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Abstract
Video prediction is a challenging computer vision task that has recently attracted
attention due to its applicability for a large variety of problems, such as au-
tonomous driving, human-robot collaboration, or representation learning. How-
ever, making accurate predictions from video is a challenging task due to the
inherent uncertainty, stochasticity, and complexity of real life environments. Sev-
eral existing works use recurrent neural networks (RNNs) equipped with stochastic
modules in order to capture video dynamics into latent variables and predict multi-
ple futures. While these methods achieve impressive results, they are restricted by
the limited ability of RNNs to learn long-range and complex dependencies. In this
work, inspired by recent methods used in dialogue response generation, we develop
a novel transformer predictor module able to model long-term dependencies, while
still maintaining multiple valid predictions of the future. Our proposed transformer
learns a prior distribution of the underlying uncertainty of the data, and combines
latent variables sampled from this distribution with predicted features conditioned
on the observed video frames in order to generate multiple possible futures. In
experiments on Stochastic/Deterministic Moving-MNIST, KTH, and the human
poses of Humans 3.6M, we show the efficient predictive power of transformers and
the advantages of maintaining a stochastic interpretation of the future.
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1 Introduction

Anticipation of what will happen next is an essential metric for intelligence. Hu-
mans regularly rely not only on this ability, but the ability of others to do the
same. A random actor at a traffic light is a dangerous situation, due in part to the
strong, collective assumption that they will behave within a set of pre-determined
actions. In this thesis, we attempt to model the distribution of possible future
outcomes in a situation-agnostic way. To this end, we present the STochastic
TRansformer module (STTR), which learns to predict a distribution over possible
futures.

Uncertainty is an underlying aspect of future prediction, as multiple futures
can stem from the same seed [10] [5]. Inspired by [10], we learn a distribution
of possible futures that can be sampled to make a stochastic prediction. A key
advantage of stochastic over deterministic models is that as uncertainty grows,
deterministic models will converge to the average of all possible future outcomes
[51]. This makes the predictions of deterministic models blurry in the case where
two outcomes are equally likely. Our stochastic model avoids this and continues to
generate sharp and varied predictions in cases where multiple futures could exist.

Furthermore, maintaining a single, deterministic representation of the future
can lead to penalizing valid guesses where multiple futures could be considered as
logical continuations of the present. Consider the case of a person attempting to
catch a train in Figure 1.1. Two valid predictions could be that they successfully
board the train or that they miss it an are eventually forced to hail a cab. During
training, our STTR selects the true future using non-causal knowledge and and
also learns the distribution of possible outcomes. During evaluation, we follow [10]
and [17] by taking multiple samples from this learned distribution and selecting
the highest performer with respect to the ground truth.

We apply our model to two different settings. In Video Prediction, the STTR
is evaluated over the perceived realism of the prediction, according to commonly
used image metrics. In Human Pose Prediction, we predict the continuation of
motion in the human skeleton.

The main contributions of this thesis are as follows:

1. We present the STTR, a transformer-based prediction model.
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1 Introduction

Figure 1.1: Uncertainty of the future can lead to two equally valid predictions, despite
collapse into a single outcome. [19]

2. We show that our STTR is able to capture the uncertainty of the future
contained in a distribution. Taking samples from this distribution makes
both variable and realistic predictions.

3. Evaluation of our STTR shows very good performance when compared against
strong, stochastic baselines.

This thesis continues in the following structure:

• Chapter 2: Theoretical Background: Summarize popular architectures in
deep learning and the building blocks used in our model.

• Chapter 3: Related Work: Discuss the previous state-of-the-art work in the
field of Video Prediction and Human Pose Prediction.

• Chapter 4: Method: Introduce our Stochastic Transformer and implementa-
tion details.

• Chapter 5: Evaluation: Comparisons against other models and several qual-
itative samples.

• Chapter 6: Outlook and Conclusion: Present our opinions on future direction
and a conclusion of the thesis.
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2 Theoretical Background

This sections represents an incomplete introduction to Deep Learning. Many meth-
ods are superficial summarizations of the extensive work developed and refined over
the last decades. It should be included as to give high-level background informa-
tion for full understanding of the thesis.

2.1 Stochastic Gradient Decent

A simple building block of Deep Learning is represented as a function f with
parameters θ. It computes the output as follows:

ŷ = fθ(x). (2.1)

To begin with, the parameters θ are initialized randomly and the output ŷ is
white noise. To get a more logical output, we need a meaningful set of parameters
θ.

The data x we operate on is often very structured, for example an image. We say
a very good set of parameters θ will extract features from x. Examples of features
in an image are: the location, inside/outside, number of people, orientation of the
ground plane, ....

To transition from random initialization of θ to a meaningful set of parameters,
we optimize over θ. This optimization procedure needs:

• A desired output yi for the each given input xi. This composes a dataset of
K input-output pairs (xi, yi) ∀ i ∈ 1..K

• A loss function L which ranks how good our prediction ŷi is compared to
the ground truth value yi.

So long as the loss function L and learned function f are differentiable with
respect to θ, we can update the parameters θ using gradient descent.

3



2 Theoretical Background

Figure 2.1: Effect of Learning Rate (LR) on the optimization process extracted from [1].
On the left the LR is too small and takes a long time to converge. On the
right, the LR is too high and does not converge to a local minimum.

Gradient Descent

Gradient Descent searches for the optimal parameters θ∗ which minimize:

argθ min
K∑
i=0

L(fθ(xi), yi). (2.2)

It does so by first calculating the gradient with respect to θ. This gradient is the
slope of the loss function L at the current values of θ. By taking a step in the
opposite (downward) direction of the slope, we get closer to a minimum value of
L. Taking a step is equivalent to updating the current values of θ:

θ := θ − α
K∑
i

∂

∂θ
L(fθ(xi), yi), (2.3)

where α (the learning rate) controls the size of the step. Figure 2.1 gives a com-
parison of how different learning rates effect the value of the loss. The left of
2.1 shows how too small of a learning rate will require many update steps before
settling at the local minimum. On the right shows how too large of a learning rate
can lead to poor optimization. At the last point on the right figure, an additional
step would overshoot the local minimum, and lead to a higher loss. An appropriate
learning rate selection is key to a successful optimization.

Updating the Neural Network requires taking a gradient of the loss w.r.t. θ

(i.e. the term ∂
∂θ
L(fθ(x), y) in Eq 2.3). The difficulty is that the loss function L

depends on a sub-function fθ. Fortunately, we can use the chain rule of calculus
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2.2 Neural Network Common Modules

which states:

if z = f(y) = f(g(x)), then ∂z

∂x
=

∂z

∂y
· ∂y
∂x

. (2.4)

The chain rule makes computation of the gradient possible. As fθ can be composed
of other sub-functions, we apply the chain rule for every module that composes fθ.

