
Bonn-Aachen International Center for Information
Technology (B-IT)
University of Bonn

Master Programme in Life Science Informatics

Master Thesis

 Segmentation of Plant Root MRI Images
With 3D U-Net

Author: First Examiner:
Yi Zhao Prof. Dr. Sven Behnke

 Second Examiner:
 Prof. Dr. Thomas Schultz

 Advisor:
 Nils Wandel

Submitted: 12.11.2019

Abstract

To study the mechanism of plant root water uptake, Magnetic Resonance
Imaging (MRI) can be used to observe the roots while they grow in the opaque
soil. However, the low signal-to-noise ratio and resolution of the 3D MRI images
hinder the extraction of structural models from them. To deal with this, we use
a 3D convolutional neural network to segment MRI images into root and non-
root while increasing the resolution of the output.

The structure of our network is designed based on the 3D U-Net, a widely
used segmentation method. Our network takes a 3D image crop as the input,
and the segmentation outputs are assembled as the result for the whole image.
For improving a previous dataset of synthetic noisy root images, we added
randomly generated roots combined with real soil images. The network is
trained and validated on this new dataset and evaluated on real MRI images
with a special F1 metric that is robust against misalignments between the
image and its annotation.

Several experiments are done to improve the segmentation performance. We
experimented with additional input channels, including the root image at a
later time point and two types of location-dependent information. To remove
the part of the learning task that is unnecessarily hard, we tried making the
network ignore the root-soil border region during training. Besides, we tested a
loss function that weights the root voxels more, to overcome the imbalance
between the root and non-root voxels. Moreover, for faster learning convergence,
we tried sampling image crops that have more root voxels.

In the end, the structural models extracted from our segmentation results
reconstruct the real roots successfully, except a small number of larger gaps in
the roots and some minor false positives.

Contents

1 Introduction 1 ..

2 Problem definition 5 ...

3 Theoretical background 7 ..
3.1 Artificial neural networks 7 ..
3.2 Convolutional neural networks 8 ..

4 Related work 11 ..
4.1 Semantic segmentation 11 ..

4.1.1 Semantic segmentation of 3D images 12 ...
4.2 Image super-resolution 14 ..
4.3 Class imbalance 16 ...
4.4 Importance sampling 17 ...
4.5 Root structural model reconstruction 17 ..
4.6 Enhancing root image resolution and SNR 18 ...

5 Data 23 ..
5.1 Generation of the new dataset 23 ..

5.1.1 Caveats of the original dataset 23 ...
5.1.2 Random virtual root generation 24 ...
5.1.3 Combining virtual root with real soil 26 ...
5.1.4 Splitting the dataset 27 ..

5.2 Additional input channels 29 ...
5.2.1 Simulating roots at different time points 30 ...
5.2.2 Location dependent information 32 ..

6 Segmentation method 35 ..
6.1 Network: 3D U-Net 35 ...

6.1.1 Network structure 35 ..

 v

6.1.2 Valid convolution 36 ...
6.2 Training pipeline 37 ...

6.2.1 Data loading: random crop sampling 37 ...
6.2.1.1 Uniform sampling 37 ..
6.2.1.2 Importance sampling by root percentage 38

6.2.2 Loss function 39 ..
6.2.2.1 Weighted binary cross entropy loss 39 ...
6.2.2.2 Don’t-care flag 41 ..

6.2.3 Other training settings 43 ...
6.3 Performance evaluation 43 ...

6.3.1 Validation 43 ...
6.3.2 Testing 45 ...

7 Results 47 ..
7.1 Effects of using the combined dataset 47 ...
7.2 Effects of importance sampling 50 ...
7.3 Effects of using don’t-care flag 52 ..
7.4 Effects of adding root at a later time point 56 ...
7.5 Effects of adding location-dependent information 59

7.5.1 Voxel-wise distance to the pot central axis 59
7.5.2 Voxel-wise depth from the top of the pot 60 ...

7.6 Effects of using a higher root weight 61 ...
7.7 Performance comparison with RefineNet 63 ...
7.8 Root extraction results 65 ..

8 Conclusion 69...

 vi

List of Figures

3.1 An example of a simple multi-layer neural network 7
3.2 An example of a typical convolutional neural network 8
4.1 The architecture of the 3D U-Net 14 ..
4.2 The RefineNet architecture for semantic segmentation and super-

resolution 19 ...
4.3 The segmentation results of RefineNet on two real MRI images 20
4.5 The segmentation results of the 3D CNN on the same real MRI images

21
5.1 The aliasing effect observed in the real MRI image of Lupine 22 24
5.2 The aliasing effect simulated in the random root generation 26
5.3 Examples of generated root imitating different real roots 26
5.4 Example horizontal slices of combined crops virtual root and real soil 27
5.5 The 3D visualizations of the 5 real MRI images in the test set 29
5.6 The generated root at different time points 31 ...
5.7 The pot shapes in real images 33 ..
6.1 The modified 3D U-Net structure used in this work 36
6.2 The distributions of sampled crops when using different offset values in

importance sampling 39 ...
6.3 The BCE loss with respect to the probability estimation 40
6.4 Occupancy grids of a random root (left) and the don’t-care mask of it

(right) 42 ...
6.5 Illustration of the calculations of distance tolerant recall and precision 45
7.1 Comparison of segmentation results from models trained with the 2

different datasets, on the real Lupine Small data 48
7.2 Comparison of segmentation results from models trained with the 2

different datasets, on the real Lupine 22 data 49
7.3 Comparison of distance tolerant F1 scores between Model O and Model

C 50 ..
7.4 Comparison of the validation root loss curves between models trained

with uniform sampling or importance sampling 51
7.5 Comparison of distance tolerant F1 scores between the models trained

with uniform sampling and importance sampling 52

 vii

7.6 Comparison of evaluation metrics between the don’t-care model and the
control model 54 ..

7.7 Comparison of the segmentation results on Lupine 22 between the don’t-
care model and the control model 55 ...

7.8 Comparison of the validation loss curves between the control model and
the multi-time model 57 ..

7.9 Comparisons of F1 score, recall, and precision, between the control
model and the multi-time model 57 ...

7.10 Comparison of the thresholded segmentation outputs on one virtual
test image, between the control model and the multi-time model 58

7.11 Comparison of distance tolerant F1 scores between the model trained
with and without the voxel-wise distance to the pot central axis 60

7.12 Comparison of distance tolerant F1 scores between the model trained
with and without the voxel-wise depth information 61

7.13 Comparison between the 3D U-Net model trained with a root weight of
10 and 1 62 ..

7.14 The thresholded segmentation outputs of the model trained with a root
weight of 10 and 1, on the real Lupine 22 image 63

7.15 Comparison between the 3D U-Net model and the RefineNet model, in
terms of the evaluation metrics 64 ...

7.16 Comparison of the segmentation results on real Lupine 22 between the
RefineNet model and the 3D U-Net model 65 ...

7.17 The results of structural model extraction on the 5 real MRI images 66 ..

 viii

List of Tables

7.1 The highest validation F1 scores of each model that is validated on the
validation set of the combined dataset 67 ...

 ix

1 Introduction

The mechanism of root water uptake is critical in understanding plant
growth. In order to study that, one approach is to analyze root growth patterns
under different soil watering conditions. For this, non-invasive 3D imaging
methods are required, to observe the roots while they grow in the opaque soil.
Such methods include X-Ray CT, neutron radiography and magnetic resonance
imaging (MRI). Among them, MRI is the most suitable for studying root water
uptake, because it is sensitive to the water content (Pohlmeier, Oros-Peusquens
et al. 2008). Since it is time-consuming and error-prone for human experts to
reconstruct the root structures from the images, root extraction algorithms are
developed for automatic extraction. However, the low resolution and signal-to-
noise ratio (SNR) of the MRI images often lead to the failure of such algorithms
(Schulz, Postma et al. 2012). For the purpose of enhancing the SNR, semantic
segmentation can be applied on the MRI images, so that each voxel will be
labeled as root or non-root. As for increasing the resolution, image super-
resolution methods can be applied, which maps one voxel in the input to
multiple voxels in the output. Both semantic segmentation and image super-
resolution are well-studied computer vision topics, and the state-of-the-art
performance of both is achieved using deep learning methods.

This thesis belongs to the second part of the project: “Advancing structural-
functional modeling of root growth and root-soil interactions based on the
automatic reconstruction of root systems from MRI” (Schnepf and Behnke
2015). The topic of this part is reducing the noise and improving the resolution
in the MRI root images acquired from the first part of the project, to facilitate
the extraction of the root structural model in the third part.

For accomplishing both semantic segmentation and super-resolution
simultaneously, a previous study used a customized RefineNet (Uzman, Horn et
al. 2019), which is a deep learning model originally designed for 2D semantic
segmentation (Lin, Liu et al. 2019). Due to the lack of training data and the
inaccuracy of the human annotations, the model was trained on a synthetic
dataset generated based on the annotations. Each 3D image was converted to a
set of 2D image stacks each containing 3 layers, and input to the RefineNet
model. Then, the 2D segmentation outputs were assembled into the 3D result.
The trained model was able to detect roots from real MRI images with high

 1

recall, but also generated a non-negligible amount of false positives. Another
previous study to address these tasks used a 3D convolutional neural network
(CNN), and the same synthetic dataset for training (Horn 2018). The
segmentation results on the real images contained a lower amount of false
positives, but the recall of thinner roots was significantly lower than in the
results of the RefineNet model, resulting in large gaps in the roots.

Based on the studies above, we hypothesize that more information in the
depth dimension can be helpful for reducing false positives, but the synthesized
dataset may not have imitated such features well enough. Moreover, due to the
memory limitation, the structure of the previous 3D CNN model may be too
shallow for the tasks. Therefore, in this thesis, we improve the root synthesis
process by incorporating more depth dimension features, such as the aliasing
effect of thin roots. Furthermore, real soil images are combined with virtual
roots, for integrating more realistic soil noise information into the dataset.
Regarding the network structure, a modified version of 3D U-Net is used, which
is an image segmentation model that has been shown to achieve relatively good
results given a small amount of training data (Çiçek, Abdulkadir et al. 2016). In
order to overcome the memory limitation, 3D crops of the original images are
used as inputs to the network. We assume that the local information of a crop
should be sufficient to decide if a voxel is root or non-root. To speed up the
training process, we experiment with importance sampling of the input crops
based on their root percentage. Next, we try to make the task easier for the
network by letting it ignore the vicinity of the root-soil boundary, because this
part of the image is hard to learn and not so important. We do this by first
labeling these voxels with the don't-care flag, and then ignore them during loss
calculation. Moreover, additional information which may facilitate the network’s
decision making is added as new input channels, to verify if the information can
improve the performance of the network. The types of additional information
used are location-dependent information and the image of the same root at a
later growth stage. The 2 kinds of location-dependent information are the voxel-
wise distance to the pot central axis and the voxel-wise depth. In the end, the
segmentation performance on the real MRI images is compared with the
RefineNet model, and root structure extraction is performed on the
segmentation results of our network.

The thesis is structured as follows: Chapter 2 formally defines the semantic
segmentation and super-resolution problems. Chapter 3 introduces some basic
concepts about convolutional neural networks. Next, Chapter 4 summarizes the
related work, including researches on semantic segmentation, super-resolution,
and studies on noise reduction of plant root MRI images. Chapter 5 describes

 2

the data generation process, and Chapter 6 describes in detail the method used
for image segmentation and super-resolution. In Chapter 7, the results of
different experiments are analyzed. Finally, Chapter 8 summarizes the
contributions of this thesis and possible future work.

 3

2 Problem definition

The goal of this thesis is to apply semantic segmentation and super-resolution
on 3D plant root MRI images, for reducing the noise and increasing the
resolution. Because the voxels are to be segmented into 2 classes, root and non-
root, it is a binary segmentation problem. Here, the definitions of binary
segmentation and super-resolution in our task are given as follows.

Semantic segmentation is defined as mapping each pixel/voxel of an image to
a certain class. In our case, a volumetric image is represented with a 3D
matrix of real numbers: . The goal is to learn a mapping function .
For each voxel of image , maps it to the probability of belonging to the
positive class (root): . Then, a threshold is used to
decide which class label will be assigned to voxel : 1 (root) if ,
otherwise 0 (non-root).

