
Robotic Grasp Pose Classification over
IR-Depth Images Using Convolutional

Neural Networks

Nedal Horany

M A S T E R T H E S I S

submitted to

The Department of

Computer Science, University of Bonn

Bonn, Germany

Supervisors: Prof. Dr. Sven Behnke and Dr. Seongyong Koo

September 2017

Declaration

I hereby declare and confirm that this thesis is entirely the result of my
own original work. Where other sources of information have been used, they
have been indicated as such and properly acknowledged. I further declare
that this or similar work has not been submitted for credit elsewhere.

Bonn, Germany, September 19, 2017

Nedal Horany

i

Contents

Declaration i

Abstract iv

1 Introduction 1
1.1 Contributions . 2
1.2 Structure of this Thesis . 3

2 Related Work 4
2.1 Background . 4
2.2 Deep Learning . 6
2.3 Convolutional Neural Networks 7

2.3.1 Activation or Non-Linear Functions 8
2.3.2 Spatial Convolution 8
2.3.3 Spatial Pooling . 9
2.3.4 Batch Normalization 10

2.4 CNN Architectures . 11
2.4.1 LeNet-5 . 11
2.4.2 AlexNet . 12
2.4.3 VggNet . 12
2.4.4 GoogLeNet . 13
2.4.5 ResNet . 14

2.5 Grasp Prediction Using Deep Learning 14
2.5.1 Prediction as Regression 15
2.5.2 Prediction as Classification 18

ii

CONTENTS iii

3 Grasp Prediction 21
3.1 Problem Description . 21
3.2 Approach . 23

3.2.1 Target Grasp Pose . 23
3.2.2 Positive Grasp Pose 24

3.3 Dataset . 25
3.4 Labeling . 27

3.4.1 Patch Size Calculation 30
3.4.2 Region of Interest (ROI) Generation 31
3.4.3 Grasp Poses Generation 33
3.4.4 Training and Validation Datasets Generation 35

3.5 CNN Architecture . 37
3.6 Training . 38

3.6.1 Loss Function . 38
3.6.2 Optimization Algorithm 40
3.6.3 Training Strategy . 42

3.7 Empirical Results . 46
3.8 Enhanced CNN Architecture 48
3.9 Multiple Grasp Pose Prediction 49

4 Outlook 56
4.1 Summary . 56
4.2 Further Work . 57

Abstract

Given the image observations of a single object or occluded objects in a bin,
a major challenge is predicting the best grasp under high gripper uncer-
tainty. Recently various works adopted deep learning and computer vision
methods in order to solve this problem. While most of these approaches
focus on detecting and suggesting the best grasp given an image from infi-
nite domain, this work focuses on binary classification of a single grasp pose
using a data-driven approach, which outperforms state-of-the-art in grasp
pose classification using deep Convolutional Neural Network (CNN). This
is achieved by feeding the network with IR-Depth image and grasp pose
(𝑥, 𝑦, 𝜃) corresponding to the center coordinates and the orientation of the
grasp in the 2𝐷 image plane. The network is able to answer the question
whether the object is graspable within the given pose. Labeling was done
in two stages. Firstly: Surrounding graspable and ungraspable regions with
bounding boxes using the depth image, taking into consideration the config-
uration of the the robot gripper. Secondly: Generating positive and negative
grasp poses, based on random translation and rotation, which served later
for training and validating. We compare between two trained models, one
using IR-Depth and the other using only depth images. We show that IR
can improve the overall grasp pose classification. Finally, we present a multi-
grasp prediction heuristic, that uses the classifier over local regions to predict
multiple high quality grasp poses over the entire image.

iv

Chapter 1

Introduction

This master thesis studies grasp prediction problem for bin picking. The
problem is concerned with a robotic arm equipped with parallel jaw-gripper,
that needs to detect multiple graspable parts from a random heap of parts
(see Figure 3.1), having specific texture and geometric shape using sensors
data. One challenge is that these parts, so called chain links in Figure 3.2
occlude with each other and each can be grasped from different edges, de-
pending on their posture in the bin. Which leaves us dealing with large
number of possible grasps that we need to predict.

Reliable grasp prediction is essential task for integrating these robots
in industry for the various applications e.g. parts feeding and sorting. The
feeding of parts from bulk supplies to production lines is a common task in
industrial automation. Usually it requires special devices such as vibratory
bowl feeders, where it works very well for certain type of objects having
specific shape features. However such a technique needs a specific ramp de-
signs for each part, which limits their usage for mass production of identical
parts. Bin picking is another possibility, where a robot arm with a camera
and gripper lying above the bulk supply, it detects graspable parts from the
sensed data by a grasp detection algorithm, using Inverse Kinematics and
Motion Planning, the arm grasp the object and move it into the part feeder.

In this work, we focus on grasp detection task. Some works try to solve
this problem using hand-designed features, given the CAD model of the
object one could define a set of object characteristic features to determine

1

CHAPTER 1. INTRODUCTION 2

how and where the object can be grasped. However, these methods strongly
rely on accurate models due the usage of the CAD models, which makes
it difficult to apply on real scenarios where we have noisy sensors measure-
ments. In addition, these approaches usually require enormous amount of
time spent on hand engineering the features and it can’t be generalized for
novel objects. While other approaches used deep learning, where Convolu-
tional Neural Networks (CNN) has resulted in outstanding performance on
object detection and classification, by learning features directly from images
with high computational power using the GPUs. This would save us the
time and effort of hand-engineering the features.

CNN has hierarchical representation consisting of cascaded layers, where
each layer uses the output of the previous layer. The multiple layers corre-
spond to different levels of features learning, the more convolution layers we
have the more complicated features the network will be able to learn to rec-
ognize. Such characteristic can help with extracting features from the images
and learning non-linear transformations between those and the labels.

We adopted deep learning using CNN approach. In the contrary to other
approaches trying to deep learn the best grasp from an image, we propose
a queryable CNN, which is able to classify the graspability of any 3𝐷 grasp
pose illustrated in Figure 3.3 over given IR-Depth image, we achieve that
by feeding 3𝐷 vector directly into the fully connected layer. One important
advantage obtained by this solution, is that it can be integrated easily with
different applications and heuristics for determining grasps candidates.

1.1 Contributions

In this work, we contribute a new technique for learning queriable 3𝐷 grasp
poses classifier over IR-Depth images based on Convolution Neural Network.
We have generated a dataset of IR and Depth images and introduced a new
technique for manual labeling which copes with our task goal. The dataset
was generated in a way that allows us to achieve depth invariant trained
models, which is able to classify grasp poses from different depth levels. We
also compare between two trained models, the first model is trained using
depth images, and the second model is trained using two channels images

CHAPTER 1. INTRODUCTION 3

for depth and IR. Furthermore, we show the contribution of IR channels in
improving the overall grasp pose classification and detection. The proposed
solution can be integrated in many applications and combined with different
heuristics, this flexibility is desirable for robotic applications. We propose a
heuristic that uses the learned classifier for predicting grasp poses, this uses
a modified CNN architecture to speed up the evaluation of large amount of
grasp poses on image at once.

1.2 Structure of this Thesis

Chapter 2 presents a survey of existing approaches that address the grasp
detection problem. Each approach is briefly discussed and its limitations are
pointed out. The chapter also introduces background for the problem, with
work that solves same problem with different approach. We span known
Convolutional Neural Networks architectures and the tasks it solves. Fur-
thermore, we summarize briefly the different CNN components together with
techniques used in this master thesis.

Our approach along with accompanying heuristics are presented in 3. We
start by defining the target grasp pose, positive grasp pose and introducing
a heuristic to find grasp ground truth over the depth images. This served as
a baseline for the manual labeling. We explain the dataset generation tech-
nique from the labeled images, which served for training and validating the
CNN. Afterwards, we introduce the CNN architecture, the training strategy
and summarize the empirical results, while making performance compari-
son between two trained models. Finally, we propose an application using
the grasp pose classifier, to predict multiple robust grasp poses over entire
images.

We conclude the work of this master thesis in Chapter 4 and provide
insights and thoughts for further development and improvements.

Chapter 2

Related Work

2.1 Background

(a) Environment setup (b) Chain link parts variations which
is used to assemble chains conducting
cables

In this section, we will provide a background of the problem and sum-
marize briefly a work that solves the same problem using different approach.

4

CHAPTER 2. RELATED WORK 5

0 50 100 150 200 250 300

0

50

100

150

200

250

300

(a) Depth map

0 50 100 150 200 250 300

0

50

100

150

200

250

300

(b) Valley pixels

0 50 100 150 200 250 300

0

50

100

150

200

250

300

(c) Graspable parts

Figure 2.2: Finding graspable parts from a depth map

The task is concerning robolink® WR manipulator1 in Figure 2.1a, which
need to detect graspable chain links part (Shown in Figure 2.1b) from a bin
using SR300 RGBD camera mounted on the wrest, pick one graspable part
and feed it into a slot.

In work of [Koo et al., 2017], they solved grasp pose detection for the
same task using hand engineered features over the depth image. Their key
idea is to traverse over the 3𝐷 image surface shown in Figure 2.2a, centering
each pixel in a bounding box with size of the projected stroke at that point.
Then it chooses pixels, which has no neighbors within the bounding box hav-
ing depth values smaller than the depth at the center. Figure 2.2b shows the
valleys which correspond to those pixels. Multiple graspable parts then com-
puted using growth clustering between the connected local depth minima,
then surrounding each cluster with minimal bounding box (red rectangles
in Figure 2.2c) represented by its width, height centers coordinates and ori-
entation. Reliable grasp pose then is determined by picking the cluster that
has minimal average depth value over its pixels. The grasp pose position
was determined as its corresponding bounding box center, with orientation
orthogonal to the bounding box.

In their experiments, they have performed 20 bin picking attempts, for
each the robot try to place the part on the table. Once it failed to detect
the part on the table, it returns into the observation position and select the
second highest graspable part. In 65% of the attempts the robot successfully

1http://www.igus.de/wpck/6076/robolink

http://www.igus.de/wpck/6076/robolink

CHAPTER 2. RELATED WORK 6

managed to pick the part from the first attempt and 100% from the second
attempt. Due to false positive grasp detection, typically caused form noise
and incorrect depth measurements, resulting lower success rates during the
first attempt. This work was motivated as an attempt for increasing the
success rates from the first attempt, by proposing a solution for classifying
grasp poses with high precision using extra additional source of information
which is Infra-Red (IR) channel.

2.2 Deep Learning

Deep learning is subfield of machine learning concerned with large neural
networks, simulating the functionality of the brain. It comes as a solution for
allowing computers to learn from experience and understanding hierarchy
of concepts from real world problems. The concepts hierarchy are related in
terms of complexity, usually from complex to simpler. This is achieved by
gathering knowledge from experience which avoids the need for a human to
formally define and specify the knowledge that computer needs in order to
solve some problem. It can be represented as a graph structure, where con-
cepts are built on top of each other, resulting a deep graph with many layers
which is the reason behind calling this approach deep learning [Goodfellow
et al., 2016].

Deep learning has proved to be solving variety of tasks in image detection
and speech recognition, that relatively can be considered hard for humans
but straight forward for computers. This made the field very popular recently
and adopted for variety of AI applications.

Deep learning can be divided into two main fields:

• Supervised Learning - When training a neural network on labeled
dataset, where each example in the dataset associated to a correspond-
ing label. The network should be able provide the target label for new
inputs, by learning sort of function mapping between the input and
target. When labels are classes the problem called classification. Al-
ternatively, when the label space is continuous the problem is called
regression.

CHAPTER 2. RELATED WORK 7

• Unsupervised Learning - Concerned neural network which learns
from unlabeled dataset, usually large amount of data. The network is
trained to learn representative features and patterns from the dataset
for multiple purposes e.g. clustering. This method can be very useful
when having large amount of unlabeled dataset and small amount
of labeled dataset. The network is trained to get good features from
the ulabeled dataset and if we are trying to solve classification task
for example, then we take the learned features and apply on that a
supervised learning using the labeled dataset to solve the task.