Stochastic Gradient Descent

Datasets can be very large, making computation over all K elements a memory
bottleneck. Additionally, the loss surface is complex and high-dimensional, mean-
ing the optimal step depends not only on the gradient direction, but also the step
size. Stochastic Gradient Descent makes an approximation of the gradient.

We select a mini-batch size B, such that B ≪ K. We then select B random
pairs (xi, yi) from the dataset and compute the gradient (following Eq 2.3) using
this reduced subset. In addition to being much more computationally efficient,
this adds randomness to the gradients which can help avoid begin stuck in a local
minimum.

2.2 Neural Network Common Modules
In this section, we present some common Neural Network (NN) building blocks
for fθ. These are chained together to form neural networks, using the chain rule
to calculate the gradient.

2.2.1 Multi-layer Perceptron
A common building block for NNs is the Linear or Fully Connected (FC) Layer,
which is diagrammed in Figure 2.2. Every output is a weighted combination of
every input, with a bias that learns a constant shift of the output. Using matrix
multiplication, this layer computes:

ŷ = Wx+ b (2.5)

where W ∈ Rm×n and b ∈ Rm are the learned parameters θ of the layer, denoted
as the weights and bias, respectively.

The Mulit-Layer Perceptron (MLP) comes from cascading h Linear Layers. All
layers between the input and output are named hidden layers. A hidden layer with
more neurons than either the input or output is considered and inverse bottleneck.

5



2 Theoretical Background

This definition of an MLP is incomplete. The composition of linear transforma-
tions states that multiple linear transforms can be combined together into a single,
linear transform. And so a linear layer with enough parameters would have equal
expressive power compared to an MLP. This leads us to the next section, where
we discuss how activations are inserted between NN Layers to add non-linearity
to the output.

Figure 2.2: Fully Connected Layer. Each
output neuron is connected to
every input neuron. The ’bias’ is
omitted. Figure extracted from
[2]

Figure 2.3: Plot showing the ReLU
and GELU non-linear
activation functions.
Figure extracted from
[3].

2.2.2 NonLinear Activation Functions
Non-linearity is an essential property of a universal function approximator [9]. The
Universal Approximation Theorem states that a MLP with a single hidden layer
and a sufficient number of neurons can approximate any continuous function, given
the appropriate activation function. This highlights the expressive power of NNs,
and the importance of a non-linear activation function.

Activation functions are typically placed on the output of each layers. A simple
and popular non-linear activation function is the Rectified Linear Unit (ReLU)
[31] [24], which follows the rule:

f(x) =

{
x, if x ≥ 0

0, otherwise.
(2.6)
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The ReLU has no effect on the gradient when x ≥ 0, and sets the gradient to
zero otherwise. This can be problematical when, for example, a layer outputs a
large negative number. Without gradients, it can be difficult to recover from the
undesired state.

This leads to the introduction of Gaussian Error Linear Units (GELU) [25]
shown in Figure 2.3. By adding a small slope when x ≤ 0, the network is less
failure prone.

Many other activations exist and are a good ablation study. For our networks,
we use GELU in the Transformers and ReLU otherwise.

2.2.3 Convolutions

Convolutional Neural Networks (CNNs) [18] are a type of deep learning model
that has revolutionized computer vision tasks such as image classification [31],
object detection [20], and image segmentation [6]. CNNs are inspired by the
concept of cross-correlation, which is a signal processing operation for computing
the similarity between two signals.

Convolutions are applied to the input data using learnable filters, known as
kernels. This is shown in Figure 2.4. These filters are small matrices that are slid
across the input data, computing element-wise multiplications and summing the
results. The 1D Convolution is formulated for each output j and kernel size K:

ŷj = bj +

K/2∑
k=−K/2

xj−kwk, (2.7)

where we also add a learnable bias b.

This process allows the network to capture local patterns and spatial dependen-
cies within the data. The output of a convolutional layer is often referred to as a
feature map, which represents the presence of specific features at different spatial
locations.

The power of CNNs lies in stacked convolutions, to increase the receptive field
of each point in the feature map. The receptive field is the region of the original
input which has an effect on a single point on the feature map, and grows as
convolutions are stacked. CNNs a popular choice in computer vision, achieving
state-of-the-art performance in many image-based tasks.

7



2 Theoretical Background

Figure 2.4: Convolving a 3× 3 Kernel over a 4× 4 input. Figure taken from [13]

Figure 2.5: The LSTM operates by passing two outputs to itself in the next step. The
first output, a cell state ct, keeps long term information that may be useful
at later timesteps. The second output is the short term memory which forms
the prediction (ht) at the current timestep.

2.2.4 Recurrent Neural Networks

So far, the modules we have discussed operate without memory. For each input, we
produce an output with no recollection of what came previously. This motivates
the Recurrent Neural Network (RNN). RNNs are characterized by their recurrent
connection, which loops from their output back to their input. They use this
connection to maintain temporally significant information across timesteps.

The key characteristic of an RNN is its recurrent nature, where the output of a
previous step is fed back as input to the network at the next step. This loop enables
the network to maintain a form of memory and capture relevant information from
the past, to use with future predictions. RNNs are a natural choice for handling
temporally dependent data.

An advanced variant of the RNN is the Long-Short-Term Memory cell (LSTM)
[44] shown in Figure 2.5. The LSTM was specifically designed to address the chal-
lenges of capturing long-term dependencies in sequential data. Unlike traditional
RNNs, LSTMs introduce internal gates for merging new information into its stored
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cell state. The input gate allows addition of new information, the forget gate gives
the option to remove information from the cell state, and the output gate controls
the prediction of that timestep.

By regulating the flow of information through these gates, LSTMs provide better
retention of long-term information than naive RNNs. This allows them to make
accurate predictions even across long sequences. The LSTM a powerful extension
to the RNN, and is used as a baseline in our work for integration of temporal
information.

2.2.5 Transformers
Transformers [52] are attention-based neural networks that have dominated in the
field of Natural Language Processing (NLP) [11].

They offer three powerful advantages over LSTMs:

1. Parallel Processing: Instead of operating on data in a step-by-step se-
quential way, transformers process all inputs in a single step.

2. Long-Range Dependencies: Because of this parallel operation, trans-
forms can directly reference any previous timestep. RNNs must encode and
store information to be retained, causing problems if the future has a long
dependency on the past.

3. Adaptability: Transformers are modular in nature, and can handle any
sequence given to them. This allows us to explore using transformers on
both spatial and temporal domains.

