big.  

root weight = 10 root weight = 1

Figure 7.14: The thresholded segmentation outputs of the model trained 
with a root weight of 10 and 1, on the real Lupine 22 image.
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These differences in recall and precision between the 2 models can also be 

observed directly from the segmentation outputs. For example, in the output of 
the Lupine 22 data from the RefineNet model, the predicted roots are more 
connected than that from the 3D U-Net model (Figure 7.16). This leads to a 
higher recall for the RefineNet model. However, there are also significantly more 
false-positive predictions in the non-root area compared to the cleaner output 
of the 3D U-Net model. Particularly, the planar MRI artifacts which are 
detected as roots by the RefineNet model are no longer recognized as roots in 
the 3D U-Net model, demonstrating the benefit of utilizing the depth dimension 
information. The disadvantage of having too many false positives is that the 
ones close to the root would confuse the root extraction algorithm, thus 

F1 score

Recall Precision

Figure 7.15: Comparison between the 3D U-Net model and the RefineNet 
model, in terms of the evaluation metrics. Error bar shows the 95% confidence 
interval around the mean.
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becoming incorporated into the extracted root structure. Meanwhile, it is still 
preferable to further increase the recall of the 3D U-Net output, since bridging 
wide gaps is also difficult for the root extraction algorithm. 

  

7.8 Root extraction results 

Finally, we tried to extract the structural models from the segmentation 
results of the real MRI images, using a recently developed root extraction 
algorithm (Horn 2019) (Figure 7.17). Overall, the root structures can be 
decently extracted. The false positive predictions not so close to the root 
structure can be mostly ignored (marked with red in Figure 7.17), by adjusting 
certain parameters of the algorithm. It can be observed that when the gaps 
along root branches are small, they can be successfully bridged by the root 
extraction algorithm. But when the gaps are too big, either the algorithm fails 
to bridge them (e.g. the red root-like signals in Lupine 22, in Figure 7.17), or 

RefineNet output 3D U-Net output

Figure 7.16: Comparison of the segmentation results on real Lupine 22 
between the RefineNet model and the 3D U-Net model. The root predictions 
(green) are overlapped with the ground truth (red shade).
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the bridging connections look unnatural (e.g. some blue connections in 
I_Sand_3D_DAP5, in Figure 7.17). 

  

Lupine Small Lupine 22

I_Sand_3D_DAP5 I_Soil_4D_DAP7 I_Soil_1W_DAP7

Figure 7.17: The results of structural model extraction on the 5 real MRI 
images. Green represents the overlapping between the extracted model and 
the segmentation result. Blue shows the gaps bridged in the extracted model. 
Red represents the positive predictions in the segmentation result that are 
ignored by the root extraction.
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Table 7.1: The highest validation F1 scores of each model that is validated 
on the validation set of the combined dataset. Here,   represents the root 
weight used in loss calculation.

r w

Model Highest validation F1 score

0.964

Importance sampling 0.962

Don’t-care flag 0.993

Distance to the central axis 0.962

Voxel depth 0.964

0.944 r w = 10

Control,  r w = 1
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8 Conclusion 

The thesis investigated semantic segmentation and super-resolution of plant 
root MRI images using a 3D U-Net model. The main contributions are as 
follows: Firstly, the use of 3D image crops as network inputs allows the use of 
deeper 3D CNNs, which is the 3D U-Net in our case. Furthermore, the 3D U-
Net model generates better results with shorter training time, compared to the 
results of a previous study also using a 3D CNN (Horn 2018).  

Moreover, the thesis has experimented with 3 types of additional input 
channels. When the root image at a later time point is used as the additional 
channel, the model’s segmentation quality of thin roots is improved. However, 
there is no significant improvement in the evaluation metrics, which may be 
because the thin roots contribute less to the metrics than thicker roots. For the 
models that take location-dependent information as the additional input 
channel, we did not observe a significant enhancement of the segmentation 
performance. However, this may be because the generated dataset did not 
imitate the relationship between location-dependent information and root 
distribution well enough. Therefore, in the future, we can simulate this 
relationship in data generation, and then try these location-dependent 
information channels again.  

Labeling the root-soil border area with don’t-care flag leads to more 
connected root predictions, but the predictions are also thicker than in reality. 
This has the disadvantage that further root radius analysis may get biased by 
the thickening.  

Applying importance sampling of image crops based on their root percentage 
indeed increased the learning convergence speed in terms of the number of 
training epochs, but did not increase the actual speed. This is because of the 
overheads of generating the sampling probabilities for all possible crops in each 
image.  

Furthermore, we experimented with different root weights in loss calculation. 
Using a root weight larger than 1 leads to slightly higher recall of roots, but 
also a slightly higher amount of false positives. Therefore, we can adjust the 
balance between recall and precision as needed by adjusting the root weight 
value. 
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Another contribution is the improvement of the data generation. It is done 
by introducing more diverse root structures with a random root generation 
algorithm, simulation of the aliasing effect of thin roots, and the incorporation 
of real soil noise. When trained with this improved dataset, the model produces 
less false positives without sacrificing the recall in the segmentation results on 
real MRI images. 

In the end, the 3D U-Net model is compared with the RefineNet model of 
another previous study (Uzman, Horn et al. 2019). Although the disconnections 
of the root predictions are more evident for the 3D U-Net, its results also 
contain a significantly lower amount of false positives. The false positives may 
be wrongly integrated into the root structure by the root extraction algorithm, 
so reducing the amount of them helps the algorithm extract a more accurate 
root structure. Besides, the disconnections of the 3D U-Net results can be 
reduced by setting a higher root weight, as long as the precision is constrained 
in a reasonable range. The results of root extraction on the segmentation 
results from our network show that small disconnections can be successfully 
bridged, but larger gaps are still problematic. Therefore, future work needs to 
further reduce root disconnections, but without increasing false positives, in 
order to achieve better root extraction results. 
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