2.3 Convolutional Neural Networks

Neural networks has been inspired from the biological modeling of the neural
systems of the brain illustrated in Figure 2.3. Each neuron is a computation
unit which receives inputs and produce outputs to the next layer. Mathe-
matically, a neuron can be translated into activation function 𝑓 over a linear
layer, which applies linear transformation on vector input 𝑥 of dimension 𝐼,
weights matrix 𝐴 and outputs a vector with bias parameter 𝑏.

𝑦 = 𝐴 · 𝑥 + 𝑏 (2.1)

𝑦𝑖 =
𝐼∑︁

𝑘=0
𝐴𝑖,𝑘 · 𝑥𝑘 + 𝑏𝑖 (2.2)

(a) (b)

Figure 2.3: (a) illustrates biological model of neuron and (b) its mathemat-
ical model.

CHAPTER 2. RELATED WORK 8

2.3.1 Activation or Non-Linear Functions

Neural networks can approximate complex functions including non-convex
functions as a result of using non-linear activation layers [Agostinelli et al.,
2014]. The three main activation functions illustrated in Figure 2.4:

1. Sigmoid: It has a dense representation by squashing a real value to
fall between 0 and 1

𝜎(𝑥) = 1
1 + 𝑒−𝑥

(2.3)

One known problem with sigmoid function is that its gradient van-
ishes whenever absolute x increases. Consequently, backpropogation
algorithm will fail to update the neuron weights.

2. Hyperbolic Tanget (Tanh): It has also a dense representation by
squashing a real value to fall between -1 and 1

tanh(𝑥) = 2𝜎(2𝑥)− 1 (2.4)

Like Sigmoid function its activation saturates, however it has a zero-
centered output.

3. Rectified Linear Unit (ReLU): It has a sparse representation by
accepting only positive values

𝑦 = 𝑚𝑎𝑥(0, 𝑥) (2.5)

The neuron which this function is operating on is called ReLU follow-
ing [Nair and Hinton, 2010], despite the simplicity of the function, it
has been found to accelerate the convergence of stochastic gradient
descent compared to the Tanh in [Krizhevsky et al., 2012a] by factor
of 6. In the contrary to Sigmoid function, it doesn’t have the problem
with vanishing gradient and it requires less computation. However, it
ignores negative values which can be undesirable for certain tasks.

2.3.2 Spatial Convolution

In this work, we are interested in learning spatial relationships contained
in the features map (e.g. images). This can be achieved using convolution

CHAPTER 2. RELATED WORK 9

−4 −2 0 2 4
−1

0

1

𝑥

𝑦
(𝑥

)

ReLU
Tanh

Sigmoid

Figure 2.4: Illustrated graphs for three activation functions: ReLU, Tanh
and Sigmoid

layer, unlike neural networks where the input is a vector, convolution layer
learns a set of filters from multi-channeled image. The layer accepts an image
of size 𝑤 × ℎ × 𝑐 corresponding respectively to height, width and to image
channels number (e.g. 𝑐 = 3 for RGB images. The layer can learn a set of
𝑘 filters (kernel) of size 𝑛 × 𝑛 × 𝑞, where the filter dimensions are smaller
from the image dimensions. For 𝑤 = ℎ, it produce 𝑘 features maps of size
𝑤 − 𝑛 + 1, each is convolved with the input image (see Figure 2.5). The
more the filter correlates with a region in the image, the more strong its
corresponding location in the features map.

2.3.3 Spatial Pooling

Pooling layers help with down-sampling the input by aggregating chunks 𝑅,
typically of size 2× 2 into single value (see Figure 2.6).

𝑦𝑅 = 𝑃𝑖∈𝑅(𝑥𝑖) (2.6)

Where 𝑃 is a pooling function over region 𝑅. Max pooling is commonly
used for this layer, which returns the maximum value in every region (chunk).
It helps avoiding cancellation of negative values and prevents bluring in
the result of the preceding activation layers. One important features of this
layer, is that it decreases the dimension of the image and provides invariance
between similar inputs.

CHAPTER 2. RELATED WORK 10

Figure 2.5: The figure illustrates the convolution operator with simple ex-
ample.

Figure 2.6: Left figure illustrates down-sampling image using pool layer,
right figure show example for max-pooling

2.3.4 Batch Normalization

This layer helps the CNN to converge faster [Ioffe and Szegedy, 2015], which
made it very popular in the recent deep learning works. It’s a technique for
maintaining zero mean and unit variance by input shifting. It helps the
different trainable layers inputs to become comparable across features. Con-
sequently, ensuring the network learning ability while using high learning
rates and any initial values for the weights vector. Batch normalization ful-

CHAPTER 2. RELATED WORK 11

Figure 2.7: Architecture of LeNet-5.

fills the need of using bias vectors as well as it solves the problem concerning
sigmoids and similar functions of having vanishing gradient.

2.4 CNN Architectures

Convolutional neural networks can be constructed in many ways using the
above described layers, and its size may vary depending on the task it’s
trying to solve. The deeper the network the more it can solve complex prob-
lems accurately, however it requires more time for processing. It’s rather
difficult task to decide the correct trade-off between accuracy and speed.
Fortunately, there are many works in this field suggesting different CNNs
architectures, which usually can be a good baseline for similar tasks. In this
section, we will describe briefly some known architectures which achieved
high performance on its given task.

2.4.1 LeNet-5

This architecture is one of the leading successful applications of CNNs, it
was developed in the 1990’s for hand-written and machine printed digits
recognition [LeCun et al., 2001]. It was the source of inspiration for the
modern CNNs architectures.

In Figure 2.7 we can see their CNN architecture, it was constructed
using 3 layers of convolution, average pooling and non-linear layers using
hyperbolic tangent and sigmoid function, followed by fully connected layer
as classifier. The network was trained on MNIST (database of handwritten
digits) [LeCun and Cortes, 1998], for accelerating the training process they

CHAPTER 2. RELATED WORK 12

Figure 2.8: Architecture of AlexNet.

normalized the inputs using the method proposed in [Cun et al., 1991].

2.4.2 AlexNet

AlexNet [Krizhevsky et al., 2012b] achieved high accuracy rates on ImageNet
Large-Scale Visual Recognition Challenge 2012 (ILSVRC12) [deng2012largem]
challenge. The CNN architecture in Figure 3.4 is deeper compared to LeNet
using 5 convolution layers, 3 max-pooling and 3 fully connected layers using
ReLU for activation functions. In their work, they have adopted the method
of overlapping max-pooling for decreasing the error rate. Moreover, intro-
duced the method of stacking of convolution layers before using the pool
layer and at that time, employing a recent regularization method in the
fully connected layers to reduce overfitting. There method was implemented
in CUDA and running on multiple GPUs, achieving low error-rates (15.3%)
on ImageNet classification compared to second-best place (26.2%) .

2.4.3 VggNet

[Simonyan and Zisserman, 2014] introduced very deep CNNs, VggNet-16 (see
Figure 2.9) and VggNet-18, which was submitted to ILSVRC14 challenge
with around 140 million of parameters. The network ranked second-best
place with 7.32% in top-5 error for image classification.

Their main idea is to decompose large convolution filter sizes e.g. 5× 5
and 7×7 into multiple 3×3 convolutions with strides of 1 pixel on top of each
other in order to emulate the effect of larger receptive fields. Consequently,
using more convolutions and pooling layers for reducing input dimensions,

CHAPTER 2. RELATED WORK 13

Figure 2.9: Architecture of Vgg-16 [Cord, 2016].

which makes the network much deeper.

2.4.4 GoogLeNet

GoogLeNet [Szegedy et al., 2014] is a 22 layers deep network which is the
winner of ILSVRC14 challenge with 6.67% top-5 error. They proposed the
Inception Module (see Figure 2.10), which has significantly reduced the num-
ber of parameters. They used 1×1 convolutions before 3×3 convolutions for
reducing the input size while keeping the computational budget constant.

(a) Inception module (naive version) (b) Inception module with dimension
reductions

Figure 2.10: Inception module

CHAPTER 2. RELATED WORK 14

Figure 2.11: Building block for Residual learning

2.4.5 ResNet

ResNet [He et al., 2015] is the winner of ImageNet challenge ILSVRC15
[Russakovsky et al., 2015]. The network achieved low error rates 3.57% using
what so called Deep Residual Learning framework. It’s a special case of Feed-
forward Highway LSTM network [Srivastava et al., 2015] (Long Short-Term
Memory) but without gates.

Denoting g, t, h and ℱ for non-linear differentiable functions. ℱ(𝑥) =
𝑔(𝑥)𝑥+𝑡(𝑥)ℎ(𝑥) is computed by each of the non-input layers of the Highway
nets [Srivastava et al., 2015] given x from the previous layer. Figure 2.11
illustrates residual block in ResNet which uses 𝑔(𝑥) = 1 and 𝑡(𝑥) = 1 for
feed-forward, where each residual layer calculates ℱ(𝑥) = 𝑥 + ℎ(𝑥).

2.5 Grasp Prediction Using Deep Learning

Detecting optimal grasp poses from complex scenes, hand-engineered fea-
tures still performs well, for example in dense clutter [Boularias et al., 2015],
where features of the grasp are all points from the point clouds that may
collide with the robotic hand through grasping, or multi-fingered grasping
[Kopicki et al., 2016] by extracting 3D object surface features using point
clouds, which is a composition of position, orientation and a vector describ-
ing the local curvatures. Nevertheless, for simple scenes CNNs has proven

CHAPTER 2. RELATED WORK 15

significant improvement on grasp pose regression and classification. One
challenge of using these deep learning methods is finding a relevant labeled
data collection to exploit the full capacity of CNNs while avoiding overfit-
ting.

The majority of these methods falls into one of the two categories:

• Regression over an optimal grasp from the entire observation image or
from individual patch

• Recasting grasping prediction problem as classification

The following sections, provide span over grasp detection methods di-
vided into two main groups: Grasp Regression and Grasp Classifica-
tion.

2.5.1 Prediction as Regression

Most of the works used manually human-labeled collection like The Cornell
Grasping Dataset [Jiang et al., 2011], this dataset contains 1035 RGB-D
images of 280 different graspable objects, some of them are shown in Fig-
ure 2.12a.

(a) A small set of object images from
the Cornell Dataset.

(b) (𝑥, 𝑦) is the grasp center, 𝜃 is the ori-
entation with horizontal axis, the blue
lines correspond to the gripper plate size
and the red lines to the approximate
start position of the parallel gripper.

Each image contains a single object taken from different orientations and
with different postures. For each image the corresponding labels are a set of
positive and negative grasping rectangles, defined as 5𝐷 vector in the image
plane illustrated in Figure 2.12b. This representation is a lower dimensional

CHAPTER 2. RELATED WORK 16

Figure 2.13: Two-staged model proposed for grasp detection in [Lenz et al.,
2015]

of 7𝐷 grasp representation corresponding to 3𝐷 orientation, 3𝐷 location and
gripper opening width. Claiming other representations like the 2𝐷 grasping
point proposed in [Saxena et al., 2008] and pair of contact points for two
fingered hand in [Le et al., 2010], aren’t representative enough to predict 7𝐷

grasp, it used only to predict partial configuration while other dimensions
are estimated separately.

[Lenz et al., 2015] proposes a grasp detection method by training two-
staged CNN (see Figure 2.13) on Cornell dataset. First stage is fast and
serve as pruner for unlikely grasp candidates. They trained a small deep
network to search the space for possible grasps candidates using rectangle
representation of the grasps and score them. Second stage it runs on top
of the grasp candidates obtained from the previous stage and re-rank them
according to their graspability using richer features space. While it focuses
only on the part of the image contained within these rectangles. This was
achieved using deeper neural network which is trained on 7 channels images
of YUV, depth and computed 3𝐷 vector (x,y,z) correspond to the surface
normal.