Self Attention

The core function a transformer performs is self-attention, which is shown to the
left of Figure 2.6a. The objective for self-attention is to merge information from all
other inputs denoted as tokens. These are used in update of the current token. We
first derive a Query, Key, and Value from each token by linearly projecting each
token with three different linear mappings. We use the Query and Key to create
a set of attention scores, with each token gaining an attention score for itself and
all other tokens. These scores are normalized by softmax, and control the merge
of information. The merge is done through matrix multiplication between the
attention matrix and the Values. As stated earlier, the self-attention operates on
all tokens in parallel. This means, that the last token gets mixed with information
from the first token, and vice-versa. A mask is optionally added to prevent the

9



2 Theoretical Background

(a) Multi-head Attention taken from [52] (b) ViT Encoder
taken from [12]

Figure 2.6: The ViT Encoder (b) performes Multi-Head Attention (a) over a sequence
of input tokens

reverse connection, i.e. tokens can only attend to themselves and previous tokens,
thus enforcing causality.

A point of implementation, is that we scale self attention relative to the feature
dimension of the token. If a single token has shape dk, we multiply by 1√

dk
before

performing softmax. The reasoning for this is that as dk grows, the dot product
between the Key and the Query will also increase [52]. In large magnitudes, the
softmax can be pushed into regions where it has extremely small gradients. The
scale helps stabilize training in the self-attention block.

The overall equation for attention is given by:

Attention(Q,K,V) = softmaxK(
QKT

√
dk

)V. (2.8)

Where in self-attention, the Q, V, and K (Query, Value, and Key respectively)
are all different linear projections of the inputs.

Multi-Head Self Attention

The attention mechanism, while powerful, has a weakness. For each token there
is only one attention map computed, bottlenecking the capacity to attend over
different features. This is solved through Multi-Head self-Attention (MHA), shown
to the right in Figure 2.6a. We chunk the input into h heads before passing it to

10
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the linear encoding of the Key, Value, and Query. The input is re-formed after
self-attention is performed on each head.

Positional Encoding

The transformer operates on all tokens, but has no way to distinguish their order.
For example, we want the sequence of images from a video to be ordered accord-
ing to their timestep. We learn an embedding for how the transformer should
apply this order. It gets added to the tokens once, before being sent to the first
transformer block.

ViT Encoder

A common transformer block is the ViT Encoder [12] shown in Figure 2.6b. The
inputs and outputs to this block have the same shape, and are a list of tokens.
MHA is performed over each token in the list, with a residual connection added at
the output. An recurrent MLP forms an inverse-bottleneck on the dk dimension
of each token. These blocks are repeated L times.

We use the ViT Encoder heavily in our work and refer to it also as a Determin-
istic Transformer.

11





3 Related Work

In this section, we present background work done in our two evaluation tasks. The
first, Video Prediction, uses a sequence of context frames from a video to predict
the continuing frames. Much prior work has been done in video prediction and we
defer to [40] for a more exhaustive background. We will then introduce the second
task, Human Pose Prediction. This task is very similar to Video Prediction, except
that images are replaced with a human skeleton. The objective is to continue the
action of the human skeleton from the context motion.

3.1 Video Prediction
Video prediction is a self-supervised learning task of predicting future video frames
conditioned on previous frames. It is self-supervised, because learning is done with-
out manual annotation of the desired targets. Data takes the form of a sequence of
images, and at each prediction timestep, we are asked for a pixel-wise forecast of
the subsequent frame. In addition to the high-dimensional spatial dependency of
image predictions, videos add temporal dependencies. Motion present in the con-
ditioned sequence should be continued on to the prediction. This is an intractably
hard problem, as motions deviate and outside elements enter the camera’s field of
view. As a result of the difficulty of this problem, networks which have strong per-
formance in Video Prediction also tend to have strong performance in downstream
tasks [54].

This is due to the representative power of networks trained on Video Prediction.
Features are aggregated both spatially and temporally to create diverse spatio-
temporal knowledge. In [54], the authors train on over 600 hours of publicly
available television shows from Youtube. The features learned in their network are
later used in action forecasting. Seo et al. [46] perform action-free pre-training on
Video Prediction. They later add action conditioning and fine-tune there model
with Reinforcement Learning. Other applications for Video Prediction include
precipitation prediction [48], autonomous driving [26], and robotics [15]. Many
domains leverage the power of self-supervised representation learning on video
data. Below we review the most popular approaches to Video Prediction.

13
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Figure 3.1: Figure from [51]. The labeled ”Learned Representation” is a compressed
encoding of all context frames. Using two different LSTMs, the top branch
decodes this back into the original context frames while the bottom branch
predicts the continuation of the video.

Traditional approaches relied on using domain specific engineering to extract
salient information from videos. Optical flow, for example, is the displacement of
pixels between two consecutive images in a video. Patraucean et al. [42] used an
optical flow prediction module to capture motion changes in the video. Further
work by Li et al. [35] use optical flow to predict multiple motions conditioned
on a single frame. Concurrent work is being done on video prediction in the
frequency domain. In the work by Farazi et al. [14], they formulate the translation
between two images as a phase difference in the frequency domain. The Transform
Model operates on this phase difference to predict the transformation for the next
frame. These works use the difference between consecutive frames, either through
optical flow or in the frequency domain, to simplify the learning objective for video
prediction.

Early video prediction models were designed to make a single, deterministic
approximation of the future. Srivastava et al [51] developed an LSTM-based model
for deterministic continuation of the video, which is shown in Figure 3.1. The
authors first make an encoded representation of the entire input sequence using
an LSTM. This representation is used as a seed for frame-by-frame prediction of
the rest of the video. They argue that prediction of the video continuation causes
the encoder LSTM to learn good features, by forcing it to extrapolate the objects
and motions present in the input sequence. Shi et al. extends on LSTM-based
methods by introducing ConvLSTMs [47], which maintain spatial structure in the
predictor.

14



3.1 Video Prediction

Figure 3.2: PredNet Architecture from [37]. Hierarchical design is shown on the left
with bottom-up connections coming from the error signal ”E”. Top-down
connections come from the recurrent network ”R”. The right shows specific
modules used when PredNet is applied to Video Prediction.

Hierarchical models became popular with Lotter et al. [37]. The authors of this
work introduced the Predictive Coding Network (PredNet), a hierarchical model
with both bottom-up and top-down connections (shown Figure 3.2). At each
layer, PredNet tries to predict what the input will be at the next timestep. Error
between the prediction and input is propagated up the hierarchy of the network.
The Recurrent Representation layer models temporal information and is passed
down the hierarchy of the network. Many additional works have followed with use
hierarchical designs [53].