For super-resolution, a scale factor needs to be defined first. In our case, the
definition of super-resolution can be formulated as learning a function which
maps each voxel in image to a 3D matrix , where is a
possible super-resolution version of voxel . As a consequence, the image
 is mapped to its super-resolution version .

Since we want to achieve both binary segmentation and super-resolution
simultaneously, the combined problem is to learn a mapping that maps each
voxel of image to a 3D probability matrix . Next, a
threshold is applied on the probability matrix to generate the label
matrix in super-resolution: for each element in , if , the
corresponding element in is assigned with 1, otherwise 0. In the end, we
obtain for the whole image as the super-resolution
segmentation result.

V
V ∈ IRx×y×z f

v V f v
Pv_root = f (v), f (v) ∈ [0,1] θ

v Pv_root ≥ θ

k
g

v ∈ IR V v′� ∈ IRk×k×k v′�
v

V ∈ IRx×y×z V′� ∈ IRkx×ky×kz

h
v ∈ IR V Pv′�_root ∈ [0,1]k×k×k

θ Pv′�_root

Lv′� p Pv′�_root p ≥ θ
Lv′�

LV′� ∈ {0,1}kx×ky×kz V

 5

3 Theoretical background

3.1 Artificial neural networks

The artificial neural network is a powerful method of learning multi-level
representations of data, and it has achieved enormous success in various fields
including visual object recognition, speech recognition, and machine translation
(LeCun, Bengio et al. 2015). While traditional machine learning algorithms
needs expert-engineered feature extraction from the raw data, artificial neural
networks can work well with the raw data itself.

An example of a very simple neural network is shown in Figure 3.1. The
input information is linearly combined by each artificial neuron, and
transformed by a non-linear activation function, and then becomes the input to
the next layer.This layered structure of connected non-linear modules is

responsible for extracting more and more high-level features from the raw data.
The higher-level representation layers amplify the aspects of the input that are
important for achieving the task. For example, for the image classification
problem, the lowest layer usually extracts basic features such as edges, the layer

Figure 3.1: An example of a simple multi-layer neural network. (LeCun,
Bengio et al. 2015)

 7

following it extracts simple combinations of edges, and the subsequent high-level
layers might represent more complete objects as the combinations of simpler
motifs. Usually, methods which use neural networks with multiple layers of
neuronal units are also called deep learning methods.

Since deep learning methods need less domain expertise in engineering the
features from raw data than classical approaches, with greater computation
capacity and larger data, its performance can be easily improved. Moreover,
nowadays new network architectures and learning algorithms are constantly
being developed, enabling deep learning methods to produce even better results.
Thanks to this characteristic, deep learning has made major advances in a
broad spectrum of application fields.

3.2 Convolutional neural networks

Convolutional neural networks (CNN) are designed to process array data,
which can be of different dimensions, such as 1D for speech (Abdel-Hamid,
Mohamed et al. 2012), 2D for images and 3D for volumetric images or videos
(LeCun, Bengio et al. 2015). The design of CNN’s structure was inspired by the
animal’s visual neural system, mimicking the concepts of simple cell and
complex cell in it (Hubel and Wiesel 1962).

An example of a typical CNN can be seen in Figure 3.2 (Sharma 2018). One
basic component of CNN is the convolutional layers. A convolutional layer
consists of a number of filters, which are used to convolve with local patches
throughout the image (or the feature map from the last layer), producing
intermediate feature maps. The function of these feature maps can be seen as
capturing the existence of specific features corresponding to each filter.

Figure 3.2: An example of a typical convolutional neural network. (Sharma
2018)

 8

There are 2 reasons for using this architecture, firstly it utilizes the fact that
local values in array data (such as images) are usually highly correlated, which
forms local motifs that can be captured by specific filters. The second reason is
that these local motifs can exist anywhere in the image (location invariance), so
the same filter is designed to scan and convolve with the whole image to form
one feature map.

Another important component of CNN is the pooling layer after the
convolutional layer. It usually takes either the maximum or average value of a
local patch on the feature map. One reason for doing this is to tolerate minor
shifts and distortions of the feature in the image, thus the feature can be
detected more reliably. Another reason for using the pooling layer is to increase
the receptive field of each output neuron, so that more contextual information
can be incorporated. The combination of a convolutional layer, a non-linear
activation function, and a pooling layer usually are repeated and concatenated
in order to capture different hierarchies of features.

There are a large number of applications of CNN, for example in computer
vision problems such as image classification and segmentation. Especially, in the
ImageNet competition in 2012, CNN lowered the error rates by half compared
to the best competing approaches (Krizhevsky, Sutskever et al. 2012). Since
then, it has become a state-of-the-art approach for most of the recognition and
detection tasks in the field of computer vision. These big advances were
possible thanks to the use of graphics processing units (GPUs) for efficient
computation, the non-linear activation function rectified linear unit (ReLU)
(Nair and Hinton 2010), a new regularization method called dropout, and data
augmentation to generate more training data. The combination of the
hardware and software progresses reduced the time required to train CNN from
weeks to hours.

Since our problem is to segment the 3D MRI image of a plant root into root
and non-root voxels, CNN is the most promising approach to be used in our
case.

 9

4 Related work

4.1 Semantic segmentation

Semantic segmentation of images is also called pixel-level classification. As
the name implies, the task is to assign a class to each pixel or voxel, and in the
end the pixels or voxels of the same object class will be clustered together
(Thoma 2016). There are a wide range of applications of semantic
segmentation, such as detecting road signs (Maldonado-Bascón, Lafuente-
Arroyo et al. 2007), segmenting tumors from brain images (Moon, Bullitt et al.
2002), and tracking medical instruments in operations (Wei, Arbter et al. 1997).
The approaches for doing semantic segmentation can be divided into 2
categories: traditional approaches and deep learning approaches. These
categories will be briefly introduced below.

Traditional approaches Traditional approaches of semantic segmentation rely
heavily on the concept of feature, which is a piece of information that is
relevant for solving the problem at hand. Unlike deep learning which can
automatically learn the relevant features, these methods require carefully
designing the features using domain expertise. There are a large variety of
different features that are developed for the semantic segmentation problem,
such as Histogram of Oriented Gradients (HOG) (Dalal and Triggs 2005), Bag-
of-visual-words (BOV) (Csurka, Dance et al. 2004), and many more.

The traditional approaches of semantic segmentation can be categorized into
2 types depending on the task: unsupervised and supervised ones. In
unsupervised approaches, there are no pre-existing labels of the data, which
means no ground truth class is assigned to each pixel/voxel. One example is K-
means clustering, which aims at partitioning n samples (pixels/voxels) to k
clusters. In supervised approaches, there is a ground truth label for each
training data point, and the algorithm tries to infer a function which maps data
features to the label. Among supervised approaches, undirected probabilistic
graphical models such as conditional random field (CRF) achieve the best
performance, partly because they also make use of the context information

 11

around each pixel/voxel when making predictions (Lafferty, McCallum et al.
2001).

Deep learning approaches Compared to traditional approaches, more recent
deep learning methods have significantly enhanced segmentation accuracy.
Since CNNs are specifically designed to extract representations from natural
images, CNN-based models have become state-of-the-art methods for image
segmentation. For example, fully convolutional networks (FCNs) replaces the
fully connected part of the network with convolutional layers, allowing the
network to produce the output of the same shape as the input (Long,
Shelhamer et al. 2015). Another approach used for improving the performance
is the dilated convolution, allowing multi-scale contextual information to be
aggregated systematically (Yu and Koltun 2015). One advantage of using
dilated convolution compared to downsampling-upsampling is that the former
does not lead to a loss of resolution. Moreover, there have been some important
advances in the backbone architecture, leading to performance breakthroughs.
One such example is the use of residual modules in the network (He, Zhang et
al. 2016). The function of the residual module is to force the network to learn a
residual function, by adding the input of one module to its output. It has been
widely tested that the residual model efficiently improves the performance of
very deep networks.

4.1.1 Semantic segmentation of 3D images

The above mentioned new methods for getting better segmentation results
are mostly applied to 2D segmentation problems. However, there are also needs
for 3D image segmentation, such as detecting roots from noisy 3D images.
Although the problem of 3D is similar to 2D, there are still some different
requirements and constraints. For instance, 3D segmentation generally requires
a larger memory for computation. In this section, I will introduce in more detail
some deep learning networks specifically designed for segmentation of 3D
images.

Currently, there are broadly 2 categories of CNNs used to tackle the 3D
image segmentation problems: 2D CNN based and 3D CNN based. The 2D
CNN based methods usually split the 3D images into slices, and then generate
segmentation result for each slice with 2D CNNs (Havaei, Davy et al. 2017).
Although there are plenty of powerful 2D CNNs that achieves good

 12

performance on 2D images, they cannot incorporate the depth-dimensional
spatial information of 3D images, thus the final results are likely to be
suboptimal. Because of this disadvantage, 2.5D methods are developed. They
use methods to incorporate some depth-axis information and compress it into
2D slices, and then still use 2D CNNs as the segmentation method (Roth, Lu et
al. 2014). Besides that, the more recent use of 3D CNNs overcomes this problem
more thoroughly. However, one challenge of using 3D CNN is that the GPU
memory requirement for training the neural network is much higher. Thus, it is
difficult for the network structure to be as deep as many 2D networks, because
of hardware constraints. Up until now, various architectures of 3D CNNs have
been proposed, including 3D U-Net, V-Net, and many more. The 3D U-Net is
shown to achieve good performance given a relatively small number of training
data (Çiçek, Abdulkadir et al. 2016), and many newer 3D segmentation models
are developed based on it. In what follows, the structure of the 3D U-Net will
be briefly introduced.

3D U-Net The structure of 3D U-Net is illustrated in Figure 4.1 (Çiçek,
Abdulkadir et al. 2016). Similar to its 2D counterpart, 3D U-Net has a
downsampling encoder module followed by an upsampling decoder. The
downsampling is achieved with max-pooling and upsampling with
deconvolution. Thus the encoder extracts more and more abstract features, and
incorporates broader contextual information. As a result, the final result of the
downsampling part is coarse. So in order to produce segmentation results with
the same resolution as the network input, the decoder is used to increase the
resolution (Long, Shelhamer et al. 2015). Shortcut connections are established
between the encoder and decoder, on layers of the same resolution.

 13

These shortcuts are helpful for providing the high-resolution features from the
encoder part to the decoder part. Additionally, batch normalization (BN) (Ioffe
and Szegedy 2015) is used in the network before each ReLU, for speeding up
the learning convergence. BN was designed for mitigating the internal covariate
shift which requires a low learning rate for training. With BN, the learning rate
can be much higher, and the training becomes less sensitive to the initialization.
Moreover, BN can act as a regularization method, helping the model to
generalize better. Because the number of annotated training data is small, they
are augmented with slight elastic deformations, under the assumption that the
images are still biologically plausible. With the combination of the network
structure and the data augmentation method, 3D U-Net was able to achieve
good results with a relatively small number of data points.

4.2 Image super-resolution

Image super-resolution aims at restoring a high-resolution version of an image
given its low-resolution version (Yang, Zhang et al. 2019). It can be categorized
into 2 types, single image super-resolution if the input is a single low-resolution
image, and multi-image super-resolution if the input consists of multiple low-
resolution images of the same scene. The former is more widely used because of
its high efficiency. Besides that, because there is only one image for each root,

Figure 4.1: The architecture of the 3D U-Net. (Çiçek, Abdulkadir et al.
2016)

 14

single image super-resolution is used in this thesis. Because images with higher
resolution contain more informative details in it, super-resolution is useful in
many fields, including medical imaging, satellite imaging and security imaging.
However, image super-resolution is an ill-posed problem, because there can be
many possible high-resolution images corresponding to the same low-resolution
image.