The performance was speeded up in [Angelova et al., 2015] by feeding
the entire image. They propose three different models:

• Direct regression of the optimum grasp within the whole image

• Very similar to the first model, but it takes into consideration the
object class

• Detects multi-grasps by dividing the image into 𝑁 × 𝑁 grid, then

CHAPTER 2. RELATED WORK 17

Figure 2.14

Figure 2.15: Third model proposed by [Angelova et al., 2015], left image
contain the object divided into 𝑁 ×𝑁 grid. For each grid cell they predicted
its optimal grasp and its score as shown in the middle stage. Then it outputs
assigned score for each of the grasps candidates.

predicting optimum grasp per grid cell and the likelihood that the
predicted grasp is feasible on that object as shown in Figure 2.14.

In order to avoid overfitting during the training, they picked random la-
bel every time the image was exposed to the network, the side-effect is that
during optimizing the loss function, the network converges to the average
good grasp. In this work, average good grasp over the regressed grasps is
not necessary a good grasp.
[Kumra and Kanan, 2016] addresses the same problem using deeper CNN
architecture than used in [(Angelova et al., 2015)]. They use a ResNet model
[He et al., 2015] consists of 50 layers, which redefines state-of-the-art perfor-
mance on Cornell dataset.
Above methods are not applicable in this work for the following reasons:

• Cornell dataset images contain centered single objects, whereas in this
work, we are dealing with multiple objects lying in a random heap

• Cornell dataset images contain distinctive RGB colored objects from
different categories, in this work the objects are the same and all have
black color

• Direct grasp regression from an image or a patch underlying a strong
assumption, that it contains a single good grasp. However, in this

CHAPTER 2. RELATED WORK 18

work we could have scenarios where large number of different good
grasps exist in one image. Additionally, such an assumption inherently
require grasp existence within the image, which is defintely wrong for
our problem.

2.5.2 Prediction as Classification

Convolutional Neural Networks has proven a strong performance on classi-
fication tasks like on ImageNet [Krizhevsky et al., 2012a]. In some of the
methods they tried to reform the grasping training problem to classification
task. For example in [Pinto and Gupta, 2016], they recast grasp regression
into grasp classification of 18 different possible orientations with jumps of 10
degrees, centered at the patch center. They used patch size 1.5 larger than
the projected gripper size to include more context. By random trials and
errors in real-time experiments, they were able to collect a 50 thousand of
grasp attempts, which used as prior grasping for training a CNN to classify
graspable patches from an image, then to classify 18 possible orientations of
grasp which is centered in the patch. During test they used random sampling
of patches along Region of Interest and choosing top classified orientation
for predicting the best grasp. Although collecting data with trial and error
is less biased than human-labeled datasets, but it still an exhausting process
consuming an enormous amount of time.

[Levine et al., 2016] proposes an online training method using multiple
robots, executing grasping attempts simultaneously for couple of weeks. The
key idea is to learn the motor commands directly from the images, this way
the robot can coordinates with the scene during grasping attempt to achieve
successful physical grasping, simulating hand-eye coordination for grasping.

Unlike the conventional methods used for collecting labeled data, where
usually the training data consist of a grasp with rectangle representation like
in [Angelova et al., 2015] or 3𝐷 grasp pose in [Pinto and Gupta, 2016] with
assigned label. In their work they considered the the arm motion 𝑣𝑡 in time
frame 𝑇 along with the images received from the cameras, until the robot
closes the gripper (At time frame 𝑇). At each time step 𝑡 the images 𝐼𝑡 and
the current pose 𝑝𝑡 were recorded, resulting a training example (𝐼𝑡, 𝑝𝑇 −𝑝𝑡, 𝑙)

CHAPTER 2. RELATED WORK 19

Figure 2.16: Left image shows a sampled ROI using Mixture of Gaussians
(MOG) algorithm for reducing number of trials on empty spaces during col-
lecting the data. A patch is sampled uniformly from the image space, where
the grasp correspond to the patch center’s coordinates with orientation ran-
domly chosen in range [0, 𝜋]. The right image shows random sampling of
patches along ROI during test time.

Figure 2.17: The CNN used for grasp prediction, the motor command is
processed through fully connected layer and pointwise added to the result of
pool2 after tiling in order to match dimensions. The result then is processed
by more convolution layers and outputs grasp probability success using Sig-
moid over the last layer.

where 𝑙 is the evaluated grasp at time 𝑇 and 𝑝𝑇−𝑝𝑡 the motion vector. Every
grasp attempt produce 𝑇 new training samples. They have used specific CNN
architecture illustrated in Figure 2.17 for feeding the motor command beside
input images, which was source of inspiration for this work. Considering
the time needed for collecting the data and the number of robots used for
training, this method is not applicable for this work.

[Johns et al., 2016] proposes a new method in this field where they deep
learn a grasp scoring function under gripper pose uncertainty using 3𝐷 repre-
sentation of the grasp. They used physics simulations to collect their dataset
taking into consideration depth information only. The key idea is to simulate

CHAPTER 2. RELATED WORK 20

Figure 2.18: An illustration of the grasp function learned through the train-
ing: (a) Shows the synthetic depth image, (b) shows scaled image after ap-
plying the noise model, (c) Visualize grasp function computed from physics
simulation and (d) similar to (c) however with coarser poses distribution.
The thickness of the grasp poses indicates the score of each pose.

robot grasping trials on 3𝐷 object meshes using the simulator for each pos-
sible grasp pose. Having observed depth image of size 640× 480 , they learn
scores of 8712 possible grasp poses, by discretizing the image space with 14
pixel in both axis corresponding to 1𝑐𝑚 in the table surface, and the angle
space by 30 degrees, Figure 2.18 shows the distribution of the scored grasp
poses over the image by simulation. Each grasp pose was classified into one
of the 5 classes corresponding to equally divided intervals in [0, 1], indicating
the likelihood of that object to be graspable with that pose.

This dataset was used for training a CNN to learn the grasp function.
In their work’s set-up they had a depth image of a single object. The CAD
model of the object was required to perform such simulations. Where for
complex scenes like in this work, given a random pile, it’s intractable mak-
ing similar simulations. Adding to this the amount of processing time for
rendering and exploring all grasp attempts with different pile configurations.
However this work was strongly inspired from their approach of learning a
grasp score function. We use same grasp pose representation and similar
CNN architecture but trained on different dataset. In the contrary to their
work, our learned base classifier is not limited to specific discretization in
the gripper pose space in 2𝐷. Our CNN architecture allows us to query a
given 3𝐷 grasp poses directly from the input image, which is an advantage
over their method.

Chapter 3

Grasp Prediction

3.1 Problem Description

In this work, we are dealing with a bin of random pile, with parts lying
in random positions, all have same shape, texture and color which makes it
indistictive by RGB channels. In addition, the parts occlude with each other
as can be seen in Figure 3.1. This makes Infra-Red and depth perception
using SR300 RGBD camera essential for features based learning solution.

Figure 3.1: The bin with parts lying in a random pile when supplied after
production.

The parts can be grasped by parallel-jaw gripper from 9 different edges,
depending on the part posture in the bin Figure 3.2. Grasps prediction can
be performed globally by predicting grasps from the whole input image, or
locally over a single region of interest. In this work, we adopted the second
approach due to its flexibility, in such manner the proposed algorithm can

21

CHAPTER 3. GRASP PREDICTION 22

be used in different applications depending on the scene and robot arm
limitations in terms of reachability.

Figure 3.2: Figures above show the three different postures possibilities of
the part in the bin, Green rectangles are bounding graspable regions with an
orientation which is perpendicular to the longest edge.

Given the above, we needed to come up with a queriable algorithm which
can classify graspability of grasp poses over IR-Depth image.Which can be
formulated as the following:

Having IIR, IDepth and grasp pose (𝑥, 𝑦, 𝜃) we need to find such an algo-
rithm A:

A(IIR, IDepth, (𝑥, 𝑦, 𝜃))→ Success or Failure

CHAPTER 3. GRASP PREDICTION 23

3.2 Approach

The adopted approach is to train a CNN to classify grasp poses over IR-
Depth images in a supervised learning manner. One challenge is acquiring a
labeled dataset which represents real case scenarios. Thus, we need to col-
lect a dataset and label it manually with positive and negative labels using
dedicated annotator which is described in details in Section 3.4. The pro-
posed CNN architecture has been constructed in a specific way as explained
in Section 3.5 to receive beside the images a grasp pose as 3D vector which
is fed directly to the Fully Connected Layer of the CNN.

3.2.1 Target Grasp Pose

This work focuses on the planar grasps only. A planar grasp is one where the
grasp configuration is along and perpendicular to the workspace. Hence the
grasp configuration lies in 3 dimensions grasp pose as (𝑥, 𝑦, 𝜃) illustrated in
Figure 3.3, where (𝑥, 𝑦) is corresponding to the gripper’s center coordinates
from left-top corner of the image, 𝜃 is the orientation of the gripper with
the horizontal axis of the image plane. A transformation of the grasp pose
from the image frame to the robot frame can be done in similar way used
in [Koo et al., 2017].

Figure 3.3: 3D Grasp Pose.

CHAPTER 3. GRASP PREDICTION 24

0
50
100
150

200
250

300 0 50 100 150 200 250 300
0.10
0.14
0.19
0.23
0.28
0.32
0.37
0.41
0.46
0.50

0.225
0.250
0.275
0.300
0.325
0.350
0.375
0.400

Figure 3.4: 3D visualization of the bin depth map.

3.2.2 Positive Grasp Pose

Given the depth map typology of width 𝐼𝑤 and height 𝐼ℎ, graspable parts are
graspable within a local minima for some region, which consist of a hill and
two valleys from each side where the grippers plates can fit (see Figure 3.4).
Having 𝑑 as distance between the two plates, 𝑤, 𝑡 as width and thickness
of the plate, 𝑑(𝑥,𝑦) is depth value of the pixel at (𝑥, 𝑦) and 𝜖 is the minimal
depth required to be able to grasp the part. The idea becomes to observe
whether the gripper plates can be placed on the depth map given the grasp
center coordinates, orientation and plates dimensions.

For a grasp (𝑥0, 𝑦0, 𝜃), we will define the two rectangles corresponding
to each of the grippers plates on the the x-y plane, denoted as 𝑟𝑒𝑐𝑡1 and
𝑟𝑒𝑐𝑡2. We will define first the set of pixels coordinates lying in a bounding
box around (𝑥, 𝑦) as the following:

CHAPTER 3. GRASP PREDICTION 25

ℬ(𝑥, 𝑦) = {(𝑖, 𝑗) ∈ [0, 𝐼𝑤]× [0, 𝐼ℎ] | |𝑖− ⌈𝑤2 ⌉| ≤ 𝑥 and |𝑗 − ⌈ 𝑡

2⌉| ≤ 𝑦} (3.1)

Having the following transformation function 𝒯 of point (𝑖, 𝑗) around
(𝑥, 𝑦) with orientation 𝜃:

𝒯 ((𝑖, 𝑗), 𝜃, (𝑥, 𝑦)) =⇒ (𝑎, 𝑏) (3.2)

𝑎 = ⌈(𝑖− 𝑥) cos 𝜃 − (𝑗 − 𝑦) sin 𝜃 + 𝑥⌉ (3.3)

𝑏 = ⌈(𝑖− 𝑥) sin 𝜃 + (𝑗 − 𝑦) cos 𝜃 + 𝑦⌉ (3.4)

The two rectangles defined as the following:

𝑟𝑒𝑐𝑡1 = {𝒯 (𝑖, 𝑗 + 𝑑

2 , 𝜃, 𝑥0, 𝑦0) | (𝑖, 𝑗) ∈ ℬ(𝑥0, 𝑦0)} (3.5)

𝑟𝑒𝑐𝑡2 = {𝒯 (𝑖, 𝑗 − 𝑑

2 , 𝜃, 𝑥0, 𝑦0) | (𝑖, 𝑗) ∈ ℬ(𝑥0, 𝑦0)} (3.6)

Given the grasp pose 𝑔 = (𝑥0, 𝑦0, 𝜃) and depth 𝑑(𝑥0,𝑦0),
𝑔 is positive grasp iff

∀(𝑥, 𝑦) ∈ 𝑟𝑒𝑐𝑡1 ∪ 𝑟𝑒𝑐𝑡2 ⇒ 𝑑(𝑥0,𝑦0) ≤ 𝑑(𝑥,𝑦) − 𝜖 (3.7)

3.3 Dataset

Having dataset representing real scenarios from the target task is not trivial,
taking into consideration the bin configuration variation during the picking
process. The bin arrive from the bulk supply with different configuration of
the parts, afterward every picking attempt can change the parts number and
posture gradually, either by moving parts in case of failure or by removing
parts after successful picking. It’s not feasible to cover all cases, however the
goal is to have representative dataset which the CNN can generalize from for
the majority of the cases. This was achieved by capturing images of the bin
after random shuffling of varying number of parts. Covering easy use cases,
where the bin has low number of parts without occlusion, to more difficult

CHAPTER 3. GRASP PREDICTION 26

Distance between plates 2 cm
Width 2 cm

Thickness 0.5 cm
s 1

10𝜋
𝜖 1 cm

Figure 3.5: Manipulator settings and parameters

cases where the parts number increase and occlude in a heap.
We used SR300 RGBD camera for collecting 100 images, each of size

640×480 , where camera is lying on the wrest of the robotic arm, with fixed
height in such a way that it’s orthogonal to the bin. Those images were
served for labeling as described in Section 3.4.