Despite advances, these methods suffer from being fully deterministic, which
only allows them to predict one possible future. This hurts their ability to gen-
erate sharp, long-term predictions [10] [5]. Mathieu et al. attempts to solve this
problem by using a generator-discriminator architecture [39]. They design a dis-
criminator to determine if the last frame in a sequence of frames is from the video
prediction model or the ground truth data. However, the drawback to genera-
tor/discriminator models is that they are difficult to train [21] and are susceptible
to mode collapse, which can remove variance in future predictions.

Stochastic models have demonstrated success in generating both sharp images
and realistic variation in possible futures [17]. An early work in stochastic modeling
by [56] used cross-convolutions to predict multiple possible futures given a single
input frame.

Additional work has been done to separate the temporal information contained
in a video from the spatial content. Franceschi et al. [17] introduce a Latent
Residual Dynamic Model (SRVP). They condition the generation of each frame

15
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Figure 3.3: MaskViT Architecture and Training/Inference Procedure from [23]. (a)
Training is performed by prediction of all masked tokens in a single step.
Inference is performed in iterations with each iteration saving a fixed num-
ber of unmasked predictions (picked by confidence scores).

only on the current state of the predictor and a static background variable w. The
internal state of the model is updated deterministically from the previous state.
Each state is used to generate a stochastic sample which gets incorporated into
the next state. This decouples the deterministic movements in the video from the
variability of an uncertain future.

Success in Large Language Models has inspired others to unify successful method-
ologies across domains. In the case of Video Prediction, Gupta et al. [23] introduce
the MaskViT shown in Figure 3.3. The MaskViT is a transformer-based predictor
architecture which operates on the spatio-temporal domain. Images are encoded
by a single-frame encoder to give a latent discretization of the input. These form
tokens for the predictor, with each image given h × w discrete tokens. Using full
attention on the spatio-temporal domain is prohibitively expensive, due to long
prediction horizons. As an example, predicting 30 frames from a 16x16 feature
maps requires attention over 7680 tokens. The MaskViT restricts attention to
two separate windows through a Bidirectional Window Transformer. The first
(spatial) window attends only to tokens in the current timestep. The second (Spa-
tiotemporal) window performs 3D attention over decreased spatial dimensions.
The windows are applied sequentially, to gain both local and global interactions
in a single block.

16



3.2 Human Pose Prediction

Figure 3.4: 21 Joint Human Skeleton from the thesis [7]

Training and Inference is done on the MaskViT without auto-regression. Train-
ing masks a variable percentage of the predicted tokens and forces the Transformer
to recreate the prediction from partial knowledge in one step. During Inference,
all predicted tokens are masked and we slowly unmask them over multiple iter-
ations. At a single iteration, the Bidirectional Window Transformer predicts all
masked tokens, but only a fixed number (those with the highest confidence) are
kept. The entire predicted sequence is unmasked by accumulating saved tokens at
each iteration.

Taking inspiration from these related works, we designed our Stochastic Trans-
former (STTR). An addition source of inspiration comes from the Variational
Transformer designed by [36] which is used in Dialogue Response Generation.
We also implement and test an LSTM version of our model, which provides the
background of our training procedure and is taken from Denton et al. [10]. We
formally present this model, our architecture, comparison, and methodology in the
next chapter.

3.2 Human Pose Prediction
The task of Human Pose Prediction is very similar in structure to Video Prediction.
Instead of images, however, we are given and asked to predict the 3D joint positions
of a single human skeleton. Figure 3.4 shows an example of the skeletal data
structure.

In the same vein as Video Prediction, we are given a time series of context
skeletons and tasked to continue the action performed by the skeleton. We now
present a few background works that have shown success in this task.

Fragkiadaki et al. introduce the Encoder-Recurrent-Decoder (ERD) [16], an
architecture framework for this task. The ERD consists of three parts and is
shown in Figure 3.5. The Encoder takes a complete human skeleton and produces
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Figure 3.5: The ERD model [16] is an auto-regressive encoder-predictor-decoder archi-
tecture using a deterministic LSTM as a predictor.

a encoding, which summarizes the key features of the skeleton. The encoding
is passed to the Recurrent layer, an RNN. Along with the current encoding, the
RNN also receives the hidden state from the previous timestep, which conditions
the prediction of the next step on all previous inputs. The RNN outputs an
encoded prediction for the next timestep, that gets passed to the Decoder. The
Decoder transforms the prediction into a human skeleton.

The ERD operates auto-regressively, meaning it feeds its prediction of the last
timestep back into itself for prediction of the next timestep. This can cause the
accumulation of errors in the predictions. A very strong insight from Martinez et
al. is to reduce the complexity of the problem by predicting only the velocity of
the skeleton, instead of the skeleton itself [38]. Since velocities are usually small
and centered at zero, they are natural to express by deep learning architectures.
This is achieved very simply by adding a recurrent connection from the current to
the next prediction.

Further work by Gui et al. moves towards improving the realism of predictions.
They propose a training procedure with two discriminators to regularize the loss
[22]. As shown in Figure 3.6, the first of these is the fidelity discriminator. The
fidelity discriminator identifies if a sample was produced by the model or if it came
from the dataset. By feeding it only the prediction of new frames, the fidelity
discriminator trains the model to generate realistic motion as seen in the dataset.
The second of these is the continuity discriminator. The continuity discriminator
checks if the context concatenated to the prediction still resembles continuous clips
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3.2 Human Pose Prediction

Figure 3.6: The AGED Training procedure uses two discriminators [22]. The first reg-
ularizes fidelity of the prediction by comparing only the against predicted
poses. The second regularizes continuity in the continuation of the context
by pre-appending the context to the prediction.

from the dataset. Their Adversarial Geometry-aware Encoder Decoder (AGED)
model provides a standard baseline used in Human Pose Prediction.
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One application of our method is the Video Prediction task. Given N context
frames C1, ..., CN from a video, we are tasked to continue this sequence. Each
frame is an image with H ×W pixels. By conditioning on the context, we predict
the next M frames X̂1, ...X̂M and compare these to the continuing ground truth
video X1, ...XM

We investigate multiple models for video prediction, and propose a novel module,
STTR, which is shown in Figure 4.1. Our STTR predictor model generates a
sample for one potential future using a learned distribution. This sample gets
decoded into an image X̂t that contains one possibility for the continuation of the
context sequence.

Figure 4.1: Stochastic sampling of the next frame using our STTR Predictor.