Approaches to tackle the super-resolution task are commonly divided into 3
categories, interpolation-based, reconstruction-based and learning-based.
Interpolation-based methods are fast because it’s simple and straight-forward,
but the resulting accuracy is usually low compared to other methods. One
example of it is the cubic interpolation method (Keys 1981). The reconstruction-
based methods make use of sophisticated image priors which defines the
constraints when reconstructing the high-resolution image. An examples of
such constraints is a certain level of smoothness in the output (Dai, Han et al.
2009). The advantage of these methods is that they can generate flexible and
sharp details. However, they are usually time-consuming and the quality of the
outputs degrades quickly with increasing scale factors. The learning-based
methods work by learning the statistical relationship between the low-
resolution image and its corresponding high-resolution image from training
examples. It can be further classified into traditional machine learning methods
and deep learning methods. One example of the traditional machine learning
methods is the Markov Random Field (MRF) (Rajan and Chaudhuri 2002).
However, similar to the cases of many other computer vision problems, the deep
learning methods have shown performance superior to the methods mentioned
before. Also, most of the deep learning methods of single image super-resolution
are based on CNN.

Super-resolution CNN (SRCNN) is a simple example of a deep learning based
approach (Dong, Loy et al. 2014). It first upsamples the input image with
bicubic interpolation, and then process the upsampled image with 3
convolutional layers to produce the high-resolution output. Mean squared error
(MSE) is used as the loss function. Furthermore, some more advanced methods
are developed on top of SRCNN. For example in some works, instead of directly
using interpolation, convolutional layers with pooling or dilated convolution are
used for downsampling the image, and then deconvolution is used to upsample
the image into high-resolution (Dong, Loy et al. 2016). In this way, instead of
using a specific interpolation method, the interpolation is learned from the data,
resulting in better performance. Another development is to use much deeper
network architectures because, in theory, the solution space of the network
increases with its depth (Montufar, Pascanu et al. 2014). A different direction

 15

for further improvement is to combine domain expertise with deep learning.
For example, the combination of sparse coding of images with deep learning has
achieved better performance both quantitatively and qualitatively (Wang, Liu
et al. 2015). Although many of these optimization-based neural networks can
produce results with a high signal-to-noise ratio, they often lack the high-
frequency details. In order to deal with this, generative adversarial nets (GANs)
have been introduced. One example is the SRGAN (Ledig, Theis et al. 2017),
which uses a CNN to generate the super-resolution image, followed by a
discriminator network to distinguish between the super-resolution output and
the original high-resolution image. The loss of SRGAN includes not only the
pixel similarity but also the perceptual similarity, resulting in more realistic
outputs. Another advantage of the SRGAN is that it also works successfully
with large scale factor, which the other models often fail to achieve.

4.3 Class imbalance

Class imbalance is a problem that can occur in classification, when training
samples of certain classes significantly outnumber the other classes. This is
problematic because most of the classifier learning algorithms assume a
relatively balanced distribution (Sun, Wong et al. 2009). In the case of deep
neural networks, when there is class imbalance, it is often observed that the
classification error of the majority class decreases rapidly with training, but the
error of the minority class increases in the beginning and then decreases very
slowly. This is because the gradient is dominated by the majority class (Anand,
Mehrotra et al. 1993). This is the case of our root segmentation task, where the
non-root voxels significantly outnumber the root voxels. Since image
segmentation can also be seen as pixel-level classification, class imbalance is a
problem we have to address in this work.

The approaches to deal with class imbalance can be divided into several
categories. The first one is data-level approaches, which include different ways
of resampling the dataset. Widely used examples include randomly
undersampling the majority class (Tahir, Kittler et al. 2009), or randomly
oversampling the minority class, or creating new synthetic samples of the
minority class (Chawla, Bowyer et al. 2002). Another category is the algorithm-
level approaches, which use algorithm-specific modifications to deal with class
imbalance. One commonly used example is cost-sensitive learning, which
weights minority classes more than majority classes when calculating the loss
function (Thai-Nghe, Gantner et al. 2010). The disadvantage of this approach is

 16

that one needs to search for the best combination of weights to optimize for a
certain evaluation function, which can be computationally expensive. Besides
this, loss functions that are designed to be robust against class imbalance can
also be used, such as the Intersection over Union (IoU) loss. Since calculating
IoU involves thresholding the network’s output, IoU is not differentiable.
Therefore, directly using IoU as training loss is infeasible. To deal with this, a
differentiable approximation of the IoU loss was introduced, which can be used
for back-propagation (Rahman and Wang 2016).

4.4 Importance sampling

Currently more and more big datasets enable deep learning methods to
achieve state-of-the-art performance in many tasks, but at the same time,
training takes significantly longer time with such huge datasets. For example in
our case, training the 3D convolutional networks is time-consuming. When
training neural networks, it is likely that a large amount of time is spent on the
samples that can already be handled well by the network, but the harder
samples are not given more focus. By sampling the harder samples more often,
importance sampling can help the learning converge faster. The theoretical basis
for the speedup by importance sampling is that it reduces the variance of the
gradient estimates in stochastic gradient descent, so that the optimum can be
reached more efficiently (Alain, Lamb et al. 2015).

There are different ways of doing importance sampling, which can be
categorized based on the metrics used for evaluating the ‘importance’ of each
sample. For example, the ‘importance’ can be the loss or the gradient norm of
each sample. One example of using the loss to do importance sampling is
ranking the data points by their losses every certain number of training epochs,
and then select the data points which have higher losses with higher probability
during training (Loshchilov and Hutter 2015). Using gradient norm for
importance sampling is a more direct way to reduce the variance of gradient
estimates, but it’s usually more expensive to compute (Alain, Lamb et al. 2015).

4.5 Root structural model reconstruction

Since the roots are hidden under the soil, some observation methods need to
dig them out, wash and scan, or grow the plant in transparent agar (Nagel,
Schurr et al. 2006). But all these disrupt the normal growth of the plants. In

 17

order to allow observation during growth under more natural conditions, a non-
invasive imaging method needs to be used. MRI is one of the methods that
allow non-invasive 3D imaging (Brown, Cheng et al. 2014), and the intensity of
its signal reflects the water content, which is important for studying root water
uptake. Therefore, it is chosen as the imaging method for our project.

One goal of this project is to help automatically reconstruct the root
structural model from the 3D MRI images. This is because it is time-
consuming to manually inspect each image and extract the relevant biological
parameters such as the root length. In one of the recent efforts to automate this
process, the algorithm automatically reconstructs the root models from 3D MRI
images and provides further root phenotype calculations based on the models
(Schulz, Postma et al. 2013). The algorithm consists of 3 steps: firstly, tubular
structures are detected in the root image. Then, all root voxels in the image are
connected to the root base through the shortest path, using Dijkstra’s
algorithm. Here the distance measure is the Euclidean distance weighed with
the tubularness measure. Finally, the constructed tree is pruned, such as
removing root branches that are too short.

An MRI measurement can be done with different spatial resolutions. When
done with a low resolution, the measuring time is significantly reduced, but the
resolution and the signal-to-noise ratio (SNR) of the results will also decrease
(Brown, Cheng et al. 2014). In massive plant root studies that require repeated
measurements over an extended period of time, the time cost needs to be
considered, leading to a compromise of the resolution and SNR. However, the
above-mentioned root extraction algorithm has worse performance when the
resolution and SNR decreases. Therefore, enhancing the resolution and SNR of
root images without increasing the measurement time is important for
guaranteeing the quality of the root extraction. This is the goal of this thesis.

More recently, NMRooting, a modified version of the above-mentioned
algorithm, was developed (van Dusschoten, Metzner et al. 2016). It contains
some additional features, including dilating the input image to bridge small
gaps along root branches.

4.6 Enhancing root image resolution and SNR

As explained before, the resolution and SNR of root images need to be high
enough to ensure a decent quality of the root extraction results. For this
purpose, 2 research works have been carried out (Uzman, Horn et al. 2019)
(Horn 2018). They both use deep learning methods for segmenting root images

 18

into root and non-root, thus achieving a higher SNR. Their methods also
output the segmentation with a higher resolution than the input.

One work used RefineNet (Lin, Liu et al. 2019) with a pre-trained ResNet
module (Figure 4.2) to apply the segmentation and super-resolution on 2D
inputs (Uzman, Horn et al. 2019). To transform 3D images to 2D inputs, several
consecutive image slices are merged together with principal component analysis
(PCA) or averaging, for incorporating more depth dimension information.
Because the amount of real data available for their work was very limited, the
authors generated an augmented dataset from the annotations of the real data.
These data are generated by combining the reconstructed root annotations
with synthesized soil images that simulate the real soil features. The results on
two real MRI images show that the model is able to detect the root structures
quite completely, but produces a non-negligible amount of false positives

Figure 4.2: The RefineNet architecture for semantic segmentation and super-
resolution. (Uzman, Horn et al. 2019)

 19

for the thinner root system (Figure 4.3).

The other work used a 3D CNN (Figure 4.4) and the same augmented
dataset (Horn 2018). The model was able to detect the root well for the simpler
root image (Figure 4.5, left), but with more false positives in the soil area
compared to the result of the RefineNet model (Figure 4.3, left). In the result of
the more complicated root image, there is a significant amount of false negatives
which makes some root branches disconnected (Figure 4.5, right). Because the
GPU memory requirement is high for training a 3D CNN, the

Figure 4.3: The segmentation results of RefineNet on two real MRI images.
True positive, false positive, and false negative predictions are marked with
green, blue, and red, respectively. (Uzman, Horn et al. 2019)

Figure 4.4: The 3D CNN architecture for semantic segmentation and super-
resolution. (Horn 2018)

 20

depth of the network was limited in this work, which may be one of the reasons
why the performance is not as good as the RefineNet model. Another possible
reason is that the features along the depth-axis in the real images are not well
simulated in the augmented dataset, so the network cannot learn such features
to help make correct predictions.

Figure 4.5: The segmentation results of the 3D CNN on the same real MRI
images. (Horn 2018)

 21

5 Data

To experiment on the influence of the diversity of training data, there are 2
data sources used for the experiments, including: 1) the original dataset from
the previous work (Uzman, Horn et al. 2019), generated by combining virtual
roots and virtual soil data which simulate real soil features; 2) A new dataset of
randomly generated virtual roots, combined with real soil data.

In the original dataset, the virtual roots are reconstructed human annotations
of 4 real MRI images. These roots are then augmented to increase the diversity,
with augmentation operations including radius multiplication, rotation,
horizontal axis flipping and swapping. The virtual soil data are generated by
simulating the observed features in the real MRI images, for example, the big
foggy chunks of noise are simulated with the Perlin noise (Perlin 1985). In the
final dataset, there are 384 training samples, 192 validation samples, and 81
visualization samples. The test set consists of 2 usable real MRI images,
Lupine Small and Lupine 22.

The generation of the new dataset from random roots and real soil will be
described in detail as follows.

5.1 Generation of the new dataset

5.1.1 Caveats of the original dataset

One problem of the generated virtual root in the original dataset is that
there is a feature of the real root that was ignored: for some thinner roots which
grows in a almost horizontal direction, they appear slightly disconnected
(Figure 5.1). This is due to the aliasing effect: each horizontal slice of the real
MRI image contains information of a thin horizontal slice of the real 3D space,
but the corresponding real space slices of 2 adjacent image slices are not
directly adjacent. This leads to disconnections in some roots in the image,
because the spatial information is lost between the 2 adjacent image slices.

 23

This may not influence the 2D convolutional network so much, but might cause
problems for 3D network, where the disconnections is obvious. In some
experiments we observe that similar disconnections also exist in the test output
of the 3D convolutional network, when the test input is one real image with
such disconnections (e.g. Lupine 22 in Figure 5.1). And the network used was
trained completely on the dataset mentioned in part 1, which fits tubular
structure along the root without simulation of such disconnections. Therefore,
we speculate that if we add this feature in training data, and use the connected
super-resolution ground truth, the network may be able to learn to bridge these
disconnections in the input data.

Another problem is that the dataset in part 1 are based on only 4 root
annotations, although augmented to increase the diversity, the randomness is
still limited. And because the validation and test dataset are also based on the
same annotations, there might be the possibility that if there's new test data
from a completely different root, the network's performance would degrade.
This creates the motivation to generate some random virtual roots that are
different from each other while still looking realistic.