In order to find positive grasp from images, we need to project gripper
dimensions dimensions to the image plane in pixels. Given the gripper plates
dimensions in the 3D sphere in Table 3.5, it can be done by estimating a
mapping function 𝑝 : R+ → R+, using the depth image and extracting
scaling parameter 𝛼. Knowing the part measurements, we have collected
average depth measurements along one of the part edges and its the size in
pixels from different images.
Given the pairs of depth and pixels measurements [(𝑑0, 𝑝0), .., (𝑑𝑛, 𝑝𝑛)]:

𝑝(𝑥) = 𝛼𝑑𝑥 (3.8)

𝛼 = 𝑝(𝑥)
𝑑𝑥

→ �̂� =
𝑛∑︁

𝑖=0

𝑝𝑖

𝑑𝑖
(3.9)

𝑝(𝑥) = �̂�𝑑𝑥 (3.10)

𝑑𝑥 is the average depth value along 𝑥 in the image, where 𝑥 is the size
in cm. This estimated function has served the algorithm for generating the
ground truth based images for labeling purposes in the next section.

CHAPTER 3. GRASP PREDICTION 27

3.4 Labeling

Labeling reliability is critical in order to exploit CNNs. Labeling strategy can
determine the level of performance and generalization of the trained CNN on
unseen scenarios. For grasp learning tasks, it becomes very challenging, since
labeling is established over the images plane which unnecessarily reflect the
outcome of the physical grasp. This could happen for many reasons e.g. the
noise caused by the camera sensors and biased labeling caused by human
errors, which is unavoidable in manual labeling.

We can overcome measurements errors to a certain degree by having large
amount of data and having two kind of measurements like IR and depth.
One can be considered when the other one is noisy. For reducing human error
factor, a simple greedy algorithm was used to determine graspable pixels over
the depth image, which was a base for the labeling process. Algorithm 3.1
traverse over all pixels of the synthetic depth image (see Figure 3.6a) and
mark them as green, if it’s positive grasp for some orientation. Since the
parallel-jaw gripper is symmetric around the pivot, it’s enough to traverse
over 𝜃 ∈ [0, 𝜋], with discretization in the angle space using the parameter 𝑠.
The output of the algorithm is a modified depth image, where green spots
correspond to areas with high graspability likelihood as shown in Figure 3.6b.

Algorithm 3.1: Ground Truth Processor
1: GTProcessor(𝐼𝑑𝑒𝑝𝑡ℎ, 𝑠)
2: 𝐼𝑜𝑢𝑡 ← IDepth ;
3: 𝜃 ← 0 ;
4: for each pixel (𝑥, 𝑦) in 𝐼𝑑𝑒𝑝𝑡ℎ do
5: while 𝜃 ≤ 𝜋 do
6: if IsPositive((𝑥, 𝑦, 𝜃), IDepth) = TRUE then
7: 𝐼𝑜𝑢𝑡[𝑥, 𝑦] = 𝐺𝑅𝐸𝐸𝑁 ;
8: break;
9: end if

10: 𝜃 ← 𝜃 + 𝑠 ;
11: end while
12: end for
13: return 𝐼𝑜𝑢𝑡 ;
14: end

Having the output of Algorithm [3.1] alone is not enough for positive

CHAPTER 3. GRASP PREDICTION 28

(a) Synthestic depth image of a ran-
dom pile.

(b) Output of the Algorithm 3.1 for
𝑠 = 1

10𝜋 , green areas indicate high lik-
lihood of containing graspable edges.

Figure 3.6: Positive grasp ground truth processing using Algorithm 3.1 on
Figure a.

grasp pose determination. Noisy measurement could affect the outcome of
the algorithm by having false negative and false positive. At this point, a
human interaction is used to determine true positive grasp poses and reduce
false positive grasps. Given the original depth, IR images and the output of
the algorithm, a person observes the three images and bound green regions
using a rectangle shape. Graspable parts edges in the different images, cor-
respond to these green regions. The bounding box has to be minimal and it’s
orientation determined by the green color spreading direction, while keeping
in mind the possible graspable edges of the part in Figure 3.2 depending on
its posture.

Beside positive labels, negative labels are required in supervised learning.
Negative labels have as well a rectangle shape, it bounds areas on the image
where it doesn’t contain green pixels, or its orientation is biased significantly
from the ground truth orientation. Negative labeling strategy covered both
trivial and challenging cases. Trivial cases such as bin edges, areas which
has no parts at all and part edges which is not one of the graspable edges
in Figure 3.2. Challenging cases, where negative label is positioned near or
between positive labels or it’s bounding areas with green pixels, which from

CHAPTER 3. GRASP PREDICTION 29

the images it’s clearly not graspable within any orientation.

Figure 3.7: Web-based interface for labeling, using four synchronized
HTML5 canvses for drawing the images and labels. With four different but-
tons for adding positive and negative labels on the canvases, saving and
removing selected label.

This way we can manage to minimize the amount of false positive ei-
ther by not including them in the positive labels or by surrounding them
with negative labels. Moreover, we determine the orientation of the positive
grasp as accurate as possible. In Figure 3.8 we have two examples of labeled
images, green and red rectangles indicate for positive and negative labels
respectively.

In order to annotate the images, a web based interface is built in JavaScript
using Fabric.js library for drawing on canvases. The application loads the
images names in a tree view and whenever a tree item is clicked, it loads
and draws the four different images (IR, depth, RGB and depth with ground
truth). The labels drawing is synchronized between all canvases, i.e any ac-
tion on one of the canvases will be duplicated on other canvases. This feature

CHAPTER 3. GRASP PREDICTION 30

helps picking a clear view of the part in one of the images and make the
labeling directly on it, then it’s validated against the other images simulta-
neously.

Figure 3.8: Two examples for labeled images. The figures on the left are
the depth images with marked ground truth and on the right the IR images.

The user can draw green rectangles for positive grasps and red rectangle
for negative grasps. These rectangles can be adjusted by size, position and
orientation using dragging, rotating and resizing. The labels can be saved
then into a JSON file as an array, each label is represented by four corner’s
coordinates and color.

3.4.1 Patch Size Calculation

In order to train the network on local regions, it requires extracting patches
from the original image. The patch size is calculated as a function of the

CHAPTER 3. GRASP PREDICTION 31

depth value at the label’s center and the projected gripper stroke size. This
will allow the CNN to learn the features on small regions in the image and
the it will be exposed to multi-scaled depth images. Having the stroke size 𝑠,
estimated projection function 3.8 and valid depth value 𝑑, if the depth value
is 0 at that point then we considered the average depth of larger receptive
field (e.g. 7× 7) at the label’s center coordinates.

𝑤 = 𝑝(2𝑠) (3.11)

In other words, the patch size is twice the projected gripper stroke size
at label’s center coordinates.

3.4.2 Region of Interest (ROI) Generation

From those labeled images, we are interested in Regions of Interest patches
that contains single label regardless of its class. The idea is to center the
label in a patch of size 𝑤×𝑤 , then try to slide the patch in four directions
left, bottom, top and right in the original image dimensions, while the label
is still contained in the patch as illustrated in Figure 3.9. The reason behind
this technique is mainly avoiding centered label patches, which limits the
CNN to learn only centered grasp poses, when we are interested in learning
classification of grasp poses over whole patch plane.

We should avoid having positive labels in the extreme edges of the patch,
sense it doesn’t contain enough surrounding information for determining
the graspability of the label. However, in order to cover whole patch plane
positions, for negative labels we won’t use any safe margin, meaning that
negative label can be located anywhere in the patch, while for positive la-
bels we are more conservative, by giving safe margin enough to show the
surrounding label’s area.

We achieve that by using Algorithm 3.2, which receives as an input
label’s corners coordinates in the patch image plane, safe margin 𝑠, and it
returns how much we can slide in the four directions, with a guarantee that
the label is kept with margin of at least 𝑠 from each of the image sides.

For every patch generation and after getting the margins, we randomly

CHAPTER 3. GRASP PREDICTION 32

Algorithm 3.2: Smart Margins Calculator
1: getSmartMargins(points, s)
2: 𝑚𝑖𝑛𝑋 ← 𝑚𝑖𝑛𝑥(𝑝𝑜𝑖𝑛𝑡𝑠);
3: 𝑚𝑖𝑛𝑌 ← 𝑚𝑖𝑛𝑦(𝑝𝑜𝑖𝑛𝑡𝑠);
4: 𝑚𝑎𝑥𝑋 ← 𝑚𝑎𝑥𝑥(𝑝𝑜𝑖𝑛𝑡𝑠);
5: 𝑚𝑎𝑥𝑌 ← 𝑚𝑎𝑥𝑦(𝑝𝑜𝑖𝑛𝑡𝑠);
6:
7: 𝑡𝑜𝑝← 𝑚𝑎𝑥(0, 𝑚𝑖𝑛𝑌 − 𝑠);
8: 𝑏𝑜𝑡𝑡𝑜𝑚← 𝑚𝑎𝑥(0, 𝑝𝑎𝑡𝑐ℎℎ −𝑚𝑎𝑥𝑌 − 𝑠);
9: 𝑙𝑒𝑓𝑡← 𝑚𝑎𝑥(0, 𝑚𝑖𝑛𝑋 − 𝑠);

10: 𝑟𝑖𝑔ℎ𝑡← 𝑚𝑎𝑥(0, 𝑝𝑎𝑡𝑐ℎ𝑤 −𝑚𝑎𝑥𝑋 − 𝑠);
11:
12: return top, left, bottom, right;
13: end

translate the labels center (𝑥, 𝑦) within the range [−𝑙𝑒𝑓𝑡, 𝑟𝑖𝑔ℎ𝑡]×[−𝑡𝑜𝑝, 𝑏𝑜𝑡𝑡𝑜𝑚]
using 3.4, the translated coordinates will serve as image crop center. Both
depth and IR images are cropped using the algorithm 3.3, which guarantees
the patch to stay within the original image frame, by sliding back overflowed
patches and calculating actual crop center 𝑐𝑛𝑒𝑤. Then patches were resized
to the CNN input size 224 × 224 and its corresponding label is translated
and scaled accordingly.