In Section 4.1, we introduce four different prediction models, including our pro-
posed STTR. This follows with Section 4.2, where we apply these predictors to
the Video Prediction task. In Section 4.3, we formulate Human Pose Prediction,
highlighting similarities and differences to Video Prediction. Using Human Pose
Prediction as an example, we propose a variation of our model that uses separate
attention over the temporal and spatial domains. Finally, in Section 4.4 we discuss
implementation details and training procedures
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4.1 Predictor Models
The role of the predictor is to forecast features to future time steps. For the current
timestep, we encode an image into a vector representation:

xt−1 = Enc(Xt−1). Figure 4.3 (4.1)

This gets passed to the predictor. The predictor has already seen every input
leading up to the current, and uses this to predict the next features:

x̂t = Pred(x1:t−1). Figure 4.2 (4.2)

In the last step, the prediction is passed to the Decoder. The Decoder transforms
the features into the predicted image:

X̂t = Dec(x̂t). Figure 4.4 (4.3)

This motivates the introduction of the Predictor. It is the only block that has
access to past information, and the only block to make a prediction of the future.

We say that this predictor operates causally. If time was laid out on a timeline,
the causal predictor could only see to the left of the current position. Our work
also involves a non-causal predictor, that can see the whole timeline. We continue
this section with the introduction of our four predictor models.

Determinstic LSTM

We begin with a simple deterministic LSTM (Det LSTM) predictor show in figure
(Figure 4.2 a). The Det LSTM starts by warming up an uninitialized cell state.
It is fed each context vector C1:N−1 with the output of the LSTM discarded. This
initializes the cell state with the content seen so far. At the last context frame
CN , we use the hidden state of the LSTM to predict the first frame x̂1.

We feed each prediction into the Decoder to generate an image from the current
prediction. In an auto-regressive way, we re-encode our predicted image to form
the features of the next timestep. We update our timestep t − t ← t, and repeat
the process until we have M Images X̂1:M .

SVG

In the paper Stochastic Video Generation by Denton et al. [10], the authors
present their novel SVG model, which incorporates stochastic sampling into an
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4.1 Predictor Models

Figure 4.2: Depiction of the four prediction modules. The Det. LSTM. (a.) and Det.
Trans. (c.) make a single, deterministic guess of the future. SVG [10] (b.)
and Our STTR (d.) take a stochastic sample of the future learned by a
noncausal teacher.

Figure 4.3: The Encoder compresses each im-
age to a vector.

Figure 4.4: The Decoder extracts an image
from a vector.
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LSTM-based architecture. The SVG model enhances the LSTM by introducing a
stochastic block.

A sub module for the SVG runs non-causally, and helps to guide future predic-
tions. We can only predict a single future at a time, selecting a latent sample ẑt

to convey that prediction. The non-causal branch learns to use this latent sample
in the most efficient way, as it has already seen the future. This is used to train
a causal branch, which tries to replicate the non-causal prediction. As it is an
impossible task to guess the future, the causal branch must make predictions with
enough variance such that the non-causal prediction is present in the distribution
of guesses.

In the SVG architecture, the causal and non-causal branch are both LSTMs, φ
and ϕ respectively. Each LSTM predicts the parameters of a distribution, from
where the latent sample is taken. The causal LSTMφ is known as the prior,
as it estimates p(z) which is the distribution containing all possible futures. In
reality, we do not know this distribution of all possible futures and the prior
branch predicts p(ẑt|x1:t−1). The non-causal LSTMφ predicts parameters for the
posterior, an estimation qφ(ẑt|x1:t) of the true future.

We do this by running the posterior LSTM one timestep ahead of the prior.
At the current timestep t − 1, each LSTM predicts the parameters for a Normal
distribution:

µφ, σφ = LSTMφ(x1:t−1), (4.4)
µϕ, σϕ = LSTMϕ(x1:t). (4.5)

During training, we sample the latent vector from the posterior. To prevent this
sample from simply copying the entire content of the target frame, we constrain
the posterior distribution to be close to the priors. This is done through the KL
Divergence [32]:

DKL(qφ(ẑt|x1:t) ∥ p(ẑt|x1:t−1)). (4.6)

This enforces that the latent vector ẑt captures information not present in the
previous frames.

The rest of the SVG focuses on abstracting unnecessary information out of the
latent sample. We concatenate the current frame encoding by

ẑt = cat(xt−1, ẑt), (4.7)

so that the latent sample does not need to contain any image specific information.
The prediction is then post-processed so the latent prediction is mixed with the

24



4.1 Predictor Models

content of the previous image. Post-processing is done by the second Det-LSTM
in Figure 4.2 (b).

During inference, we discard the non-causal posterior, and instead take many
samples from the prior. We use the sample with the best performance when
compared to the ground truth.

Deterministic Transformer

Before we explain how we apply this LSTM stochastic sampling technique to a
Transformer architecture, we first introduce a Deterministic Transformer (Det
Trans) predictor (Figure 4.2 c).

Unlike a RNN, this ViT-based predictor has no internal state that gets passed
between timesteps. Instead, it operates on all previous frames to predict the next.
For the timestep t = 1, we use attention over the embedding of all context images
c1:N to predict the encoding for x̂1. We abstract this context notation away, instead
saying we predict x̂2:t using previous frame encodings x1:t−1 We discard redundant
predictions, using only the last token for decoding of image X̂t As with the previous
predictors, this is fed back into the input in an auto-regressive prediction manner.

Stochastic Transformer Predictor

We introduce the Stochastic Transformer Predictor, the core module of our STTR
architecture. We take inspiration from the Sequential Variational Transformer
(SVT) proposed by Lin et al. [36]. This work uses non-causal, multi-head attention
for diverse dialogue response. We now apply this method in a Predictor-based
architecture.

Similar to the SVG, our STTR contains two branches; a causal prior, and a
non-causal posterior. The non-causal branch is shown to the left in Figure 4.5.
This branch performs MHA over every token in the video, and so it is able to mix
future content into the latent sample. Unlike the SVG which only uses a single
target frame in the prediction of its latent vector, we use all future frames. This
allows us to enrich the latent space with a more informative future.

The causal branch is shown to the right in Figure 4.5. This branch predicts a
distribution over possible futures using only current information. The parameters
for this distribution are learned to approximate the posterior. Using KL Divergence
to enforce this approximation, our STTR prior learns a distribution over possible
futures.

Parameters µ and σ are used to form the Normal distribution, where the latent
sample is drawn. Each branch predicts these parameters separately, through a
sampling module. The MHA predicts a token for each frame, but we just use
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Figure 4.5: Our STTR Sampling block creates a latent vector ẑt carrying stochastic
information about the next frame. The left (posterior) path is used only
during training and samples from the noncausal distribution. The right
(prior) path is used in training and evaluation to generate a sample of one
possible future. We apply a KL Loss between the distributions to train the
prior to approximate the posterior. This training enforces that the prior
learn the distribution of multiple possible futures.
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4.2 Video Prediction

the token of the current frame as the input. The hyperbolic tangent restricts
this to be within [−1, 1]. A linear layer projects it into a µ and σ. Using the
reparameterization trick [30], we sample the distribution.