5.1.2 Random virtual root generation

In order to deal with the problems of aliasing and potential overfitting,
random virtual roots with the aliasing effect to simulate the disconnections are

Figure 5.1: The aliasing effect observed in the real MRI image of Lupine 22.
Examples of roots with the aliasing effect are marked in red boxes.

 24

generated. This tool used Gaussian process to virtually imitate the growth of
the root. From the point of plant shoot where a initial radius is defined by the
user, the root coordinate goes to the next point in the direction of growth with
a predefined step size. The initial direction of growth changes after every
growth step, according to the sum of a random vector and a gravity vector
which always points downwards. Thus the root grows in general downwards
with some randomness. The root radius also shrinks by a predefined factor
while growing, and then randomly upscaled a little. Once the radius decreases
below a predefined small value, or the root grows above or below the allowed
range, the growth ends. Along the growth of each branch, there’s a predefined
probability of branching out a new root at each growth step. The direction of
the new branch is controlled by the current growth direction of the parent
branch, plus a predefined angle between parent and child branch, and a gravity
vector that points downwards. Moreover, if the growing root reaches outside the
predefined pot border, the growth step is shortened to keep the root within the
pot, and then the growth continues as described above. This makes sure that
the root always grows inside the pot. Once the root growth is complete, we
obtain a list of anchoring points along the branches, with location coordinates
and radii. Based on the list, 3D Gaussian blobs are generated based on the
location and radius to voxelize the root structure, which results in the
occupancy grid of the root. Afterwards, the ground truth is obtained by
binarizing the occupancy grid with a threshold of 30% of the maximum
intensity: any voxel with an intensity larger than the threshold gets the root
label 1, else non-root label 0.

Besides increasing the diversity of the root structures, we also introduce the
aliasing effect in the 1× resolution data which will be used as network inputs.
This is achieved by first generating the random root with higher depth axis
resolution (6×), and when downsampling to 1× resolution, take 1 slice from
every 6 horizontal slices, instead of using the average of the 6 slices. On the
other hand, the 2× super-resolution file used as ground truth is obtained by
taking the average of every 3 slices, thus generating ground truth without
disconnections (Figure 5.2). By providing aliased input data to the network and
using super-resolution non-aliased ground truth, we expect the network to learn
to bridge these disconnections in the input data.

By adjusting the predefined parameters, different kinds of root structure can
be generated, such as ones that look like the real data Lupine Small or Lupine
22. Examples are shown in Figure 5.3. In the end, 10 random Lupine Small-like
roots, 10 random Lupine 22-like roots and 10 random roots generated with
parameters between the previous 2 root types are created.

 25

5.1.3 Combining virtual root with real soil

For better imitation of the real data, we use the real soil samples to combine
with these virtual roots. There are in total 10 real soil samples, including 8 with

Figure 5.2: The aliasing effect simulated in the random root generation. Left
is the aliased 1× resolution root used as the network input, compared with
the non-aliased 2× resolution root used as the ground truth (right). Both
images are projections on one of the horizontal dimensions.

Figure 5.3: Examples of generated root imitating different real roots. The
images shown here are super-resolution ground truths, imitating the root
structure of Lupine Small (left) and Lupine 22 (right), respectively.

 26

the dimension of 256×256×70 and 2 with the dimension of 256×256×121.
Since the input to the network is a 3D crop of the whole input data, it needs to
be combined from a crop of the virtual root data and a crop of the real soil
data. The combination method used is described as follows: Firstly, the root
crop is noised with some random Gaussian noise. Then, its brightness is
rescaled, with a random factor between [0.8, 1.3]. Next, the root and soil crops
are added together to generate the combined crop, where the transparency of
the root is control by a factor in the range of [0.7, 1]. Finally, the combined
crop is multiplied with a random factor in the range of [0.2, 1.4]. Example
horizontal slices of some combined crops are illustrated in Figure 5.4, in which
we can observe different contrasts between root and soil, and also different
overall intensities.

During training, other augmentations on both the root and the soil crop
before combining can be applied on-the-fly, such as flipping one axis and
swapping the horizontal axes, further increasing the variety of the training data.

5.1.4 Splitting the dataset

Among the 30 random virtual roots, we randomly select 24 roots as training
data, and the rest for validation. Because we are only interested in the
segmentation result on the real MRI images, we did not use these virtual data
as test data. There are 3 possible ways to augment each soil crop, including
flipping x axis, flipping y axis and swapping x-y axes. So, for the real soil data,
there are 8 (2×2×2) distinct ways of augmentation in total. For each real soil
image, we use one specific augmentation of it only during validation (flipping x

Figure 5.4: Example horizontal slices of combined crops virtual root and real
soil. Darker spots in the images are cross sections of the root branches.

 27

axis, flipping y axis, and swapping x-y axes simultaneously), and use the other
augmentations in training. It is done this way instead of using some real soil
images only for validation because the amount of data is highly limited, and it
would likely worsen the performance if the variety of training data is sacrificed.
Because we randomly take small crops (such as 60×60×60) for training, this
dataset can already provide a large diversity of input crops for training.

As will be shown later, the validation loss curves (also the validation F-score
curves) during training are roughly equivalent when either using the whole
image or crops from those images for validation. Thus, for faster validation, we
use the crops in most of the experiments. Because of this, there is no need to
generate the whole combined images, but combined crops are enough for the
purpose of validation. Furthermore, in order to make use of all the previously
generated dataset and thus cover a broader distribution in the datasets, we
combine our dataset with the original dataset (Uzman, Horn et al. 2019), in the
hope to improve the network's performance. During training, the number of
crops from the combined data (new) is made to be roughly the same as the
number from the original dataset, to balance the influences of both datasets.

For testing and visualization, we still mainly focus on the real MRI images at
hand. Right now, there are more real MRI images provided by our collaborator,
but unfortunately due to certain technical difficulty, many annotations of the
real images contain large misalignments or errors. Therefore, these images that
cannot be used for testing. This is especially the case when the root structure is
complex. Thus we try to select some of the real data that has simpler root
structure and the misalignments between the annotation and the MRI image
are not severe. Finally, except Lupine Small and Lupine 22_August, the
following new real data are also included in the test pipeline:
I_Sand_3D_DAP5, I_Soil_1W_DAP7 and I_Soil_4D_DAP7 (Figure 5.5).

 28

5.2 Additional input channels

Apart from the noisy root image as network input, adding some additional
information as other input channels may help the model extract more relevant
features and improve the segmentation performance. We selected the additional

Lupine Small Lupine 22

I_Sand_3D_DAP5 I_Soil_4D_DAP7 I_Soil_1W_DAP7

Figure 5.5: The 3D visualizations of the 5 real MRI images in the test set.
The cylinders in Lupine 22, I_Soil_4D_DAP7 and I_Soil_1W_DAP7 are
test tubes, which are used for calibration when merging image parts.

 29

information based on if there’s a reasoning that it is associated with the
distribution of roots. The 2 types of additional information that are tried in the
experiments are: noisy root image from a later growth time point, and location
dependent information, including the voxel-wise depth and distance to pot
central axis.

5.2.1 Simulating roots at different time points

We have a hypothesis that if we can provide the network with not only the
root image, but also the same root imaged at a later time point, the network
can perform better. This is under the assumption that during growth, the root
branches do not change their positions, but only increase the radii and lengths
of the root tips. In this case, the earlier root voxels are a subset of the later root
voxels, so the network can learn to infer from the later root image to confirm
the segmentation of the earlier root image. However, this is difficult to do with
the real image. This is because, firstly, there are misalignments between the
MRI images and the annotations. Besides, there are also distortions and
misalignments between the MRI images of different time points. Therefore,
before we can apply this on the real images, it is more reasonable to first test
the hypothesis on virtual data with perfect alignment. If providing the later
growth stage of the same root helps in this case, it would be worth the effort to
try to obtain real images with better alignments, and use the same method to
improve the segmentation results.

In order to generate virtual roots of 2 different growth time points, the above
method of generating the random virtual roots is used, with some further
adaptions. First, the root of the later time point is generated, and the root
structure is stored in a tree, where each node represents one branch. The tree
hierarchies is the same as the root branch hierarchies, with the children nodes
representing the sub branches growing from their parent branch. Each node
contains the information of the coordinates and radii of all the anchoring points
along the branch, which are needed for voxelization of the branch. Once the
whole tree structure is complete, we assume the total growth time is , and the
growth speed of the main branch is . Then we can calculate the time points at
which the secondary branches start growing, based on their branching positions
from the main branch. Now with the growth start time point, the total growth
time of each secondary branch can be also calculated. Then, the growing speed
of each secondary branch can be calculated, because the branch length is

t
v

 30

known. By iterating this process, the growth start time and growth speed
of any further sub branch are calculated.

The next step is to generate the same root of an earlier time step. A random
ratio between [0.7, 0.9] is generated, and the earlier time point is assigned
with the product of the total growth time and . Then we iterate through each
node (representing a branch) of the tree, and calculate its length at . After
that, we delete the anchor points on the branch which goes beyond the current
length . At the same time, the root radius at each anchor point shrinks
proportional to the ratio . Also, any child node with a growth start time
 is deleted from the tree. Finally, the voxelization is done based on this
pruned tree structure, obtaining a shorter and thinner root as outcome (Figure
5.6).

Once we have obtained the roots of different growth time, they are combined
with random crops of real soil image as described before. For both time points,
the random crops are taken from the same real soil image, to ensure that the
soil noise distribution between the time points are similar. This is done because
we assume that the soil content would not change too drastically during root
growth.

ti_0 vi

i

r te
t r

le te

le
te /t

ti_0 ≥ te

Figure 5.6: The generated root at different time points. Left and right are
the same root, at an earlier and later time point, respectively.

 31

5.2.2 Location dependent information

Another assumption is that the location of the root in the pot may follow
certain patterns. For example, we observe that many root branches tend to
grow horizontally in the beginning, and once they reach the pot border, they
grow along the border. Therefore, the location information as additional
information channel may provide useful hints of the probability of root
existence, thus may facilitate the network’s learning process. 2 types of location
dependent information are tested in the experiments, the voxel-wise depth and
the distance to the pot central axis.

The voxel-wise depth information is used, because we observed that in some
real data, the noisiness of the soil seem to change along the depth axis. This
changing noisiness may be the effect of gravity on the soil water content.
Furthermore, root structures may look different depending on the depth. The
depth information is calculated for each voxel input the input image crop.
Therefore, it is a 3D array of the same shape as the input crop, with the same
value for each horizontal slice.

The voxel-wise distance to the pot central axis is used because of the above
mentioned observation that many roots seem to follow the vicinity of the pot
border when growing, far from the pot central axis. This phenotype is also
simulated to some extent in the random root generation (in Section 5.2.2).
Because the location of the pot central axis is known for the generated roots,
for each voxel of the input image crop, the Euclidean distance to the central
axis is calculated. The result is also a 3D array with the same shape as the
input crop. The reason to use the distance to the central axis instead of the
distance to the pot border is that, although the latter is easy to calculate for
the generated virtual roots, it is hard to calculate for the real root images,
because of the distortions of the real images. In the real images, the pots are
not in a perfect cylinder shape but rather stacked barrels with changing radii.
Moreover, the pot shape may appear elliptic instead of circular in one
horizontal slice of the real image (Figure 5.7).

 32

Figure 5.7: The pot shapes in real images. The left is a 3D image projected
on a horizontal dimension, showing changing radius along the depth axis. The
right is one horizontal slice of one real image, showing a elliptic pot shape
(compared to the circle in red).

 33

6 Segmentation method

6.1 Network: 3D U-Net

CNNs has been shown to be the most successful choice for solving computer
vision problems such as semantic segmentation and super-resolution, since they
are originally designed to extract hierarchical visual features. Although the 2.5D
CNN approach of a previous study (Uzman, Horn et al. 2019) has achieved
decent results, we hypothesize that the depth dimensional information which is
difficult to be fully utilized in 2.5D CNNs may be important for improving the
segmentation result. Therefore, 3D CNN is experimented in this work.
Furthermore, because now we are using small crops of the whole image as
network input, the memory consumption is much lower, allowing the use of
deeper network structures than another study that also uses a 3D CNN (Horn
2018). As described in the related work section, 3D U-Net is the base network
structure which inspired many further network variations successfully used in
3D image segmentation. It’s relatively simple, but still powerful enough to
achieve decent performance when the number of training data points is limited.
Thus we choose it as the network for our task.