Algorithm 3.3: Patch Cropper
1: getCroppedPatch(image, c)
2: 𝑐𝑛𝑒𝑤 ← 𝑐;
3:
4: 𝑐𝑛𝑒𝑤[0]← 𝑐𝑛𝑒𝑤[0]−𝑚𝑖𝑛(𝑐[0]− 𝑝𝑎𝑡𝑐ℎ𝑤

2 , 0);
5: 𝑐𝑛𝑒𝑤[0]← 𝑐𝑛𝑒𝑤[0]−𝑚𝑎𝑥(𝑐[0] + 𝑝𝑎𝑡𝑐ℎ𝑤

2 − 𝑖𝑚𝑎𝑔𝑒𝑤, 0);
6: 𝑐𝑛𝑒𝑤[1]← 𝑐𝑛𝑒𝑤[0]−𝑚𝑖𝑛(𝑐[1]− 𝑝𝑎𝑡𝑐ℎℎ

2 , 0)
7: 𝑐𝑛𝑒𝑤[1]← 𝑐𝑛𝑒𝑤[0]−𝑚𝑎𝑥(𝑐[1] + 𝑝𝑎𝑡𝑐ℎℎ

2 − 𝑖𝑚𝑎𝑔𝑒ℎ, 0);
8:
9: 𝑐𝑟𝑜𝑝𝑝𝑒𝑑𝐼𝑚𝑎𝑔𝑒← 𝑐𝑟𝑜𝑝(𝑖𝑚𝑎𝑔𝑒, 𝑐𝑛𝑒𝑤, 𝑝𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒);

10: return croppedImage, 𝑐𝑛𝑒𝑤

11: end

CHAPTER 3. GRASP PREDICTION 33

Algorithm 3.4: Random Patch Cropper
1: getRandomPatch(IDepth, IIR, s, label)
2: 𝑐𝑒𝑛𝑡𝑒𝑟 ← 𝑙𝑎𝑏𝑒𝑙.𝑐𝑒𝑛𝑡𝑒𝑟;
3: 𝑡𝑜𝑝, 𝑙𝑒𝑓𝑡, 𝑏𝑜𝑡𝑡𝑜𝑚, 𝑟𝑖𝑔ℎ𝑡← 𝐺𝑒𝑡𝑆𝑚𝑎𝑟𝑡𝑀𝑎𝑟𝑔𝑖𝑛𝑠(𝑙𝑎𝑏𝑒𝑙.𝑝𝑜𝑖𝑛𝑡𝑠, 𝑠);
4:
5: 𝑐′

𝑥 ← 𝑐𝑒𝑛𝑡𝑒𝑟𝑥 + 𝑠𝑎𝑚𝑝𝑙𝑒(−𝑙𝑒𝑓𝑡, 𝑟𝑖𝑔ℎ𝑡);
6: 𝑐′

𝑦 ← 𝑐𝑒𝑛𝑡𝑒𝑟𝑦 + 𝑠𝑎𝑚𝑝𝑙𝑒(−𝑡𝑜𝑝, 𝑏𝑜𝑡𝑡𝑜𝑚);
7:
8: 𝑐𝑟𝑜𝑝𝑝𝑒𝑑𝑑𝑒𝑝𝑡ℎ, 𝑐𝑛𝑒𝑤 ← 𝐺𝑒𝑡𝐶𝑟𝑜𝑝𝑝𝑒𝑑𝑃𝑎𝑡𝑐ℎ(IDepth, 𝑐′);
9: 𝑐𝑟𝑜𝑝𝑝𝑒𝑑𝑖𝑟, 𝑐𝑛𝑒𝑤 ← 𝐺𝑒𝑡𝐶𝑟𝑜𝑝𝑝𝑒𝑑𝑃𝑎𝑡𝑐ℎ(IIR, 𝑐′);

10:
11: 𝑙𝑎𝑏𝑒𝑙𝑛𝑒𝑤 ← 𝑇𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒𝐿𝑎𝑏𝑒𝑙(𝑙𝑎𝑏𝑒𝑙, 𝑐𝑛𝑒𝑤);
12:
13: return 𝑐𝑟𝑜𝑝𝑝𝑒𝑑𝑑𝑒𝑝𝑡ℎ, 𝑐𝑟𝑜𝑝𝑝𝑒𝑑𝑖𝑟, 𝑙𝑎𝑏𝑒𝑙𝑛𝑒𝑤;
14: end

Figure 3.9: The figure demonstrates how to calculate margins from top,
left, right and bottom of centered label given patch size 𝑤 × 𝑤 from image
of size 640× 480 and safe magin 𝑠.

3.4.3 Grasp Poses Generation

Grasp poses can be extracted easily given rectangle representation of the
label. For negative label B− we can extract only negative grasp poses, which
corresponds to all grasp poses contained in the label with any orientation

CHAPTER 3. GRASP PREDICTION 34

between [0, 𝜋]:

Negative = {(𝑥, 𝑦, 𝜃)|(𝑥, 𝑦) ∈ B− and 𝜃 ∈ [0, 𝜋]}

For positive label B+ with orientation 𝜑 and orientation error threshold
𝜖, we can extract both positive and negative grasp poses in terms of orien-
tation, as the following:

᷑

᷑

Figure 3.10: Positive and negative grasp pose orientation ranges for positive
label, where the grasp pose coordinates are labels center. The dotted line
shows the ground truth orientation which is perpendicular to the label, 𝜖
defines error magin from orientation ground truth.

Positive = {(𝑥, 𝑦, 𝜃)|(𝑥, 𝑦) ∈ B+ and 𝜃 ∈ [𝜑 + 𝜋

2 − 𝜖, 𝜑 + 𝜋

2 + 𝜖]}

Negative = {(𝑥, 𝑦, 𝜃)|(𝑥, 𝑦) ∈ B+ and 𝜃 ∈ [𝜑, 𝜑 + 𝜋

2 − 𝜖] ∨ [𝜑 + 𝜋

2 + 𝜖, 𝜑 + 𝜋]}

Figure 3.10 illustrates the orientation ranges on positive label, for cen-
tered grasp poses. Similarly, we can generate grasp poses on any point con-
tained in the label.

CHAPTER 3. GRASP PREDICTION 35

3.4.4 Training and Validation Datasets Generation

In order to decrease the variance between the images of same type either it’s
depth or IR, we normalized the images to fall between RGB scale [0, 255].
The labeled dataset contains in total 1849 labels, 660 of them are positive.
We split the 100 labeled images in the dataset (see Figure 3.11) randomly
into 85 images for training and 15 for validation.

Figure 3.11: Ilustrating dataset splitting.

For each image we iterate through all labels and and generate ROI images
using the Algorithm 3.4. From each label we generate 10 different patches
(see Figure 3.12a) and a single patch otherwise. Having the scaled patch and
label coordinates, we generate grasp poses as described in 3.4.3 with absolute
orientation error threshold of 𝜋

12 (15 degrees) from the ground truth orien-
tation, which is the orientation of the perpendicular to the labels longest
edge from the horizontal axis. However, we discretized the translation and
rotation space of grasp poses with 3 pixels and 𝜋

18 respectively, for tractabil-
ity reasons. We have illustrated the generated grasp poses for positive label

CHAPTER 3. GRASP PREDICTION 36

(a) Example IR image containing single part, the green rectangle rep-
resent positive label and the blue rectangles are the different sampled
ROIs before cropping and resizing. It has safe margin equal to 10% of
its size, in order to include more context when training the network.

(b) Example for generated posi-
tive grasp poses

(c) Example for generated nega-
tive grasp poses

Figure 3.12: Figure a shows how we generate ROIs for positive labels,
Figure b and Figure c illustrate patches with generated grasp poses after
cropping and resizing one of the ROIs in Figure a. Grasp poses is repre-
sented as lines, where center and orientation of the line are the position and
orientation of the grasp

CHAPTER 3. GRASP PREDICTION 37

over one of the generated patches in Figure 3.12c and Figure 3.12b.

3.5 CNN Architecture

Starting from a strong foundation for building the grasp classification and
prediction system, will save lot of effort in exploring for proper CNN ar-
chitecture. Where usually there is a trade off between accuracy and speed
when choosing different CNN sizes, in terms of layers and parameters num-
ber. For training, we chose the network architecture illustrated in Figure 3.5,
the network receive two inputs:

• IR and depth images as two channeled image

• 3D grasp pose (𝑥, 𝑦, 𝜃)

The architecture is very similar to the one used in [Johns et al., 2016],
having same number of layers but using different Fully Connected layer
setup. In contrary to their network which learns multi-scores classification
over discretized space of coordinates in the image, we are rather interested
only in binary classification. For feeding the second input into the network,
our architecture is inspired from the method used in [Levine et al., 2016]
for processing the motor command in a fully connected layer and integrate
it with the results of the pooling. However, we used a simplified technique
by concatenating the grasp pose to a flattened result of the last pool layer,
before its processed using the fully connected layer.

The CNN input size is 224×224 with two channels for IR and depth val-
ues respectively, the images are processed with convolution layer with kernel
size of 5 and stride of two pixels followed with max-pooling for reducing the
input dimension. The next layer contains one convolution followed by max-
pool, but using smaller kernel size of 3 × 3 for convolution. The last layer
consist from 3 stacked convolutions with kernel size of 3 × 3, stride size of
1 followed by max-pooling layer. The result of the max-pooling is flattened
and concatenated to the grasp pose, the result is served then as input to the
three fully connected layers with 2𝐷 vector output, representing the scores
of each of the two possible classes of grasp pose: Success and Failure. Each
of the layers we applied batch normalizing and ReLU activation function.

CHAPTER 3. GRASP PREDICTION 38

Figure 3.13: Training CNN architecture.

The network is implemented using tensorflow [Abadi et al., 2015], an
open-source library developed initially by Google Brain engineers and re-
searchers. The library provides wide functionality for conducting deep learn-
ing and machine learning research. It relies on concept of data flowing using
graph representation for expressing computations, Where nodes represent
the mathematical operations and edges are what so called tensors, represents
multidimensional arrays. The architecture of tensorlfow is very flexible, dif-
ferent models can be served and evaluated simultaneously. One advantage
of tensorflow is modularity, a model can be constructed from blocks or parts
which can be used individually or with any desired combination, such feature
can facilitate migration between models, e.g. between testing and training.
The library is implemented in different programming languages and it can
be easily configured to be deployed on CPUs and/or GPUs.

3.6 Training

3.6.1 Loss Function

The back propagation algorithm compute the gradients values, that are de-
rived from implicit measure of the error function (Loss function). Hence,

CHAPTER 3. GRASP PREDICTION 39

choosing proper loss function can effect significantly weights calculation and
the performance of the network. In our work, we use Softmax operation
on top of the output layer which resolve confidence scores between 0 and 1,
forming probability distribution along the classes number. One of the known
loss functions is the MSE (Mean Square Error), which usually works better
for regression than classification problems. When dealing with mutual exclu-
sive classes (each entry is exactly in one class) problem, the more the result
of the entries is close to 0 and 1, the gradient factor of MSE (1 − 𝑣𝑜𝑢𝑡)𝑣𝑜𝑢𝑡

get smaller and smaller resulting vanishing gradient. Cross-Entropy [Solla
et al., 1988] is a good choice when dealing with proabibilties, it has proven
better convergance on classification tasks and generally achieves better clas-
sification in terms of errors-rate [Golik et al., 2013].

Having two dimensional output of the network, we are interested in
squashing its values into valid probability distribution using Softmax. For
𝐾 dimensional vector output with values 𝑜1, .., 𝑜𝐾 , it calculates the proba-
bilities vector 𝜎(𝑜) as the following:

𝑝𝑗 = 𝜎(𝑜)𝑗 = 𝑒𝑜𝑗∑︀𝐾
𝑖=1 𝑒𝑜𝑖

for 𝑗 = 1, .., 𝐾 (3.12)

Where
∑︀𝐾

𝑗=1 𝑝𝑗 = 1 and 0 ≤ 𝑝𝑗 ≤ 1. This is generalization of logistic
regression, for two outputs 𝑜1 and 𝑜2, the probabilities can be written as the
following:

𝑝1 = 𝑒𝑜1

𝑒𝑜1 + 𝑒𝑜2
= 1

1 + 𝑒𝑜2−𝑜1
(3.13)

Having 𝑝𝑖, (1 − 𝑝𝑖) ∈ {0, 1} the probabilities of some grasp pose on the
𝑖𝑡ℎ image and 𝑝𝑖, (1 − 𝑝𝑖) ∈ [0, 1] its predicted probabilities as result of the
softmax operation, we define the Cross-Entropy function as the following:

𝐿𝑁 = − 1
𝑁

𝑁∑︁
𝑖=1

𝑝𝑖 · log 𝑝𝑖 + (1− 𝑝𝑖) · log (1− 𝑝𝑖) (3.14)

The function is the average of Cross-Entropy between the real classes

CHAPTER 3. GRASP PREDICTION 40

and the output of the softmax layer, where 𝑁 is the number of images in
the batch.