During inference, we discard the posterior. Since this is the case, we make
residual connections from the prior. The first of these goes to concatenate the
latent sample, which has been repeated for each token. The second forms the
residual connection for the output of the block, which is commonly used to pass
gradients in very deep neural networks [24].

The rest of the STTR is done by a Deterministic Transformer. Our prediction
is fused with deeper features from the frame encodings.

4.2 Video Prediction

The main focus of our work is applied to Video Prediction. Given context images
C1:N , we want to predict the continuation of the sequence X1:M . We keep the
Encoder and Decoder the same, substituting various prediction architectures. The
prediction of each models is decoded into images X̂1:M .

During training, we generate a supervisory signal through a frame-wise compar-
ison between the ground truth and model predictions. Using Mean Squared Error
(MSE) as the reconstruction loss gives:

LRecon =
1

M

M∑
t=1

∥Xt − X̂t∥, (4.8)

where ∥·∥ is the l2 norm. This is averaged over every element in a minibatch.
The supervisory signal is backpropagated through the network to update the

weights of each sub-module in an end-to-end manner. This is incomplete in the
case of stochastic modules. Samples that are taking from the posterior branch are
used during training and no samples from the prior branch are decoded. The causal
branch uses a second supervisory signal, the KL Loss, to update its gradients.

The Kullback–Leibler Divergence (KLD), is an asymmetric loss used to to com-
pare the difference between two probability distributions p(x) and q(x). Both the
causal and non-causal branch predict a distribution, under which a sample is taken
to predict the next frame. We use the KLD to enforce similarity between the dis-
tributions predicted in the causal and non-causal branches. This enforces that the
prior branch matches the distribution output by the posterior, and is able to learn
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a distribution over multiple possible futures. The KLD Loss term is:

LKLD = DKL(qϕ∥pφ). (4.9)

The trade-off for prioritizing the reconstruction loss over the distribution loss is
controlled by a parameter β:

L = LRecon + βLKLD. (4.10)

When β is too small, the model ignores the distribution-based loss signal and
focuses purely on reconstruction of the ground-truth. To achieve this, it over-
uses the non-causal distribution prediction which then contains extremely precise
information about the future. The causal branch can not hope to match the detail
contained in the distribution, and fails to learn relevant features. During training
the reconstruction loss will go to zero while the distribution-based loss skyrockets.
During evaluation the model fails to make a salient prediction.

When β is too large, the model optimizes the distributions in the most direct
way possible. It predicts a finite distribution, regardless the content of the video.
This causes the KLD to drop to zero and the latent distribution does not contain
any information about the future.

Through balance of the reconstruction and distribution-based losses, our STTR
predictor is able to generate diverse and accurate predictions of the future. This
is shown in Figure 4.6, with comparisons between the best, worst, random, and
non-causal predictions from our model, all of which are plausible.

4.2.1 Encoder
The encoding procedure is shown in Figure 4.3.

Each image is encoded to a vector by a CNN At each layer in the CNN, the
spatial dimension of the input is decreased and the feature dimension increased.
At the final layer, we use global pooling over the spatial dimensions to output
a one dimensional vector containing high level features from the content of the
image.

4.2.2 Predictor
Each predictor is discussed in section 4.1. These are used to aggregate information
over previous timesteps and make a prediction of the feature vector at the next
timestep.
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4.2 Video Prediction

Figure 4.6: Variation from the dataset is captured by our STTR module on a sequence
from Stochastic MNIST. As shown in the context frames, the numer ’4’
and ’5’ are separating. Due to randomness injected into the motion, they
abruptly change directions in the first target frame. Our STTR makes several
predictions about the direction of movement, and is able to replicate the
stochasticity in the best sample.
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As this is the only portion of the Video Prediction model which operates on the
temporal domain, it is the key to synthesizing logical continuations of the video.
Improvements to the predictor result in:

• Accurate modeling of motion in the predicted sequence.
• Continuation of the action performed in the context.
• Variety of predictions from the stochastic modules.

4.2.3 Decoder

The decoder takes the prediction at the current timestep and outputs the predicted
frame X̂t. This is done through a CNN, which is a mirrored copy of the encoder.
Pooling layers are replaced by spatial up-sampling and convolutions are replaced
with Transposed Convolutions.

The decoder also contains skip-connections that come from the encoder. These
bypass the predictor layer and are used to retain back-ground information in the
image. The skip-connections allow the predictor layer to focus more on motion
and the difference between the last-seen frame and the new prediction.

4.3 Human Pose Prediction
Human Pose Prediction is an interesting problem for three reasons: human poses
abstract away background information present in images; longer term predictions
are more possible than with videos; and there is a large variation in what could
be considered valid motion.

By formatting the input as human skeletons, we remove a lot of background
information irrelevant for prediction. This is a way of simplifying the task and
allowing us to highlight the advancement of our predictor.

This task is further useful for testing the long-term capabilities of our predictor.
A distinct advantage of transformers is their ability to maintain long term temporal
dependencies, which we can showcase with Human Pose Prediction. If we try to
forecast, for example the walking motion, on videos, then we will at some point
run into the issue of the person walking out of the frame. This is why we turn to
Human Pose prediction for generating long sequences.

The last reason we evaluate using Human Pose Prediction, is because there is
a much larger variation in what could be considered normal motion. In terms of
inverse kinematics, there are nearly infinite ways to the human skeleton to arrange
itself and still pick up an object on the ground.
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Figure 4.7: Our STTR Predictor module modified for Human Pose Prediction. Attention
blocks are replaced by ST- Parallel Attention

In this section, we expand our video prediction model to the task of Human
Pose Prediction. Taking the parallel attention mechanism from Aksan et al.[4],
we introduce the Spatio-Temporal STochastic TRansformer (ST-STTR) shown in
Figure 4.7. The ST-STTR is a predictor which performs separate attention over
spatial and temporal modalities.

Problem Formulation

We formulate the problem of Human Pose Prediction with relation to Video Pre-
diction. Instead of being an image with the shape Xt ∈ RH×W×Chan, each timestep
is a human skeleton with J 3 Dimensional joints. Each joint is parameterized by
their (x, y, z) coordinates in Euclidean space.

Given N context poses, we are asked to predict the next M poses of continued
motion X̂ ∈ RM×J×3.