6.1.1 Network structure

The original network structure contains a downsampling encoder and an
upsampling decoder part, as described in the related work section (Figure 4.1).
The same basic structure is used in our network, with some minor adaptions
(Figure 6.1). The input to the network is a 3D crop of a noisy root image. In
the encoder part of network, the input goes through 3 convolutional modules,
with maxpooling layer (red arrow) between each pair of adjacent convolutional
modules. Each convolutional module consists of 2 convolutional layers with
increasing channels numbers. After the final convolutional module in the
encoder part, the tensor is upsampled using 2× transposed convolution to
double the size, keeping the channel number constant. Then the upsampled
tensor is concatenated in the channel dimension with the output of previous

 35

convolutional module which has the same image resolution. The concatenated
tensor then goes through 3 convolutional modules with decreasing channel
numbers, each containing 2 convolutional layers. Adjacent convolutional
modules in the decoder part of network are connected with 2× transposed
convolution layers for further upsampling to reach the final 2× resolution of the
input. In the end of the network, the number of channels is reduced to 1, and
followed by a sigmoid function which outputs probability values between (0, 1).

6.1.2 Valid convolution

For the convolutional layers in this network we tried both padding and not
padding the input. No padding during convolution is also called valid
convolution, in which case no additional information which does not belong to
the original input image will be introduced to the network. We expect that by
using valid convolution, the network would not be confused by unrealistic

Figure 6.1: The modified 3D U-Net structure used in this work. The
numbers above the tensors represent the number of channels. The final output
doubles the resolution of the input.

 36

information, thus producing better results. However, one outcome of valid
convolution is that the output of the network is smaller than 2× the input size,
because without padding, the tensor size decreases a little after each
convolutional layer. So the more no-padding convolutional layers there are, the
greater the decrease of the output tensor size. In our case, when the size of the
input crop is 60×60×60, the output crop size will be 34×34×34, much smaller
than 120×120×120 when using padding. During visualization and testing, this
leads to the need of cropping the whole image into overlapping crops, so that
the output crops can be assembled into the whole 2x resolution image without
gaps.

6.2 Training pipeline

6.2.1 Data loading: random crop sampling

Unlike the previous work (Horn 2018) which also used 3D CNN for
segmentation, the network input used in this work is 3D crops of the whole
image, instead of the whole image or big chunks of the whole image. In this
way, we can use deeper neural networks under the constraints of limited GPU
memory. Based on observations in the early data exploration, we think the local
information in the crop of a reasonable size (such as 60×60×60) already
contains a sufficient amount of information for deciding if a voxel is root or non-
root. The context information is important for making correct decisions, but the
context that’s too far away from the voxels of interest does not play a part in
whether these voxels are root. Moreover, when using a big input, due to
memory constraints, the network structure has to be shallow. For a shallow
network, one voxel in the output corresponds to a relatively small receptive field
in the input, thus the broader context cannot be utilized by it. Therefore,
during training, we randomly sample crops from the training images. Two
different methods are used for random sampling: importance sampling and
uniform sampling.

6.2.1.1 Uniform sampling

Uniform sampling is a simple sampling method, which is done by randomly
drawing the location of a certain vertex of the crop, so that each crop has the
same probability of being chosen. This is ensured by sampling the coordinate of
each dimension of the vertex from a uniform distribution. With uniform

 37

sampling, any part of the training images has the same probability of becoming
the input of the network.

6.2.1.2 Importance sampling by root percentage

On the other hand, importance sampling samples data with varying
probabilities depending on their importances. Here in this work, the basis for
importance sampling is the percentage of root voxels within each crop. For a
given whole image, crops which contain more root voxels are sampled with
higher probability, so that the visibilities of them to the network are increased.
Our reasoning for doing this is that compared to the large varieties of the soil
noise signals, the root has a more clear structural pattern to be learned by the
network. When we use the crops with more root voxels more often, the network
may learn to achieve a higher ability to detect the distinctive structural
features of the roots. This may lead to a better segmentation result and less
sensitivity to unknown soil noise varieties. Another potential benefit of using
importance sampling is that, it may speed up the convergence of the training
process, by making the network focus more on the more important training
samples, thus wasting less time on easy or unimportant samples.

The critical part of implementing importance sampling is to obtain the crop
importance (in this case root percentage) distribution for each image, from
which the sample crop will be drawn. This is done by calculating the root
percentage of every possible crop of one image and generate a multinomial
distribution in which the probability assigned to each crop is proportional to
its root percentage. And then randomly sample one crop from this distribution.

When generating the probabilities of the multinomial distribution, a small
offset value is added to the calculated root percentages. It’s done this way
because otherwise, the probability corresponding to image crops without root
voxels will be 0, then the network never has the chance to learn from them. We
don’t want the sampling process to completely ignore the crops without root,
because only learning from positive samples may lead to a high false positive
rate in the end. And this offset is one hyperparameter that can be adjusted.
The higher the offset, the higher the chance of sampling pure soil crops without
root, as shown in Figure 6.2. In this figure, for each voxel, the number of rounds
it gets sampled is color-coded, the warmer color meaning a higher number.
Here, the dark blue areas represent the voxels that are sampled at least 4 times.
We can observe that for an offset of 1/255, the closer one voxel is to the root
ground truth (darker shape at the center of each image), the higher number of
rounds it gets sampled, and only a small proportion of the peripheral area

 38

which does not overlap with the root gets sampled 4 or more times. However,
when using a higher offset 10/255, most of the peripheral area gets sampled at
least 4 times, and the central area which overlaps with the root is being
sampled less frequently than before. This shows that by adjusting the value of
the offset, we can balance the sampling frequency of the root containing crops
and pure soil crops.

6.2.2 Loss function

6.2.2.1 Weighted binary cross entropy loss

For our segmentation and super-resolution task, binary cross entropy (BCE)
loss is used as the loss function. It is the simplified binary version of the
negative log-likelihood (NLL) loss, which is commonly used as the loss function
for training multi-class classification models. For a single input data , the
formula of BCE loss is given as follows:

Lupine Small, offset=1/255 Lupine Small, offset=10/255

Figure 6.2: The distributions of sampled crops when using different offset
values in importance sampling. There are in total 2000 sampling rounds in a
Lupine Small image, with a crop size of 60×60×60. Colors denotes the
number of rounds each voxel gets sampled. Darker shape in the center is the
ground truth root of Lupine Small.

i

Li = − (yi log2(pi) + (1 − yi)log2(1 − pi)) (6.1)

 39

Here, is the ground truth class (1 if root else 0), is the estimated
probability that the input data belongs to the positive class 1. If the true label
is 1, when approaches 1, the loss approaches 0. When approaches 0, which
means the model makes a wrong prediction, the loss increases and the rate of
increase gets much higher as getting closer to 0 because of its logarithmic
property (Figure 6.3). This logarithmic property overcomes the saturation
problem of the Sigmoid function used at the end of the network. The Sigmoid
function has a very small gradient when the input to it is not in the vicinity of
0, making the network optimization too slow. By overcoming this problem, the
BCE loss facilitates the training process.

Formula 6.1 is for a single input data (i.e. one voxel), and for a batch of

input images, the BCE loss is calculated as the average loss among all the
voxels in it:

in which represents the total number of voxels in the mini-batch. However,
since in our dataset, the number of non-root voxels heavily outnumbers the root
voxels, if we directly use the naive BCE loss as in formula 6.2, the contribution
of the non-root voxels will be significantly larger than the root voxels, which
may force the network to focus more on improving the prediction accuracy of
the non-root part. This imbalance problem might lead to results with a high

yi pi

i
pi pi

pi

Figure 6.3: The BCE loss with respect to the probability estimation.
represents the estimated probability that sample belongs to the class 1,
when the true label is 1.

pi

i

L = −
1
N

N

∑
i=1

(yi log2(pi) + (1 − yi)log2(1 − pi)) (6.2)

N

 40

false negative rate, which tends to have root voxels predicted as non-root. In
order to deal with this problem, we introduce a weighting factor for the root
voxels in the BCE loss:

in which is the root weight, is the ground truth label of voxel with
coordinates , and is the probability estimated by the network that it
belongs to the positive class.

One special case when calculating the weighted BCE loss is when using
importance sampling, in which the sampled crops would contain significantly
more root voxels than the expectation in the whole data. In order not to bias
the model towards predicting too many false positive roots, the loss of each crop
in one mini-batch is divided by its relative importance before calculating the
average loss of the whole batch, as shown below:

where is the relative importance of crop , and are the
probabilities of sampling the crop by importance sampling or uniform sampling,
respectively. is the average loss of the whole mini-batch consisting of
number of crops, and is the BCE loss of crop . For crops containing higher
percentage of root, the loss of it will be divided by a larger relative importance,
thus contributing less to the computation of gradient during backpropagation.

6.2.2.2 Don’t-care flag

Due to the noisiness of the input image, it is difficult for the network to learn
to accurately distinguish the borders between the root and soil, so it takes a
long training time to refine them. Moreover, there is a problem with the virtual
data we use for training: currently we use a threshold of 0.3 to decide which
voxels in the occupancy grid should be labeled as root (see 5.2.2), but this

L = −
∑i, j,k (Y i, j,k ⋅ log2 Pi, j,k ⋅ r w + (1 − Y i, j,k) ⋅ log2(1 − Pi, j,k))

∑i, j,k (Yi, j,k ⋅ r w + (1 − Yi, j,k)) (6.3)

r w Y i, j,k

(i, j, k) Pi, j,k

Lbatch =
1
N

N

∑
c=1

Lc

Ic
(6.5)

Ic =
Pc_imp

Pc_uni
(6.4)

Ic c Pc_imp Pc_uni

Lbatch N
Lc c

 41

threshold choice is arbitrary. This could be confusing information to the
network. Even if we label all voxels with positive intensity as root, the root
voxels at the root-soil border will have low intensity, so adding noise to it will
make these voxels too hard to be recognized correctly as root by the network.

At the same time, our collaborating plant scientists do not require the root
surface to be extracted precisely but are more interested in the completeness of
the 3D root structure extraction. Therefore, we can adjust the network to
ignore the unnecessary confusing details and focus on more important aspects.
For this purpose, we introduce the so-called don’t-care flag to mask the vicinity
of the border between root and soil. And when calculating the training loss,
voxels within this mask are ignored. By doing this, the optimization process
ignores this difficult part and updates the network based on the more reliably
labeled parts of the input image. This mask is generated by labeling voxels close
to the root-soil border with 1, on both the root side and the soil side. Any other
voxels are labeled with 0. Here, the definition of the root-soil border is the
boundary between zero and non-zero in the occupancy grid. Figure 6.4 shows
one example of the don’t-care mask.

Figure 6.4: Occupancy grids of a random root (left) and the don’t-care mask
of it (right). The don’t-care mask is marked with blue shade, illustrating the
border area between root and non-root.

 42

6.2.3 Other training settings

The implementation of this work is done with PyTorch (Paszke, Gross et al.
2017), because the dynamic graph it uses provides transparency on runtime,
which makes it convenient for keeping track of what is going on during training
and easy to debug. Moreover, it is easy to distribute computation work among
multiple GPU cores with PyTorch.

Optimizer Adam (Kingma and Ba 2014) is chosen as the optimization
algorithm for training the network, because of its stability of performance and
fast convergence speed compared to stochastic gradient descent. 3 different
initial learning rates are experimented, 1e-3, 1e-4 and 1e-5. Default values are
used for the beta1 and beta2 coefficients, which are 0.9 and 0.999, respectively.

Training epoch In each training epoch, the number of data points (image
crops) used is defined as a hyper-parameter before training starts. By default,
the number 100000 is used. Each training crop is obtained by randomly
sampling one data from the training set, and from the data randomly sampling
one crop using either uniform sampling or importance sampling as described
before (see 6.2.1). The random crops used in different epochs are the same, but
with shuffled order.