3.6.2 Optimization Algorithm

Optimization algorithm is required in order to minimize or maximize some
objective function w.r.t some parameters. Choosing optimization algorithm
can impact the time for achieving good results. When the optimized func-
tion is differentiable w.r.t its parameters, it’s relatively efficient to use gra-
dient based algorithms. Since calculating partial derivatives has the same
computational complexity as evaluating the function. There are many pos-
sible gradient based optimization algorithms one could use depending on the
problem we are trying to solve [Ruder, 2016]. One of the commonly used al-
gorithms is Adagrad [Duchi et al., 2011], which is well suited for sparse data
since it adapts its learning rate by performing larger steps on infrequent
parameters and smaller updates on frequent ones. Adadelta [Zeiler, 2012]
is another optimization algorithm which is an extension of Adagrad. How-
ever, it monotonically decreases it’s learning rate to reduce its aggressive.
This is achieved by restricting the window of accumulated past calculated
gradients, to a fixed size window, instead of accumulating all past squared
gradients. The gradients are stored efficiently, by recursively defining the
sum of the gradients as a decay average of all past squared gradients. In
this work, we have used Adam (Adaptive Moment Estimation) optimizer
[Kingma and Ba, 2014] which is recently adopted for multiple deep learning
tasks. It computes adaptive learning rates for each parameter, in addition
to storing an exponentially decaying average of past squared gradients like
in Adadelta, Adam also stores an exponentially decaying average of past
gradients:

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1− 𝛽1)𝑔𝑡 (3.15)

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1− 𝛽2)𝑔2
𝑡 (3.16)

Where 𝑚𝑡 is an estimate of the first moment, 𝑣𝑡 is the estimate for
second moment, 𝑔𝑡 is the gradient at step 𝑡 and 𝛽1, 𝛽2 are the moment

CHAPTER 3. GRASP PREDICTION 41

decays parameters. The biases were estimated :

�̂�𝑡 = 𝑚𝑡

1− 𝛽𝑡
1

(3.17)

𝑣𝑡 = 𝑣𝑡

1− 𝛽𝑡
2

(3.18)

Finally, they use these estimations for updating the parameters given
learning rate 𝜂:

𝜃𝑡+1 = 𝜃𝑡 −
𝜂√

𝑣𝑡 + 𝜖
�̂�𝑡 (3.19)

Figure 3.14: Convergence of Cross-Entopy cost function for multi-layer
CNN using dropout stochastic regularization on MNIST dataset.

We used the recommended default values which are proposed in the pa-
per and used by Tensorflow library:

CHAPTER 3. GRASP PREDICTION 42

𝛽1 0.9
𝛽2 0.999
𝜖 10−8

𝜂 10−3

Adam optimizer has shown in Figure 3.14 better convergence than other
optimization methods on MNIST dataset, where they used similar optimized
function as the one we used for this work, which is the Cross-Entropy.

3.6.3 Training Strategy

The network is trained with a specific training strategy for avoiding overfit-
ting on the training dataset. We used batch size of 200, which means at a
time we serve the network 200 set of images and grasp poses corresponding
to the images respectively. The batch is sampled from the training dataset
randomly as the following:

• Sample 200 different images from the training dataset

• For every image we flip a coin with equal chances, if the result is head
we pick randomly positive grasp pose otherwise a negative grasp pose

• For each pair image and grasp pose we randomly pick rotation angle
𝜃 ∈ {0, 𝑝𝑖

2 , 𝜋, 3𝜋
2 } and rotate both with 𝜃

• We prepare one-hot encoded label 𝑙𝑔𝑡 to distinguish between the two
labels, e.g. [1, 0] or [0, 1] for negative and positive grasp poses

Such batch sampling helps maintaining balanced amount of classes among
the batch entries. Which is essential for classification tasks ifor avoiding
biased predictions, specially when the classes are not equally distributed
among the represented dataset similar to our problem, where the majority
of the labels turned to be negative. In addition, we used random Dropout
technique proposed in [Wager et al., 2013], over the last layer with 0.5 prob-
ability to reduce overfitting during the training, which has proved to achieve
state-of-the-art results on many known datasets.

Weights initialization and learning rate determining become less critical
due to the usage of batch normalization. We chose learning rate of value
0.001 and Adam optimizer for minimizing Cross-Entropy cost function which

CHAPTER 3. GRASP PREDICTION 43

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000

0.2

0.4

0.6

0.8

1

Epoch

Lo
ss

Training Loss (Depth vs. Depth-IR)

Depth + IR
Depth

(a) Illustrating loss function convergence for two models one using
depth images only other one using Depth-IR images

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000

0.6

0.7

0.8

0.9

1

Epoch

A
cc

ur
ac

y

Training Accuracy (Depth vs. Depth-IR)

Depth + IR
Depth

(b) Illustrating batch accuracy score through the epochs.

Figure 3.15: Plotting loss and accuracy evaluation of single batch every 10
epochs.

CHAPTER 3. GRASP PREDICTION 44

was defined previously. We have trained two different models using the same
CNN architecture first model using depth images only and the second model
using both depth and IR images. For both models the loss function converged
very well on the training dataset. In Figure 3.15a we can see that the first
model converged faster than second model, one reason for this can be due
to using smaller input channel size, which speeded up the learning process.
Both models achieved similar accuracy rates on the batches toward the end
of the training as we can see in Figure 3.15b.

Accuracy metric is calculated over a batch of size 𝑁 , having the label
𝑙𝑔𝑡𝑖 and the predicted label 𝑙𝑝𝑟𝑒𝑑𝑖

for image 𝑖 in the batch, as the following:

Accuracy = 1
𝑁

𝑁∑︁
𝑖=1

𝐼𝑐𝑜𝑟𝑟𝑒𝑐𝑡(𝑙𝑔𝑡𝑖 , 𝑙𝑝𝑟𝑒𝑑𝑖
) (3.20)

where

𝐼𝑐𝑜𝑟𝑟𝑒𝑐𝑡(𝑙𝑔𝑡𝑖 , 𝑙𝑝𝑟𝑒𝑑𝑖
) =

⎧⎪⎨⎪⎩
1 if 𝑎𝑟𝑔𝑚𝑎𝑥

𝑗∈{0,1}
(𝑙𝑔𝑡𝑖) = 𝑎𝑟𝑔𝑚𝑎𝑥

𝑗∈{0,1}
(𝑙𝑝𝑟𝑒𝑑𝑖

)

0 otherwise.

The equation above calculates the average of correctly predicted classes
over the batch using the indicator 𝐼𝑐𝑜𝑟𝑟𝑒𝑐𝑡(𝑙𝑔𝑡𝑖 , 𝑙𝑝𝑟𝑒𝑑𝑖

), it has value 1 iff the
predicted class of the grasp pose 𝑔𝑟𝑎𝑠𝑝𝑖 on 𝑖𝑚𝑎𝑔𝑒𝑖 is equal to its label class.

For evaluating the models performance during the training on unseen
images, we sampled every 200 epochs a 20 batches from validation set in
similar way to the training however without rotating the images. Having
the accuracy measure alone, doesn’t give sufficient indication on the clas-
sifier performance. Thus, we evaluated additional two measures: Precision
and Recall. Similar to accuracy definition, we will define precision and recall
metrics:

𝑇𝑃 = 1
𝑁

𝑁∑︁
𝑖=1

𝐼𝑡𝑝(𝑙𝑔𝑡𝑖 , 𝑙𝑝𝑟𝑒𝑑𝑖
) (3.21)

CHAPTER 3. GRASP PREDICTION 45

𝐹𝑃 = 1
𝑁

𝑁∑︁
𝑖=1

𝐼𝑓𝑝(𝑙𝑔𝑡𝑖 , 𝑙𝑝𝑟𝑒𝑑𝑖
) (3.22)

𝐹𝑁 = 1
𝑁

𝑁∑︁
𝑖=1

𝐼𝑓𝑛(𝑙𝑔𝑡𝑖 , 𝑙𝑝𝑟𝑒𝑑𝑖
) (3.23)

where

𝐼𝑡𝑝(𝑙𝑔𝑡𝑖 , 𝑙𝑝𝑟𝑒𝑑𝑖
) =

⎧⎪⎨⎪⎩
1 if 𝑎𝑟𝑔𝑚𝑎𝑥

𝑗∈{0,1}
(𝑙𝑔𝑡𝑖) = 𝑎𝑟𝑔𝑚𝑎𝑥

𝑗∈{0,1}
(𝑙𝑝𝑟𝑒𝑑𝑖

) = 1

0 otherwise.

𝐼𝑓𝑝(𝑙𝑔𝑡𝑖 , 𝑙𝑝𝑟𝑒𝑑𝑖
) =

⎧⎪⎨⎪⎩
1 if 𝑎𝑟𝑔𝑚𝑎𝑥

𝑗∈{0,1}
(𝑙𝑔𝑡𝑖) = 0 and 𝑎𝑟𝑔𝑚𝑎𝑥

𝑗∈{0,1}
(𝑙𝑝𝑟𝑒𝑑𝑖

) = 1

0 otherwise.

𝐼𝑓𝑛(𝑙𝑔𝑡𝑖 , 𝑙𝑝𝑟𝑒𝑑𝑖
) =

⎧⎪⎨⎪⎩
1 if 𝑎𝑟𝑔𝑚𝑎𝑥

𝑗∈{0,1}
(𝑙𝑔𝑡𝑖) = 1 and 𝑎𝑟𝑔𝑚𝑎𝑥

𝑗∈{0,1}
(𝑙𝑝𝑟𝑒𝑑𝑖

) = 0

0 otherwise.

Then the precision and recall metrics are calculated as follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(3.24)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(3.25)

Figure 3.16 shows the evaluated scores on two models, In Figure 3.16b
we can see the evaluated scores when training the network on depth images.
The trendline of the three scores is monotonically increasing, however it
has negative peaks which shows that the network wasn’t able to learn the
grasp poses on some sampled images due to using of the depth channel
only. Figure 3.16a shows the evaluated scores using Depth-IR images, the
graphs is smoother and having less peaks. Clearly, we can notice that recall
rates graph gained from using Depth-IR images is higher than precision.
Conversely, when we used depth images only the recall maintained higher
than precision and both relatively high. Which leads us to the conclusion
that training the network on depth images indeed managed to reduce the
False Positive rates over the grasp poses, but it missed many possible good

CHAPTER 3. GRASP PREDICTION 46

Table 3.1: Results summary of the two models over the positive labels in
the validation dataset.

Model TH. (≥) Prec. Rec. Acc. Error (Degrees)

Depth-IR
0.5 57% 84% 86% 39
0.7 62% 84% 89% 31
0.9 65% 84% 90% 30

Depth
0.5 58% 55% 87% 29
0.7 60% 57% 87% 29
0.9 61% 57% 88% 29

ones on the way in the contrary to the second model, which managed to
reduce False Positive and the True Negative rates alike.

3.7 Empirical Results

In order to have some base line for comparison between the different models,
we have evaluated them over all labels in the validation set. We evaluated
each label class individually, since we generate from negative labels only neg-
ative grasp poses, precision and recall become meaningless, and calculating
the accuracy would be sufficient for evaluating the performance. In the con-
trary, positive labels contain both classes of grasp poses, where grasp pose is
negative in terms of orientation and not position (see Figure 3.10). Thus, we
could evaluate in addition to precision and recall, the orientation error av-
erage from the ground truth orientation, over the false positive predictions.
This provide an indication for the orientation accuracy of the models on the
validation set.