Mean Per Joint Positional Error

We now introduction the loss metric used during training and evaluation. The
Mean Per Joint Positional Error (MPJPE) averages the distance of each predicted
joint from its ground truth corespondent. This is given by the equation:

LRecon =
1

J ×M

J∑
j=1

M∑
t=1

∥x̂(j)
t − x

(j)
t ∥. (4.11)

Where: ∥·∥ is the l2 norm; x(j)
t is the ground truth position of joint j at timestep

t; and x̂
(j)
t is the model prediction at the same point.
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4.3.1 Spatial Temporal Transformer

The encoder for our Human Pose Prediction model is a single linear layer projection
of all joints. This projection is simply:

xt−1 = WencXt−1 + benc (4.12)

where Wenc ∈ RJ∗dim×J∗3. We rearrange the encoding such that xt−1 ∈ RJ×dim.
As a deterministic baseline for our model, we implement and test the Spatio-

Temporal Transformer (ST-Transformer) from [4]. The architecture is outlined in
Figure 4.8b.

The key difference between the ViT Encoder Transformer block and the ST-
Transformer is the parallel attention over spatial and temporal modalities. Spatio-
temporal attention is shown in Figure 4.8a.

In spatial attention, the transformer can attend to any token at the current
timestep. At this timestep, self attention is performed over joints in the human
body. Because knowledge of the right ankle is extremely relevant for prediction of
the right foot, we decouple this modality from the temporal domain.

Similarly, temporal attention is decoupled from the spatial domain. For predic-
tion of the next timestep, the joint is able to examine its position in the current
and previous timesteps. In a cyclical motion like walking, it makes sense to allow
strong temporal focus of the joint to its previous states.

We implement the ST-Transformer as a deterministic baseline for comparison
of our model. We detail in the next section how we can expand our STTR with
this parallel attention mechanism.

4.3.2 ST-STTR

With minimal modifications, we adapt our STTR to use the Spatio-Temporal
attention. This leads to the Spatio-Temporal STochastic TRansformer model (ST-
STTR).

We replace each MHA module in the STTR with its equivalent parallel atten-
tion. Tokens are passed through the STTR having both a temporal and spatial
dimension. After separate, parallel attention, the two modalities are combined
through addition as in [4].

Miner modifications are also made to the sampling module. We combine all
joints in a frame by stacking them along their feature dimension. The hyperbolic
tangent and linear layer then project this to a µ and σ. The latent sample is
repeated, in addition to every timestep, also for every joint.
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4.4 Training and Implementation Details

(a) Spatio-temporal Attention [4]. Spatial attention (beige) attends to all other joints at
the current timestep. Temporal attention (blue) attends to the current joint at previous
timesteps.

(b) ST-Transformer Architecture [4]. Attention is performed in parallel over the spatial and
temporal modalities.

4.4 Training and Implementation Details
In this section, we present out hyper-parameter selection and implementation de-
tails of our networks. All models are implemented in Pytorch [41] using Adam
optimizer [29] with β = (0.9, 0.999).

Video Prediction Encoder/Decoder

Input images are 64× 64 grayscale for all datasets. For the encoder and decoder,
we use DCGAN-like [43] and VGG-like [49] architectures. Implementation was
done by Denton et al. [10] in their public github repository1.

Skip connections are placed between each features map of the encoder and de-
coder. We save the feature maps from the last context frame, and use them to
decode all predicted frames.

Hyper-parameters for the STTR (Stochastic Transformer) are in table 5.1.
The KL Weight is parameter β in Equation 4.10. Additionally, we use KL

Annealing [8] to more heavily weight the reconstruction loss during the first several
gradient update steps.

1https://github.com/edenton/svg
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STTR (Stochastic Transformer)
Parameter (S)MMNIST / KTH / H3.6M

Batch Size 256 / 100 / 64
Total Gradient Update Steps 3e5 / 2e5 / 6e4
Encoder /Decoder DCGAN / VGG16 / FC
Framerate NA / 25 FPS / 25 FPS

LR 1e-3 / 3e-4 / 1e-4
LR Warmup 250 / 2500 / 2500
LR Burnout 0 / 50000 / 10000

KL Weight 1e-4 / 1e-6 / 1e-3
KL Annealing 250 / 5000 / 2000

dim 128 / 128 / 128
depth 5 / 5 / 4
zdim 10 / 32 / 10

Table 4.1: Hyperparameters Selection for the STTR across our tested datasets.

We linearly increase the learning rate for LR Warmup steps and decrease it
to zero for the last LR Burnout steps.

For model hyper parameters:

• dim is the encoded feature dimension.

• depth is the number of repeated deterministic transforms after the STTR
block.

• zdim is the dimension of the latent sample.
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In this section, we present experimental results for comparison of our STTR Model.
The quantitative evaluation is performed on an unseen test set which was removed
from the training and validation. Following [17] [23], stochastic models make 100
predictions and pick the prediction which is most similar to the target. We further
expand insight into our predictor through detailed qualitative examples.

This chapter continues as follows:

5.1 Datasets: We introduce both synthetic and real datasets, test splits, and
generalizations behind the data.

5.2 Video Prediction: We present our metrics used for evaluation and further
discus result on the Video Prediction task.

5.3 Human Pose Prediction: We give results for Human Pose Prediction and
capacity for long-term pose generation.

5.1 Datasets

5.1.1 Moving-MNIST
Moving-MNIST [51] (M-MNIST) is a commonly used synthetic dataset, typically
to verify a proof of concept. The dataset comprises sequences showcasing two
handwritten digits from the MNIST [33] dataset in motion. Each digit is given a
random starting position, and placed in a 64 × 64 pixel frame. The digits move
deterministically from their pre-defined position with a constant speed, changing
direction when they encounter a border so that they bounce off the image bound-
ary.

Images are grayscale, having a single channel dimension. We generate training
sequences on-the-fly, by randomly sampling digits from the train split in MNIST.
For testing, we use 10,000 sequences based on digits from the MMNIST test split.
In both training and evaluation, we condition our models on 5 frames and predict
the next 10.
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To successfully predict the next frames in the video, the model must learn the
shape of each digit from the context frames, as well as their direction and speed.
Identifying when the digit will bounce off of the side of the frame is difficult, as
even though this is deterministic, the handwritten MMNIST digits are padded to
the same length. The model must also successfully disentangle overlapping digits,
which requires recalling elements from the context.

5.1.2 Stochastic Moving-MNIST

We further test our models by injecting randomness into the Moving MNIST
dataset and refer to it as Stochastic Moving MNIST (S-MNIST). While sharing
the same name as the dataset used in [10] and [17], we inject randomness in a
different way. Every 5th frame, we randomly select a new velocity for the digits
(while maintain the same direction). Thus in the 5 conditioned frames, the last
frame has positions of the digits calculated based off of the new, randomly sampled
velocity.