6.3 Performance evaluation

6.3.1 Validation

Validation on random crops After a certain number of training batches, we
validate the network’s performance on some validation data, in order to check if
the model is overfitting. When for a certain amount of time the validation loss
stops decreasing or starts increasing while the training loss continues to
decrease, the training process is considered to have converged and will be
manually stopped. Usually, the validation is done on the whole images of the
validation set, which takes a considerable amount of computation time. In order
to speed up the process, we use one random crop from each validation data for
validating the network instead. As long as the crop is uniformly randomly
sampled from the data, the expectation of the validation loss of it should be the
same as that of the whole image. It can be observed that despite small

 43

fluctuations, the overall validation loss curve is roughly the same. Therefore, in
the following experiments, we use the random crops for validation.

Validation metrics Besides the root weighted BCE loss which is computed the
same way as training data, the validation F1 score is also calculated to evaluate
the changes of network performance on the validation data, for that it is
relatively robust against class imbalance. The formulas are shown below:

Here TP/FP/FN represent the number of true positives, false positives, false
negatives, respectively. Since the output of the network is the estimation of the
probability of each voxel being root, which are continuous values between 0 and
1, a threshold of 0.5 is used to binarize the output into positive and negative
predictions. When calculating the validation metrics of whole images, the F1
score is calculated for each whole image, and then averaged to get the F1 score
for the validation dataset:

Here, V is the validation dataset, v is one image in it, and |V| is the total
number of images in V. But when validating on random image crops, the TP/
FP/FN are accumulated for all the image crops, and the F1 score for the
validation dataset is directly calculated based on them. This is done because,
for a large number of random crops, there will be no roots in them, then the
number of TP is 0. In this case, both the numerator and denominator of the F1
score are 0, making the calculation not valid. However, if TP is accumulated for
all random crops in the validation dataset, when the validation set size is big
enough, TP will almost certainly be positive in the end.

precision =
TP

TP + FP
(6.7)

recall =
TP

TP + FN
(6.8)

F1 =
2 ⋅ precision ⋅ recall
precision + recall

(6.9)

F1_avg =
1

|V | ∑
v∈V

F1_v (6.10)

 44

6.3.2 Testing

Unlike validation, testing is done on the whole images of the real test dataset.
Currently, there are 5 real MRI images used for testing, including
Lupine_Small, Lupine_22_August, I_Sand_3D_DAP5, I_Soil_1W_DAP7,
and I_Soil_4D_DAP7. F1 score is also used in testing performance
evaluation, but because of the misalignments between the human annotations
and the real images, the TP/FP/FN numbers cannot be directly calculated. To
deal with this problem, distance tolerant F-score is used as described in a
previous study (Uzman, Horn et al. 2019). The basic idea of it is to tolerate
minor misalignments by ignoring the false positives which lie close to the
ground truth root, and the false negatives which lie close to the predicted root.
This is done by making the ground truth bigger when calculating precision, and
making the root prediction bigger when calculating recall (Figure 6.5). As
shown in the figure, both the distance tolerant recall (the percentage of the
brown area in the black box on the left) and precision (the percentage of the
brown area in the black box on the right) increased compared to original results
without dilation. The distance tolerance can be adjusted by changing the

Figure 6.5: Illustration of the calculations of distance tolerant recall and
precision. The left shows the dilation of the segmented root to calculate the
distance tolerant recall, and the right shows the dilation of the ground truth
root to calculate the distance tolerant precision. Green represents the ground
truth root, pink represents the segmented root, and brown denotes the
overlapping between green and pink, which is the numerator in both recall
and precision calculations. The black border delineates the denominator in
either recall (left) or precision (right) calculation.

 45

dilation distance. Since there is no best distance tolerance for calculating the
test F score, multiple distance tolerance values will be used, and the model’s
performance on the test data will be evaluated by analyzing the plot of distance
tolerance F scores against increasing distance tolerances.

In testing, the test tube (a tubular object inserted in the soil, used for
calibration) part is ignored by masking the tube region with a zero mask, in
both the ground truth and the segmentation output. This is done because the
trained models tend to predict the test tubes in real images as roots. The
reason for this is that the test tubes in the synthetic training data are always
perfect cylinders, which is not a realistic simulation of the real images. The real
test tubes are often twisted and with uneven thickness. Therefore, when trained
with this dataset, the network learns to segment a test tube as non-root only
when it’s a perfect cylinder. On the other hand, it is easy to manually remove
the test tube from the real images because it has a fixed location and radius, so
the correct prediction of the test tube as non-root is not necessary. Therefore,
we just ignore the test tube region during testing.

 46

7 Results

In most of the models, we use a training mini-batch of 25, and 100000
random image crops (60×60×60) from the training set in each training epoch.
Thus, there are 4000 mini-batches in each epoch.

7.1 Effects of using the combined dataset

As described in section 5.1, to the original dataset of synthetic noisy root
images, we added randomly generated roots combined with real soil images. To
demonstrate the effect of using the combined dataset, here we compare two 3D
U-Net models, one trained with the original dataset (denoted as Model O), the
other trained with the combined dataset (denoted as Model C). All other
hyperparameters of the 2 models are the same, which are already fine-tuned to
ensure relatively good performance. In the combined dataset, the number of
training input crops from each dataset is the same. Both models can reach high
validation F1 scores after training convergence, which is 0.967 for Model O and
0.964 for Model C (table 7.1). However, the validation set used to validate the 2
models are not entirely the same, because Model C was also validated on some
combined data. Therefore, we compare their performance based on the
segmentation results of the real MRI images, which are the same for both
models.

The visualization of the real Lupine Small data shows that the result from
Model O has significantly more false positives in the soil area (Figure 7.1, left).
This may suggest that the soil noise simulation in the original dataset does not
mimic the real noise well enough in the depth dimension. In comparison, Model
C is able to produce segmentations with fewer false positives (Figure 7.1, right).
The quantitative comparison with the distance tolerant F1 scores also shows
that Model C (orange curve in Figure 7.1) has a better segmentation on Lupine
Small. This improvement of Model C is probably because it’s also trained with
real noise data, so it learns from more diverse and realistic soil noise. When the
false positive rate is too high, non-existing branches may be extracted in the
root extraction algorithm. Such a risk can be reduced when the combined
dataset is used for training.

 47

On the other hand, the results of real Lupine 22 show that Model C can

produce a more connected root structure compared to Model O (Figure 7.2).
The comparison between the distance tolerant F1 scores also shows a slightly
improved performance of Model C (orange curve in Figure 7.2). This might be
the benefit of integrating more diverse root structures in the dataset. Also,
because the aliasing effect is incorporated in the randomly generated roots, the
combined dataset mimics the thin roots in real images better.

Figure 7.1: Comparison of segmentation results from models trained with
the 2 different datasets, on the real Lupine Small data. The upper row shows
the results thresholded at 0.5. The lower image compares the distance tolerant
F1 scores of Model O (blue) and Model C (orange).

original dataset combined dataset

 48

For the overall comparison of the 2 models’ performance, we plot the average

distance tolerant F1 scores of all 5 real MRI images, under different distance
tolerances (Figure 7.3). Because larger distance tolerance tolerates bigger
misalignments between the segmentation result and the ground truth, the F1
score increases with the distance tolerance. Figure 7.3 shows that, the average
test F1 score of Model C is higher than Model O, no matter what value the
distance tolerance takes. This complies with the qualitative comparison between

Figure 7.2: Comparison of segmentation results from models trained with
the 2 different datasets, on the real Lupine 22 data. The upper row shows the
results thresholded at 0.5. The lower image compares the distance tolerant F1
scores of Model O (blue) and Model C (orange).

original dataset combined dataset

 49

the visualized outputs above. In further experiments of this thesis, Model C will
be used as the control model, if a different one is not explicitly mentioned.

7.2 Effects of importance sampling

To speed up the learning convergence, importance sampling was used to train
the network more frequently on the crops with more root voxels. In this
experiment, the sampling probability is positively correlated with the
percentage of root voxels in each crop. At the same time, we make sure that
any crop has a non-zero probability of being sampled, by adding a small offset
(0.02 is used here, see 6.2.1.2 for more details). Here we compare one model
trained with uniform sampling and one with importance sampling in terms of
the validation loss, to see which one converges first. The validation loss can be
separated into 2 components: validation root loss and validation soil loss, which
are the losses calculated from only the root voxels or only the soil voxels,
respectively.

The validation soil losses of both the importance sampling model and the
uniform sampling model are at the same level, but the validation root loss of

Figure 7.3: Comparison of distance tolerant F1 scores between Model O and
Model C. Blue represents Model O, and orange represents Model C. The error
bar shows the 95% confidence interval around the mean.

 50

the importance sampling model reaches a fast decreasing phase earlier than the
uniform sampling model (Figure 7.4). The difference between the number of
training batches needed to reach the plateau is around 5k, slightly more than
one training epoch. This agrees with our expectation: because the importance
sampling allows the model to learn from more root containing crops, the model
can learn faster to detect root-like structures in the input, leading to faster
convergence of validation root loss.

Figure 7.4: Comparison of the validation root loss curves between models
trained with uniform sampling or importance sampling. The initial soil loss
above 0.013 is clipped for a clearer presentation of the later training stage.

 51

However, when we look at the distance tolerant F1 scores of these 2 models,
there is no significant difference between them, no matter which distance
tolerance value is used for computation (Figure 7.5). This can also be directly
observed from the segmentation results on the test data, where there is no
qualitative difference between these 2 models.

The result shows that importance sampling only speeds up learning

convergence in terms of the number of training epochs, but does not improve
the final performance on the test data. Moreover, the faster convergence speed
is offset by the overheads of calculating the sampling probabilities for all
possible crops in each image. This makes the actual time needed for the
importance sampling model to converge even slightly longer. As a result, for
further experiments, uniform sampling is used.

7.3 Effects of using don’t-care flag

It is hard for the network to learn to accurately predict the root-soil border
area. To make the model focus more on recognizing the main part of the roots
instead of these unimportant details, we tried using the don’t-care flag. It is

Figure 7.5: Comparison of distance tolerant F1 scores between the models
trained with uniform sampling and importance sampling. Error bar shows the
95% confidence interval around the mean.

 52

used to label the root-soil border area, and voxels with this flag are ignored
during training loss calculation. In what follows, we denote the model trained
with the don’t-care flag as the don’t-care model.

The highest validation F1 score of the don’t-care model is 0.993, higher than
0.964 of the control model (Table 7.1). However, this is because, for the don’t-
care model, the validation F1 is calculated only on voxels without the don’t-
care flag. These voxels are easier to segment, thus resulting in a higher F1 score.
This is done to be consistent with the training process, for clearer observation
of the learning convergence.

The result on the test dataset shows that when the distance tolerance is
lower, the F1 score of the model trained with don’t-care flag is slightly higher
compared to the control model (Figure 7.6, upper plot). When the distance
tolerance is high, this difference disappears. This increase of the F1 score comes
from a higher recall and a slightly lower precision, which is less significant than
the increase of the recall (Figure 7.6, lower plot). Therefore, applying the don’t-
care flag can indeed increase the recall of roots in the test dataset, which
complies with our expectation.

When we look at the result of the real Lupine 22 data as one example, it can
be observed that the root predictions by the don’t-care model are significantly
thicker than the control model. The proximate region of the root-soil border is
more likely to be predicted as root by the don’t-care model (Figure 7.7). The
thickening of the root prediction can be explained as follows: The root
prediction is slightly thicker than the ground truth, so the false negatives are
likely to decrease. But the increased false positives will get ignored because
they are most probably within the don’t-care area. As a consequence, the
network is penalized less. This root thickening effect is the most obvious in
thinner roots such as Lupine 22, in which the root-soil border constitutes a
larger proportion of the total root volume. Therefore, one reason why the recall
is higher is that the thicker root prediction contains the ground truth inside it,
thus the voxels of the root surface are less likely to be miss-predicted as non-
root. Moreover, the predicted root structure of the don’t-care model appears to
be more connected than the control model, although several major
disconnections in the control model result are still present in the don't-care
model result. However, the price for thicker root predictions is that more non-
root voxels in the vicinity of the root surface are also predicted as root,
resulting in a lower precision.