Table 3.1 summarize the evaluation results over patches containing pos-
itive labels in the validation dataset. The scores are the average scores over
the patches. It includes three rounds of evaluations of the two models, each
round was evaluated with different threshold on the success confidence score
from the networks’ output. We simply consider the prediction to be nega-
tive if the success confidence score below some threshold 𝑝. For Depth-IR
model, increasing the threshold maintained same recall rates, which means
in average it didn’t lose its sensitivity in classifying the orientation. However

CHAPTER 3. GRASP PREDICTION 47

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,0000

0.2

0.4

0.6

0.8

1

Epoch

R
at

e
Performance of The Network on Test Dataset Using Depth-IR Images

Accuracy
Precision

Recall

(a) Evaluted scores through CNN training using Depth-IR images.

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,0000

0.2

0.4

0.6

0.8

1

Epoch

R
at

e

Performance of The Network on Test Dataset Using Depth Images

Accuracy
Precision

Recall

(b) Evaluted scores through CNN training using depth images

Figure 3.16: Evaluting precision, recall and accuracy through training every
200 epochs for 20 sampled batches from the validation dataset

CHAPTER 3. GRASP PREDICTION 48

Table 3.2: Accuracy summary of the two models over the negative labels in
the validation dataset.

Model Acc.
Depth-IR 97%

Depth 99%

accuracy and precision were increased and consequently, the orientation er-
ror of the false positive predictions has decreased. It achieved up to 65%
precision with 84% recall and minimal orientation error of 30 degrees. In
the contrary, the model trained on depth images, changing the threshold
hasn’t much affect on the evaluation results, however in average it scored
lower results from the other model. It achieved up to 61% precision with
relatively low recall up to 57% and orientation error of 29 degrees. It shows
that in average, the trained model over Depth-IR images has learned to clas-
sify grasp poses, in terms of orientation, better than the model trained over
depth images.

Table 3.2 summarize accuracy results over patches containing negative
labels in the validation dataset. The model trained on depth images was
able to classify negative grasp poses better than the other model, 99% of
precision compared to 97% when training on Depth-IR images. Which shows
that using the additional IR channel could increase in average the amount
of false negative grasp poses for non-graspable regions.

3.8 Enhanced CNN Architecture

One drawback of the architecture in Figure 3.13, it requires processing the
image for every single grasp pose evaluation, which is inefficient, specially
when trying to iterate over the grasp poses space on the same image. In-
stead we would like to allow evaluation of batches of grasp poses without
the cost of unnecessary processing of the image on every evaluation. The
idea is to change the architecture in such a way, it receives as input a batch
of grasp poses to evaluate on single image. This can be achieved easily using

CHAPTER 3. GRASP PREDICTION 49

Tensorflow library, by tiling the last Pool layer as the number of grasp poses
in the batch, then each grasp is concatenated to the flattened result of the
Pool and processed in the fully connected layer similar to the previous archi-
tecture. This increased significantly the time required to evaluate multiple
grasp poses, since tiling operation is relatively faster than to re-processing
the image in the convolutions layers.

Figure 3.17: CNN architecture for validaition.

3.9 Multiple Grasp Pose Prediction

Our approach provide high level of flexibility, since we don’t need to process
the whole image in order to predict grasp poses. It can be used to predict/-
classify local regions (Regions of Interest) on the image, which is very useful
for robotic applications. For example, it can be adapted to the robotic arm
configuration by ignoring regions on the image where the arm can’t reach.
Alternatively, it can use different heuristics for identifying regions on the
image with high likelihood of containing graspable parts, and then use our
approach to classify or predict grasp pose candidates.

In this section, we will provide one possible heuristic which uses the
classifier for predicting multiple grasp poses over the image. The idea is to
divide the sensed images into smaller patches images to match the CNN

CHAPTER 3. GRASP PREDICTION 50

input size using sliding window approach. For each patch we traverse over
the gripper 3𝐷 poses space and predict a single high quality grasp pose.

Having the sensed images using the camera, we generate fixed ROI-s
centers over the image plane, for each center we crop and resize a patch
using the method described in Section 3.4.2, resulting set of images patches.
Then we generate uniformly grasp poses over the 224 × 224 patch with
certain descretizaiton in x,y and 𝜃, which will be evaluated using our trained
models. The outcome of the classification the trained network, may contain
false positive grasp poses as shown in Figure 3.18a, however those usually
are near some graspable regions with inaccurate grasp position. In order to
eliminate its effect, we could use couple of methods like neighbor clustering.
For each cluster we calculate it’s average orientation, then grasp poses are
determined by the clusters centers and its average orientation. However,
we used a simpler method by calculating the average over the positively
classified grasp poses to yield a single robust predicted grasp pose. When all
grasp poses candidates are negatively classified, it indicates that the patch
doesn’t include graspable parts. Otherwise, we will have set of 𝑁 positively
classified 3𝐷 grasp poses 𝑝𝑜𝑠1, ..., 𝑝𝑜𝑠𝑁 over some patch, we calculate the
average pose 𝑝𝑜𝑠𝑎𝑣𝑔:

𝑝𝑜𝑠𝑎𝑣𝑔 = (𝑥𝑎𝑣𝑔, 𝑦𝑎𝑣𝑔, 𝜃𝑎𝑣𝑔) = 1
𝑁

𝑁∑︁
𝑖=0

𝑝𝑜𝑠𝑖 (3.26)

Average grasp can be unreliable, specially when a patch contains multi-
ple graspable parts, that can be grasped in different orientations (see Fig-
ure 3.18a), the average grasp would be then lying somewhere in between
the graspable parts. Another case, when the part is graspable at the average
grasp position (𝑥𝑎𝑣𝑔, 𝑦𝑎𝑣𝑔), but with orientation different than the average
grasp orientation 𝜃𝑎𝑣𝑔 as shown in Figure 3.18b. These issues can be solved
by generating a new set of poses candidates {(𝑥𝑎𝑣𝑔, 𝑦𝑎𝑣𝑔, 𝜃𝑛𝑒𝑤)|𝜃𝑛𝑒𝑤 ∈ [0, 𝜋]}
illustrated in Figure 3.18c, which comes as a step for reconsidering new ori-
entations on the average grasp position. The set is re-evaluated as a single
batch using the network, we pick then grasp pose with the highest success
score. This would allow us re-evaluating 𝑝𝑜𝑠𝑎𝑣𝑔, without missing a potential

CHAPTER 3. GRASP PREDICTION 51

(a) Positive predictions (b) Average grasp pose (c) Best grasp pose

Figure 3.18: Illustrates the outcome of three steps over the patch. Figure a
illustrates the positive grasp poses predictions; Figure b shows the average
grasp pose 𝑝𝑜𝑠𝑎𝑣𝑔; Figure c illustrates the proposed new grasp poses (blue
lines) having the same centers’ position as 𝑝𝑜𝑠𝑎𝑣𝑔, but with different orienta-
tions. The grasp pose with highest success score after re-evaluation is colored
as green line.

good grasp for having biased average orientation 𝜃𝑎𝑣𝑔.
The choice in the granularity of discretization either in generating ROIs

centers from the image space or in the grasp pose generation, can be a com-
promise between precision in the target pose predictions, and tractability of
the application, specially when applying it in real-world experiments. Choos-
ing coarser scale lead to faster evaluation, since we will have less number
of patches and grasp poses. However, it could come with a price of yielding
poor predictions and missing potential graspable parts.

We have applied the proposed heuristic over the images on the validation
set. Given the images of size 640×480 , we sampled fixed ROI-s centers over
the image plane with 40 pixels distance between them, with padding of
20 pixels from the image sides. Then we have generated uniformly grasp
poses over the patch image by discretization of 50 pixels in position and 5
degrees in rotation. The task now becomes to predict, from each of the 165
patches, a single high quality grasp pose from the 900 possible grasp poses.
We have used the modified CNN architecture in Figure 3.17, which allows
us to evaluate 900 grasp poses at once. The final predicted grasp pose on a
patch was translated back into the original image coordinates.

We chose to illustrate the results on IR images over depth images because
it provides clearer view of the parts, the predicted grasp poses were repre-

CHAPTER 3. GRASP PREDICTION 52

sented as green lines to indicate its position (lines center) and orientation.
Figure 3.19 shows the predicted grasps (green lines) on the IR image using
IR-Depth trained model, but without using the re-evaluation step described
above. We can see some of the grasp poses are lying on some graspable part
(for example the left-top part in the image), but with wrong orientation,
those grasp pose predictions can be misclassified in the re-evaluation step,
without reconsidering the new orientations. In Figure 3.20, it shows the pre-
dicted grasps using the same model and image with the re-evaluation step. It
managed to correct orientation for part of the predicted grasp poses, however
it contains few false positive grasp poses, like the ones on the bin edges and
on the table. It was possible to minimize those, by increasing the threshold
over the predicted success score to 0.7, as shown in Figure 3.21. But it didn’t
have noticeable change in the calculation of the average grasp orientation,
due to the fact that orientations are symmetric around its ground truth, for
positively predicted grasp poses. Thus, the average has kept more or less
the same after filtering them. Figure 3.6a shows predicted grasp poses using
the depth model on the very same scene. The image has less false positive
grasp poses, however it missed many good grasp poses. This is explainable
from looking at the performance results on validation set, the depth model
had relatively low recall, and it tends to miss positive grasp poses.

Table 3.3 summarize the average time during evaluation. We can see
the it takes an average of 0.138 seconds to evaluate the grasp poses over a
single patch without re evaluation, 0.28 seconds with re-evaluation, since we
need to do an extra processing on the predictions and then evaluate another
36 new grasp poses, however the re-evaluation step would occur only if we
have positive predictions over a certain patch. This explains why it takes
around 28.3 seconds to evaluate 165 patches, which is less than the average
time obtained from multiplying number of patches with the average time
required per patch with re-evaluation.

Unfortunately, we couldn’t evaluate the performance of the proposed
heuristic quantitatively, since the dataset was partially labeled and it makes
it difficult in determining the ground truth of predicted grasp poses. We
hope in the future we will be able to evaluate this heuristic using robot
experiments.

CHAPTER 3. GRASP PREDICTION 53

Table 3.3: This table summarize the average time needed to evaluate 900
grasp poses, served as a single batch using the CNN illustrated in Figure 3.17
using IR-Depth model, running on 4 GeForce® GTX TITAN Black GPUs. We
split the time evaluation into 3 categories: single patch without re-evaluation
step, single patch with evaluation step and the time required for evaluation
the poses on 165 patches.

Time (average)
Single Patch (without re-evaluation) 0.138 seconds
Single Patch (with re-evaluation) 0.28 seconds
165 Patches (with re-evaluation) 28.3 seconds

Figure 3.19: Multigrasp predictions using the average grasp without re-
evaluating step using IR-Depth model.

CHAPTER 3. GRASP PREDICTION 54

Figure 3.20: Multigrasp predictions using the average grasp after re-
evaluating step using IR-Depth model

Figure 3.21: Multigrasp predictions using the average grasp after re-
evaluating step using IR-Depth model, and applying 0.7 threshhold on suc-
cess score

CHAPTER 3. GRASP PREDICTION 55

Figure 3.22: Multigrasp predictions using the average grasp after re-
evaluating step using Depth model

Chapter 4

Outlook

4.1 Summary

In this work, we presented a state-of-the-art method for querying 3𝐷 grasp
poses graspability over IR-Depth images using deep learning. Our contri-
bution is a learned base grasp pose classifier, that works on local regions
in the image. We have shown how to generate large dataset of patches and
grasp poses from a relatively small set of images. This dataset has served
for training two models, one using only depth images and the second using
IR-Depth images. Training the CNN with IR images in addition to depth,
has improved the overall grasp poses classification. This classifier provides
flexible solution, it can be used in different heuristic either for classifying or
predicting grasp poses. One example is our proposed multi-grasp prediction
heuristic, which uses our classifier for multiple grasp predictions over the
entire image. Our multi-grasp prediction heuristic uses an enhanced CNN
architecture to serve large batch of grasp poses at once efficiently. With av-
erage grasp over uniformly sampled grasp poses from the patch plane, it is
able to identify non-graspable regions with few false positive predicted grasp
poses. Additionally, it provides a robust high quality predicted grasp poses
thanks to the re-evaluation step.