 53

Our original intention of using the don’t-care flag is to increase the recall of

roots so that some roots which were not detected before can be recognized. The
actual results show that the increased recall is partly due to increased root
thickness in the prediction, partly due to the correct detection of previously
undetected roots. However, only some small gaps are bridged when applying
don't-care mask. One drawback of using the don’t-care flag is that the radii of
the segmented roots are thicker than reality, which introduces an unwanted bias
for the further root radius analysis.

Figure 7.6: Comparison of evaluation metrics between the don’t-care model
and the control model. Error bar shows the 95% confidence interval around
the mean.

 54

without don’t-care flag with don’t-care flag

Figure 7.7: Comparison of the segmentation results on Lupine 22 between
the don’t-care model and the control model. In the upper images, root
predictions (green) are overlapped with the ground truths (red shade). The
lower images are the comparisons of the distance tolerant recall and precision,
respectively.

 55

7.4 Effects of adding root at a later time point

Under the assumption that roots do not change their locations during
growth but only increase the radii, the root at a later time point will contain all
root voxels of an earlier time point in it. Therefore, one hypothesis is that
adding the root image of a later time point may help the segmentation model
confirm the detection of root voxels at an earlier time point. To test this
hypothesis, we generated random virtual roots at 2 different time points, one
earlier and one later, and combine with the real soil image to make them noisy.
The noised roots of 2 different time points are then concatenated in the channel
dimension, and used to train a 3D U-Net model (referred to as the multi-time
model in the following). Another 3D U-Net model is trained with only the
earlier roots for comparison (referred to as the control model in the following).
The only difference between the model structures is that the first convolutional
layers, which receive the input, have one more input channel for processing the
root of the later time point.

The highest validation F1 score achieved by the multi-time model and the
control model are 0.973 and 0.978, respectively. Both F1 scores are high, and
the difference between them is not significant. One observation of the training
process is that the validation loss of the multi-time model converges
significantly faster than the control model (Figure 7.8). The difference in
convergence time is roughly 6 epochs. This is probably because, with the help of
the later root information, it is easier for the multi-time model to learn.

For testing, 6 randomly generated roots which are different from the training
and validation ones are used. The real MRI images are not used here because
we do not have the same roots imaged at a later time point. Although some
new root data from our collaborator have different time points, they cannot be
utilized because the roots at different time points have significant
misalignments.

Because the test data here is virtual, there are no misalignments between the
ground truth and the noisy image. Therefore, the F1 score on the test data can
be calculated directly. The result shows that there is no significant difference
between the 2 models in F1 scores as well as in recall (Figure 7.9). One
observable difference is that the multi-time model result has slightly higher
precision, which can be observed from the visualized output (Figure 7.10): for
the output of the control model (left), there is a soil area detected as root (the

 56

top right part of image), but the output of the multi-time model does not have
such a false positive prediction. This is probably because the network can infer
from the image of the later time point which has a different noise pattern in the
same area. When different noise patterns are present in the same area, the
network may have a higher tendency towards predicting the voxels as non-root.

Figure 7.8: Comparison of the validation loss curves between the control
model and the multi-time model.

Figure 7.9: Comparisons of F1 score, recall, and precision, between the
control model and the multi-time model.

 57

Moreover, although the average recall of the multi-time model is at the same

level as the control model, the segmentation performance of the thinner roots
seems better than the control model. For example in Figure 7.10, the thinnest
root tips are more completely recovered in the multi-time model output.
Overall, the segmentation result of the multi-time model appears to be finer and
more detailed. However, because thinner roots contribute less to the recall
compared to thicker roots, this improvement is not reflected in the overall recall
value. Therefore, the results indicate that it is helpful for the network’s
performance to add the root at a later growth stage as the additional
information.

noisy test image ground truth

control model output

Figure 7.10: Comparison of the thresholded segmentation outputs on one
virtual test image, between the control model and the multi-time model. The
threshold applied to the segmentation is 0.5. The ground truth is shown on
the upper right. Each of these images is the 2D maximum projection of the
original 3D image along one horizontal dimension.

multi-time model output

 58

As mentioned above, in order to reduce the disconnections in the detected
roots, the aliasing effect is added to the randomly generated roots in the
dataset. It can be observed from Figure 7.10 that, some root disconnections in
the input image are indeed connected in both model outputs.

7.5 Effects of adding location-dependent information

From the observation of the real MRI images, we found some location
information which may correlate with the existence of roots, and they may help
improve the network’s performance. Since these patterns are easy to compute,
they can be provided directly as additional input channels for the network the
learn from. Two different types of location-dependent information are tested
individually. The same network structure is used as the control 3D U-Net
model, except that the convolutional layers which directly receive the input
have one more input channel, for processing the additional information channel.

7.5.1 Voxel-wise distance to the pot central axis

The voxel-wise distance to the pot central axis is used because of the
observation that many root branches tend to grow along the pot border, away
from the pot central axis. Meanwhile, the roots closer to the central axis grow
almost horizontally in these real images. This distance information cannot be
directly inferred from the input data by the network, because image crops
instead of whole images are used as inputs. However, adding this new input
channel did not change the highest validation F1 score significantly, which is
approximately 0.964 for either model trained with or without this new channel
(table 7.1). This may be partly due to the fact that the original validation F1
score is already high, which does not have much room for further improvement.
The results on test data also show no significant difference after adding the new
input channel (Figure 7.11). Also, no qualitative difference can be observed
from the test segmentation outputs of the 2 models.

These results indicate that, at least in the current dataset, the distance to
the central axis does not have enough correlation with the distribution of roots,
thus is not able to provide much help in deciding if a voxel is root or non-root.
But since the current dataset contains only 4 root structures from the real data

 59

annotation and some randomly generated virtual roots, it may not represent the
situation of the real roots so comprehensively. Therefore, in the future, we can
try to imitate the observed relationships between this distance information and
the root growth pattern in data generation. Or when it’s possible to train with
real data in the future, adding the distance information to the central axis is
still worth trying.

7.5.2 Voxel-wise depth from the top of the pot

The voxel-wise depth information is used because we observed some features
of the real root changes along the depth dimension. For example, the radii of
roots tend to decrease and the roots at the top tend to grow horizontally until
reaching the pot border.

The highest validation F1 score is 0.962 for the model trained with the depth
information, which is similar to 0.964 of the control model (table 7.1).
Furthermore, the distance tolerant F1 scores on test data show no significant
difference from the control model trained without the additional information
(Figure 7.12). These results suggest that adding the voxel depth information as
input does not lead to improved segmentation performance. Similarly, the
correlation between the depth and the root distribution is not deliberately

Figure 7.11: Comparison of distance tolerant F1 scores between the model
trained with and without the voxel-wise distance to the pot central axis. Error
bar shows the 95% confidence interval around the mean.

 60

incorporated in the training dataset, which may be the reason why the network
couldn’t make use of this additional information. Therefore, in the future, such
features can be introduced in the random root generation for a new dataset. Or
if we can use the real data for training, we should still try adding these location-
dependent information channels then.

7.6 Effects of using a higher root weight

The dataset we use contains many times more non-root voxels than root
voxels. To deal with this class imbalance, a value larger than 1 can be used to
weight the predictions of the root voxels more heavily than the non-root voxels,
in loss calculation. Here, we compare the segmentation performance of 2
models, one trained with a root weight of 10, the other the control model
trained with root weight of 1. We observed that in the results on the real MRI
images, the average F1 scores under different distance tolerances are similar for
these 2 models. The tiny improvement of the model trained with the higher root
weight is mainly due to the improved recall, with the cost of a slightly lower
precision when the distance tolerance is low (Figure 7.13). It can be

Figure 7.12: Comparison of distance tolerant F1 scores between the model
trained with and without the voxel-wise depth information. Error bar shows
the 95% confidence interval around the mean.

 61

observed from the segmentation output of Lupine 22 that the root predictions
are more connected but also more noisy (Figure 7.14). The explanation is that
because the network gets punished more heavily when predicting a root voxel as
non-root than the other way around, so it learns to favor the prediction as root
when uncertain. This leads to a slightly increased recall.

F1 score

Recall Precision

Figure 7.13: Comparison between the 3D U-Net model trained with a root
weight of 10 and 1. Error bar shows the 95% confidence interval around the
mean.

 62

7.7 Performance comparison with RefineNet

The segmentation performance of the 3D U-Net model is compared with the
RefineNet model in a previous study (Uzman, Horn et al. 2019). The 3D U-Net
model used for comparison is the same model as the one mentioned in Section
7.1, trained on the combined dataset. The performances are evaluated on the
current test dataset of real MRI images, with the distance tolerant F1 score,
recall, and precision (Figure 7.15). The F1 scores of the 2 models are similar
when the distance tolerances are relatively low, but the F1 scores of the 3D U-
Net model become slightly higher with increased the distance tolerance. This is
mostly because the precision values of the 3D U-Net are higher than the
RefineNet model while the recall values are lower, but the differences are not so
big.

root weight = 10 root weight = 1

Figure 7.14: The thresholded segmentation outputs of the model trained
with a root weight of 10 and 1, on the real Lupine 22 image.

 63

These differences in recall and precision between the 2 models can also be

observed directly from the segmentation outputs. For example, in the output of
the Lupine 22 data from the RefineNet model, the predicted roots are more
connected than that from the 3D U-Net model (Figure 7.16). This leads to a
higher recall for the RefineNet model. However, there are also significantly more
false-positive predictions in the non-root area compared to the cleaner output
of the 3D U-Net model. Particularly, the planar MRI artifacts which are
detected as roots by the RefineNet model are no longer recognized as roots in
the 3D U-Net model, demonstrating the benefit of utilizing the depth dimension
information. The disadvantage of having too many false positives is that the
ones close to the root would confuse the root extraction algorithm, thus

F1 score

Recall Precision

Figure 7.15: Comparison between the 3D U-Net model and the RefineNet
model, in terms of the evaluation metrics. Error bar shows the 95% confidence
interval around the mean.

 64

becoming incorporated into the extracted root structure. Meanwhile, it is still
preferable to further increase the recall of the 3D U-Net output, since bridging
wide gaps is also difficult for the root extraction algorithm.

7.8 Root extraction results

Finally, we tried to extract the structural models from the segmentation
results of the real MRI images, using a recently developed root extraction
algorithm (Horn 2019) (Figure 7.17). Overall, the root structures can be
decently extracted. The false positive predictions not so close to the root
structure can be mostly ignored (marked with red in Figure 7.17), by adjusting
certain parameters of the algorithm. It can be observed that when the gaps
along root branches are small, they can be successfully bridged by the root
extraction algorithm. But when the gaps are too big, either the algorithm fails
to bridge them (e.g. the red root-like signals in Lupine 22, in Figure 7.17), or

RefineNet output 3D U-Net output

Figure 7.16: Comparison of the segmentation results on real Lupine 22
between the RefineNet model and the 3D U-Net model. The root predictions
(green) are overlapped with the ground truth (red shade).

 65

the bridging connections look unnatural (e.g. some blue connections in
I_Sand_3D_DAP5, in Figure 7.17).

Lupine Small Lupine 22

I_Sand_3D_DAP5 I_Soil_4D_DAP7 I_Soil_1W_DAP7

Figure 7.17: The results of structural model extraction on the 5 real MRI
images. Green represents the overlapping between the extracted model and
the segmentation result. Blue shows the gaps bridged in the extracted model.
Red represents the positive predictions in the segmentation result that are
ignored by the root extraction.

 66

Table 7.1: The highest validation F1 scores of each model that is validated
on the validation set of the combined dataset. Here, represents the root
weight used in loss calculation.

r w

Model Highest validation F1 score

0.964

Importance sampling 0.962

Don’t-care flag 0.993

Distance to the central axis 0.962

Voxel depth 0.964

0.944 r w = 10

Control, r w = 1

 67

8 Conclusion

The thesis investigated semantic segmentation and super-resolution of plant
root MRI images using a 3D U-Net model. The main contributions are as
follows: Firstly, the use of 3D image crops as network inputs allows the use of
deeper 3D CNNs, which is the 3D U-Net in our case. Furthermore, the 3D U-
Net model generates better results with shorter training time, compared to the
results of a previous study also using a 3D CNN (Horn 2018).