56

CHAPTER 4. OUTLOOK 57

4.2 Further Work

Our multi-grasp prediction heuristic has the ability to predict multiple grasps
over the entire image. One drawback of this heuristic, is that it uses a sliding
window approach to traverse over local regions, this can be speeded up by
focusing only on regions with high likelihood of containing graspable parts.
We also used average grasp pose over the patch to determine high quality
grasp, which was re-evaluated using the classifier, for determining its graspa-
bility. Instead, neighbor clustering can be used, in turn average grasp poses
over clusters would yield multiple grasps predictions instead of one, and it
will fulfill the need for re-evaluation step. There is more work to be done
on filtering the predicted grasp poses, and choosing the best one. For ex-
ample, best grasp can correspond the grasp pose with minimal depth value.
We couldn’t quantitatively evaluate our multi-grasp prediction heuristic, be-
cause our dataset is partially labeled. Thus, further robot experiments are
required for proper evaluation. For future work, we will compare the per-
formance of our multi-grasp prediction heuristic with the method used in
[Koo et al., 2017] for grasp detection. Moreover, we will work on integrating
our classifier with their method, it can be used for providing continuous
feedback over local regions, while the manipulator approaches the part, for
determining the grasp pose in terms of position and orientation.

Bibliography

Abadi, Martín et al. (2015). TensorFlow: Large-Scale Machine Learning
on Heterogeneous Systems. Software available from tensorflow.org. url:
http://tensorflow.org/.

Agostinelli, Forest et al. (2014). “Learning activation functions to improve
deep neural networks”. In: arXiv preprint arXiv:1412.6830.

Angelova, Anelia et al. (2015). “Real-Time Pedestrian Detection with Deep
Network Cascades”. In: Proceedings of the British Machine Vision Con-
ference 2015, BMVC 2015, Swansea, UK, September 7-10, 2015, pp. 32.1–
32.12. doi: 10.5244/C.29.32. url: http://dx.doi.org/10.5244/C.29.32.

Boularias, Abdeslam et al. (2015). “Learning to Manipulate Unknown Ob-
jects in Clutter by Reinforcement”. In: Proceedings of the Twenty-Ninth
AAAI Conference on Artificial Intelligence, January 25-30, 2015, Austin,
Texas, USA. Pp. 1336–1342.

Cord, Matthieu (2016). Deep CNN and Weak Supervision Learning for visual
recognition. url: https://blog.heuritech.com/2016/02/29/a-brief-report-
of-the-heuritech-deep-learning-meetup-5/.

Cun, Yann Le et al. (1991). “Eigenvalues of covariance matrices: Application
to neural-network learning”. In: Physical Review Letters 66.18, pp. 2396–
2399. issn: 0031-9007. doi: 10.1103/PhysRevLett.66.2396.

Duchi, John et al. (2011). “Adaptive subgradient methods for online learning
and stochastic optimization”. In: Journal of Machine Learning Research
12.Jul, pp. 2121–2159.

Golik, Pavel et al. (2013). “Cross-entropy vs. squared error training: a theo-
retical and experimental comparison.” In: Interspeech. Vol. 13, pp. 1756–
1760.

58

http://tensorflow.org/
http://dx.doi.org/10.5244/C.29.32
http://dx.doi.org/10.5244/C.29.32
https://blog.heuritech.com/2016/02/29/a-brief-report-of-the-heuritech-deep-learning-meetup-5/
https://blog.heuritech.com/2016/02/29/a-brief-report-of-the-heuritech-deep-learning-meetup-5/
http://dx.doi.org/10.1103/PhysRevLett.66.2396

BIBLIOGRAPHY 59

Goodfellow, Ian et al. (2016). “Deep Learning”. In: http://www.deeplearningbook.
org. MIT Press, pp. 1–2.

He, Kaiming et al. (2015). “Deep Residual Learning for Image Recognition”.
In: CoRR abs/1512.03385. url: http://arxiv.org/abs/1512.03385.

Ioffe, Sergey and Christian Szegedy (2015). “Batch normalization: Accel-
erating deep network training by reducing internal covariate shift”. In:
arXiv preprint arXiv:1502.03167.

Jiang, Yun et al. (2011). “Efficient grasping from RGBD images: Learning
using a new rectangle representation”. In: IEEE International Confer-
ence on Robotics and Automation, ICRA 2011, Shanghai, China, 9-13
May 2011, pp. 3304–3311. doi: 10.1109/ICRA.2011.5980145. url: http:
//dx.doi.org/10.1109/ICRA.2011.5980145.

Johns, Edward et al. (2016). “Deep Learning a Grasp Function for Grasping
under Gripper Pose Uncertainty”. In: CoRR abs/1608.02239. url: http:
//arxiv.org/abs/1608.02239.

Kingma, Diederik P. and Jimmy Ba (2014). “Adam: A Method for Stochastic
Optimization”. In: CoRR abs/1412.6980. url: http://arxiv.org/abs/1412.
6980.

Koo, Seongyong et al. (2017). “Robolink Feeder: Reconfigurable Bin-Picking
and Feeding with a Lightweight Cable-Driven Manipulator”. In: 13th
IEEE International Conference on Automation Science and Engineering
(CASE), Xi’an, China, August 2017.

Kopicki, Marek Sewer et al. (2016). “One-shot learning and generation of
dexterous grasps for novel objects”. In: I. J. Robotics Res. 35.8, pp. 959–
976.

Krizhevsky, Alex et al. (2012a). “ImageNet Classification with Deep Con-
volutional Neural Networks”. In: Advances in Neural Information Pro-
cessing Systems 25: 26th Annual Conference on Neural Information Pro-
cessing Systems 2012. Proceedings of a meeting held December 3-6, 2012,
Lake Tahoe, Nevada, United States. Pp. 1106–1114. url: http://papers.
nips . cc / paper / 4824 - imagenet - classification - with - deep - convolutional -
neural-networks.

Krizhevsky, Alex et al. (2012b). “ImageNet Classification with Deep Con-
volutional Neural Networks”. In: ed. by F. Pereira et al., pp. 1097–1105.

http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://arxiv.org/abs/1512.03385
http://dx.doi.org/10.1109/ICRA.2011.5980145
http://dx.doi.org/10.1109/ICRA.2011.5980145
http://dx.doi.org/10.1109/ICRA.2011.5980145
http://arxiv.org/abs/1608.02239
http://arxiv.org/abs/1608.02239
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks

BIBLIOGRAPHY 60

url: http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-
convolutional-neural-networks.pdf.

Kumra, Sulabh and Christopher Kanan (2016). “Robotic Grasp Detection
using Deep Convolutional Neural Networks”. In: CoRR abs/1611.08036.
url: http://arxiv.org/abs/1611.08036.

Le, Quoc V et al. (2010). “Learning to grasp objects with multiple contact
points”. In: Robotics and Automation (ICRA), 2010 IEEE International
Conference on. IEEE, pp. 5062–5069.

LeCun, Y. et al. (2001). “Gradient-Based Learning Applied to Document
Recognition”. In: Intelligent Signal Processing. IEEE Press, pp. 306–
351.

LeCun, Yann and Corinna Cortes (1998). The MNIST database of handwrit-
ten digits.

Lenz, Ian et al. (2015). “Deep learning for detecting robotic grasps”. In: I.
J. Robotics Res. 34.4-5, pp. 705–724. doi: 10.1177/0278364914549607.
url: http://dx.doi.org/10.1177/0278364914549607.

Levine, Sergey et al. (2016). “Learning Hand-Eye Coordination for Robotic
Grasping with Deep Learning and Large-Scale Data Collection”. In:
CoRR abs/1603.02199. url: http://arxiv.org/abs/1603.02199.

Nair, Vinod and Geoffrey E Hinton (2010). “Rectified linear units improve
restricted boltzmann machines”. In: Proceedings of the 27th international
conference on machine learning (ICML-10), pp. 807–814.

Pinto, Lerrel and Abhinav Gupta (2016). “Supersizing self-supervision: Learn-
ing to grasp from 50K tries and 700 robot hours”. In: 2016 IEEE Interna-
tional Conference on Robotics and Automation, ICRA 2016, Stockholm,
Sweden, May 16-21, 2016, pp. 3406–3413. doi: 10 . 1109 / ICRA . 2016 .
7487517. url: http://dx.doi.org/10.1109/ICRA.2016.7487517.

Ruder, Sebastian (2016). “An overview of gradient descent optimization al-
gorithms”. In: CoRR abs/1609.04747. url: http://arxiv.org/abs/1609.
04747.

Russakovsky, Olga et al. (2015). “ImageNet Large Scale Visual Recognition
Challenge”. In: International Journal of Computer Vision (IJCV) 115.3,
pp. 211–252. doi: 10.1007/s11263-015-0816-y.

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://arxiv.org/abs/1611.08036
http://dx.doi.org/10.1177/0278364914549607
http://dx.doi.org/10.1177/0278364914549607
http://arxiv.org/abs/1603.02199
http://dx.doi.org/10.1109/ICRA.2016.7487517
http://dx.doi.org/10.1109/ICRA.2016.7487517
http://dx.doi.org/10.1109/ICRA.2016.7487517
http://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1609.04747
http://dx.doi.org/10.1007/s11263-015-0816-y

BIBLIOGRAPHY 61

Saxena, Ashutosh et al. (2008). “Robotic grasping of novel objects using vi-
sion”. In: The International Journal of Robotics Research 27.2, pp. 157–
173.

Simonyan, Karen and Andrew Zisserman (2014). “Very Deep Convolutional
Networks for Large-Scale Image Recognition”. In: CoRR abs/1409.1556.
url: http://arxiv.org/abs/1409.1556.

Solla, SA et al. (1988). “ªAccelerated Learning in Layered Neural Networks,
º Complex Systems, vol. 2”. In:

Srivastava, Rupesh Kumar et al. (2015). “Highway Networks”. In: CoRR
abs/1505.00387. url: http://arxiv.org/abs/1505.00387.

Szegedy, Christian et al. (2014). “Going Deeper with Convolutions”. In:
CoRR abs/1409.4842. url: http://arxiv.org/abs/1409.4842.

Wager, Stefan et al. (2013). “Dropout training as adaptive regularization”.
In: Advances in neural information processing systems, pp. 351–359.

Zeiler, Matthew D. (2012). “ADADELTA: An Adaptive Learning Rate Method”.
In: CoRR abs/1212.5701. url: http://arxiv.org/abs/1212.5701.

http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1505.00387
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1212.5701

	Declaration
	Abstract
	Introduction
	Contributions
	Structure of this Thesis

	Related Work
	Background
	Deep Learning
	Convolutional Neural Networks
	Activation or Non-Linear Functions
	Spatial Convolution
	Spatial Pooling
	Batch Normalization

	CNN Architectures
	LeNet-5
	AlexNet
	VggNet
	GoogLeNet
	ResNet

	Grasp Prediction Using Deep Learning
	Prediction as Regression
	Prediction as Classification

	Grasp Prediction
	Problem Description
	Approach
	Target Grasp Pose
	Positive Grasp Pose

	Dataset
	Labeling
	Patch Size Calculation
	Region of Interest (ROI) Generation
	Grasp Poses Generation
	Training and Validation Datasets Generation

	CNN Architecture
	Training
	Loss Function
	Optimization Algorithm
	Training Strategy

	Empirical Results
	Enhanced CNN Architecture
	Multiple Grasp Pose Prediction

	Outlook
	Summary
	Further Work