Moreover, the thesis has experimented with 3 types of additional input
channels. When the root image at a later time point is used as the additional
channel, the model’s segmentation quality of thin roots is improved. However,
there is no significant improvement in the evaluation metrics, which may be
because the thin roots contribute less to the metrics than thicker roots. For the
models that take location-dependent information as the additional input
channel, we did not observe a significant enhancement of the segmentation
performance. However, this may be because the generated dataset did not
imitate the relationship between location-dependent information and root
distribution well enough. Therefore, in the future, we can simulate this
relationship in data generation, and then try these location-dependent
information channels again.

Labeling the root-soil border area with don’t-care flag leads to more
connected root predictions, but the predictions are also thicker than in reality.
This has the disadvantage that further root radius analysis may get biased by
the thickening.

Applying importance sampling of image crops based on their root percentage
indeed increased the learning convergence speed in terms of the number of
training epochs, but did not increase the actual speed. This is because of the
overheads of generating the sampling probabilities for all possible crops in each
image.

Furthermore, we experimented with different root weights in loss calculation.
Using a root weight larger than 1 leads to slightly higher recall of roots, but
also a slightly higher amount of false positives. Therefore, we can adjust the
balance between recall and precision as needed by adjusting the root weight
value.

 69

Another contribution is the improvement of the data generation. It is done
by introducing more diverse root structures with a random root generation
algorithm, simulation of the aliasing effect of thin roots, and the incorporation
of real soil noise. When trained with this improved dataset, the model produces
less false positives without sacrificing the recall in the segmentation results on
real MRI images.

In the end, the 3D U-Net model is compared with the RefineNet model of
another previous study (Uzman, Horn et al. 2019). Although the disconnections
of the root predictions are more evident for the 3D U-Net, its results also
contain a significantly lower amount of false positives. The false positives may
be wrongly integrated into the root structure by the root extraction algorithm,
so reducing the amount of them helps the algorithm extract a more accurate
root structure. Besides, the disconnections of the 3D U-Net results can be
reduced by setting a higher root weight, as long as the precision is constrained
in a reasonable range. The results of root extraction on the segmentation
results from our network show that small disconnections can be successfully
bridged, but larger gaps are still problematic. Therefore, future work needs to
further reduce root disconnections, but without increasing false positives, in
order to achieve better root extraction results.

 70

Bibliography

Abdel-Hamid, O., A.-r. Mohamed, H. Jiang and G. Penn (2012). Applying
convolutional neural networks concepts to hybrid NN-HMM model for speech
recognition. 2012 IEEE international conference on Acoustics, speech and signal
processing (ICASSP), IEEE.

Alain, G., A. Lamb, C. Sankar, A. Courville and Y. Bengio (2015). "Variance
reduction in sgd by distributed importance sampling." arXiv preprint arXiv:
1511.06481.

Anand, R., K. G. Mehrotra, C. K. Mohan and S. Ranka (1993). "An
improved algorithm for neural network classification of imbalanced training
sets." IEEE Transactions on Neural Networks 4(6): 962-969.

Brown, R. W., Y.-C. N. Cheng, E. M. Haacke, M. R. Thompson and R.
Venkatesan (2014). Magnetic resonance imaging: physical principles and
sequence design, John Wiley & Sons.

Chawla, N. V., K. W. Bowyer, L. O. Hall and W. P. Kegelmeyer (2002).
"SMOTE: synthetic minority over-sampling technique." Journal of artificial
intelligence research 16: 321-357.

Çiçek, Ö., A. Abdulkadir, S. S. Lienkamp, T. Brox and O. Ronneberger
(2016). 3D U-Net: learning dense volumetric segmentation from sparse
annotation. International conference on medical image computing and
computer-assisted intervention, Springer.

Csurka, G., C. Dance, L. Fan, J. Willamowski and C. Bray (2004). Visual
categorization with bags of keypoints. Workshop on statistical learning in
computer vision, ECCV, Prague.

Dai, S., M. Han, W. Xu, Y. Wu, Y. Gong and A. K. Katsaggelos (2009).
"Softcuts: a soft edge smoothness prior for color image super-resolution." IEEE
Transactions on Image Processing 18(5): 969-981.

Dalal, N. and B. Triggs (2005). Histograms of oriented gradients for human
detection.

Dong, C., C. C. Loy, K. He and X. Tang (2014). Learning a deep
convolutional network for image super-resolution. European conference on
computer vision, Springer.

 71

Dong, C., C. C. Loy and X. Tang (2016). Accelerating the super-resolution
convolutional neural network. European conference on computer vision,
Springer.

Havaei, M., A. Davy, D. Warde-Farley, A. Biard, A. Courville, Y. Bengio, C.
Pal, P.-M. Jodoin and H. Larochelle (2017). "Brain tumor segmentation with
deep neural networks." Medical image analysis 35: 18-31.

He, K., X. Zhang, S. Ren and J. Sun (2016). Deep residual learning for image
recognition. Proceedings of the IEEE conference on computer vision and
pattern recognition.

Horn, J. (2018). "Superresolution 3D Image Segmentation for Plant Root
MRI."

Horn, J. (2019). Private communications with Jannis Horn.
Hubel, D. H. and T. N. Wiesel (1962). "Receptive fields, binocular interaction

and functional architecture in the cat's visual cortex." The Journal of
physiology 160(1): 106-154.

Ioffe, S. and C. Szegedy (2015). "Batch normalization: Accelerating deep
network training by reducing internal covariate shift." arXiv preprint arXiv:
1502.03167.

Keys, R. (1981). "Cubic convolution interpolation for digital image
processing." IEEE transactions on acoustics, speech, and signal processing
29(6): 1153-1160.

Kingma, D. P. and J. Ba (2014). "Adam: A method for stochastic
optimization." arXiv preprint arXiv:1412.6980.

Krizhevsky, A., I. Sutskever and G. E. Hinton (2012). Imagenet classification
with deep convolutional neural networks. Advances in neural information
processing systems.

Lafferty, J., A. McCallum and F. C. Pereira (2001). "Conditional random
fields: Probabilistic models for segmenting and labeling sequence data."

LeCun, Y., Y. Bengio and G. Hinton (2015). "Deep learning." nature
521(7553): 436-444.

Ledig, C., L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A.
Aitken, A. Tejani, J. Totz and Z. Wang (2017). Photo-realistic single image
super-resolution using a generative adversarial network. Proceedings of the
IEEE conference on computer vision and pattern recognition.

Lin, G., F. Liu, A. Milan, C. Shen and I. Reid (2019). "Refinenet: Multi-path
refinement networks for dense prediction." IEEE transactions on pattern
analysis and machine intelligence.

 72

Long, J., E. Shelhamer and T. Darrell (2015). Fully convolutional networks
for semantic segmentation. Proceedings of the IEEE conference on computer
vision and pattern recognition.

Loshchilov, I. and F. Hutter (2015). "Online batch selection for faster
training of neural networks." arXiv preprint arXiv:1511.06343.

Maldonado-Bascón, S., S. Lafuente-Arroyo, P. Gil-Jimenez, H. Gómez-
Moreno and F. López-Ferreras (2007). "Road-sign detection and recognition
based on support vector machines." IEEE transactions on intelligent
transportation systems 8(2): 264-278.

Montufar, G. F., R. Pascanu, K. Cho and Y. Bengio (2014). On the number
of linear regions of deep neural networks. Advances in neural information
processing systems.

Moon, N., E. Bullitt, K. Van Leemput and G. Gerig (2002). Automatic brain
and tumor segmentation. International Conference on Medical Image
Computing and Computer-Assisted Intervention, Springer.

Nagel, K. A., U. Schurr and A. Walter (2006). "Dynamics of root growth
stimulation in Nicotiana tabacum in increasing light intensity." Plant, Cell &
Environment 29(10): 1936-1945.

Nair, V. and G. E. Hinton (2010). Rectified linear units improve restricted
boltzmann machines. Proceedings of the 27th international conference on
machine learning (ICML-10).

Paszke, A., S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A.
Desmaison, L. Antiga and A. Lerer (2017). "Automatic differentiation in
pytorch."

Perlin, K. (1985). "An image synthesizer." ACM Siggraph Computer
Graphics 19(3): 287-296.

Pohlmeier, A., A. Oros-Peusquens, M. Javaux, M. Menzel, J. Vanderborght,
J. Kaffanke, S. Romanzetti, J. Lindenmair, H. Vereecken and N. Shah (2008).
"Changes in soil water content resulting from Ricinus root uptake monitored by
magnetic resonance imaging." Vadose zone journal 7(3): 1010-1017.

Rahman, M. A. and Y. Wang (2016). Optimizing intersection-over-union in
deep neural networks for image segmentation. International symposium on
visual computing, Springer.

Rajan, D. and S. Chaudhuri (2002). "An MRF-based approach to generation
of super-resolution images from blurred observations." Journal of Mathematical
Imaging and Vision 16(1): 5-15.

Roth, H. R., L. Lu, A. Seff, K. M. Cherry, J. Hoffman, S. Wang, J. Liu, E.
Turkbey and R. M. Summers (2014). A new 2.5 D representation for lymph

 73

node detection using random sets of deep convolutional neural network
observations. International conference on medical image computing and
computer-assisted intervention, Springer.

Schnepf, A. and S. Behnke (2015). "Advancing structural-functional
modelling of root growth and root-soil interactions based on automatic
reconstruction of root systems from MRI."

Schulz, H., J. A. Postma, D. van Dusschoten, H. Scharr and S. Behnke
(2013). Plant root system analysis from MRI images. Computer Vision, Imaging
and Computer Graphics. Theory and Application, Springer: 411-425.

Schulz, H., J. A. Postma, D. Van Dusschoten, H. Scharr, S. Behnke, G.
Csurka and J. Braz (2012). 3D Reconstruction of Plant Roots from MRI
Images. VISAPP (2).

Sharma, V. (2018). "Deep Learning – Introduction to Convolutional Neural
Networks." from https://vinodsblog.com/2018/10/15/everything-you-need-to-
know-about-convolutional-neural-networks/.

Sun, Y., A. K. Wong and M. S. Kamel (2009). "Classification of imbalanced
data: A review." International Journal of Pattern Recognition and Artificial
Intelligence 23(04): 687-719.

Tahir, M. A., J. Kittler, K. Mikolajczyk and F. Yan (2009). A multiple
expert approach to the class imbalance problem using inverse random under
sampling. International Workshop on Multiple Classifier Systems, Springer.

Thai-Nghe, N., Z. Gantner and L. Schmidt-Thieme (2010). Cost-sensitive
learning methods for imbalanced data. The 2010 International joint conference
on neural networks (IJCNN), IEEE.

Thoma, M. (2016). "A survey of semantic segmentation." arXiv preprint
arXiv:1602.06541.

Uzman, A. O., J. Horn and S. Behnke (2019). "Learning Super-resolution 3D
Segmentation of Plant Root MRI Images from Few Examples." arXiv preprint
arXiv:1903.06855.

van Dusschoten, D., R. Metzner, J. Kochs, J. A. Postma, D. Pflugfelder, J.
Bühler, U. Schurr and S. Jahnke (2016). "Quantitative 3D analysis of plant
roots growing in soil using magnetic resonance imaging." Plant physiology
170(3): 1176-1188.

Wang, Z., D. Liu, J. Yang, W. Han and T. Huang (2015). Deep networks for
image super-resolution with sparse prior. Proceedings of the IEEE international
conference on computer vision.

Wei, G.-Q., K. Arbter and G. Hirzinger (1997). Automatic tracking of
laparoscopic instruments by color coding. CVRMed-MRCAS'97, Springer.

 74

Yang, W., X. Zhang, Y. Tian, W. Wang, J.-H. Xue and Q. Liao (2019).
"Deep learning for single image super-resolution: A brief review." IEEE
Transactions on Multimedia.

Yu, F. and V. Koltun (2015). "Multi-scale context aggregation by dilated
convolutions." arXiv preprint arXiv:1511.07122.

 75

I herewith certify that this material is my own work, that I used
only those sources and resources referred to in the thesis, and that I
have identified citations as such.

——————— ———————
 Date Signature

	1 Introduction
	2 Problem definition
	3 Theoretical background
	4 Related work
	5 Data
	6 Segmentation method
	7 Results
	8 Conclusion