The additional challenge in this dataset is that stochastic models must learn a
large variance on the 5th frame, and then continue from this sample deterministi-
cally for 5 more frames. We demonstrate the effectiveness of our model by plotting
the variance over time.

5.1.3 KTH Actions

We further extend our methods to evaluation on real videos. The KTH Actions
dataset [45] consists of 25 people performing 6 actions (walking, jogging, running,
boxing, hand waving, and hand clapping). Videos are taken over homogeneous
backgrounds using a static camera running at 25 frames per second. We down
sample each image from 160× 120 to 64× 64 and remove the color dimension.

For training/evaluation procedure, we follow the methodology used by [17]. We
condition our model on 10 frames and during training predict the next 10 frames
(10 → 10). During evaluation, we predict the next 30 frames (10 → 30). This
shows how the model is able to make predictions outside the training horizon.

We remove the last 5 persons in KTH Actions from the training/validation and
use them only for testing. We test by generating 1000 random evaluation sequences
using a fixed random seed1.

1https://github.com/edouardelasalles/srvp/blob/master/preprocessing/kth/make_test_set.py
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MovingMNIST
5→10

Stochastic MMNIST
5→10

KTH
10→30

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Det-LSTM 21.06 0.891 0.090 — — — 21.62 0.812 0.122
Det-Trans 21.02 0.883 0.092 17.70 0.684 0.355 23.34 0.825 0.116
Stoc-LSTM 23.60 0.941 0.043 19.26 0.852 0.063 24.16 0.838 0.094
Stoc-Trans 21.57 0.896 0.082 17.88 0.803 0.112 22.70 0.841 0.095

Table 5.1: Video Prediction Collective Quantitative Results. Our model gives com-
petitive performance on more realistic settings when compared with
nearly identical training procedures and minimal hyper-parameter tun-
ing.

5.1.4 Humans 3.6M

For the task of human pose prediction, we perform evaluation on the dataset Hu-
mans 3.6M (H36M) [28]. This dataset is widely used in Human Pose Prediction
and consists of a large (3.6 million) number of 3D human poses. H36M contains 7
actors performing 15 different actions (e.g. Walking, Eating, Phoning, ...). Follow-
ing previous work [50], We us subject 11 (S11) for validation and subject 5 (S5)
for testing. The rest of the subjects are used for training.

The skeletons of the actors are represented using 32 joints. We translate the
skeletons so that the root joint is fixed at the zero position. The root joint is
then removed, along with redundant joints, to create a 22-joint skeleton for train-
ing/evaluation. The original data is in the form of an exponential map. Using
forward kinematics2, we transform the skeletons to (x, y, z) coordinates in Eu-
clidean space. Poses are captured at 50FPS, but we drop every second to reduce
the frame rate to 25FPS.

During both training and evaluation, we condition on 10 frames and predict the
next 25 (10 → 25). By seeding motion every 10’th frame of a captured video, we
create 256 test sequences per action.

5.2 Video Prediction

In this section, we present results over our Video Prediction models. Results are
summarized in Table 5.1.

2https://github.com/FraLuca/STSGCN/blob/main/utils/forward_kinematics.py
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5.2.1 Metrics
We make quantitative and qualitative comparisons against the ground truth using
three statistics; Peak Signal-to-Noise Ratio (PSNR), Structural Similarity (SSIM)
[55], and Learned Perceptual Image Patch Similarity (LPIPS) [57]. These statistics
operate on images individually.

PSNR

The first metric, Peak Signal-to-Noise Ratio (PSNR), has an inverse relationship
to Mean Squared Error (MSE) and is calculated on a logarithmic scale. For a
predicted image X̂ and ground truth image X each with shape H ×W , the MSE
and PSNR are calculated:

MSE =
1

HW

H−1∑
i=0

W−1∑
j=0

[
X̂[i, j]−X[i, j]

]2 (5.1)

PSNR = 10 log10

I2

MSE (5.2)

where I is the maximum pixel luminance value (e.g. 255 for 8-bit representation).
PSNR alone however, can be misleading. A study done by [27] demonstrates this
by comparing two videos with the same PSNR having different subjective quality
scores.

SSIM

A more perceptual-based method is Structural Similarity (SSIM) [55]. SSIM places
importance on various perceptional phenomenon, for example luminance masking.
Luminance masking is the phenomenon where distortions in the image are more
difficult to perceive in bright regions. SSIM further considers nearby pixels to have
a high level of dependency and that regions in the image should be accounted for
when computing the similarity between two images. SSIM is a common evaluation
metric which correlates with perceived similarity.

LPIPS

Further improvements to determining the realism of image frames is made by
the introduction of the Learned Perceptual Image Patch Similarity (LPIPS) [57].
LPIPS evaluates the perceptual distance between two images (or 64x64 image
patches) by comparing the scaled l2 distance of the features. The authors of [57]
argue that the features space of pretrained deep networks such as VGG provide
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5.2 Video Prediction

Figure 5.1: Which image is more similar to the reference? Evidence that deep features
in pretrained models provide more realistic image comparisons.

a better perceptual loss than shallow functions such as PSNR and SSIM. As [57]
show in Figure 5.1, both SSIM and PSNR prefer more blurry or otherwise distorted
images than what humans considered to be a better fit.

We emphasize more perceptually based loses and highlight that an advantage
to stochastic prediction is sharper images, where-as more blurry predictions may
prefer metrics like PSNR.

5.2.2 Moving-MNIST
Our quantitative results for the Moving MNIST (M-MNIST) dataset are reported
in Table 5.2. While the deterministic models are comparable, our STTR is out-
performed by the SVG. We highlight in the table, that the posterior does not
give strong improvements. In the toy dataset, neither model is very successful
on integrating randomness into their sampling process. This is further shown
by taking a single prediction from the prior, without seeing too large of a drop in
performance. Stochasticity is not significantly shown on the deterministic Moving-
MNIST dataset by either of our stochastic models.

In Figure 5.2, we show a particularly difficult Moving-MNIST example. Digits
in the context sequence are very difficult to disentangle. The deterministic models
show blurriness in their predictions, while the stochastic methods give a sharper
image. The SVG is able to correctly split the digits and makes the most accurate
prediction.

5.2.3 Stochastic Moving-MNIST
The stochastic version of the Moving-MNIST (S-MNIST) dataset gives a nice
opportunity to evaluate diversity of stochastic samples. Every 5th frame, the
speed of the digits change while direction is maintained. Changing only the speed
of the digit makes the randomness more subtle in this variant of S-MNIST. The
quantitative results are reported in Table 5.3.
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Figure 5.2: A difficult example from Moving-MNIST. The context frames contain both
overlapping digits and similar motion patterns. The SVG successfully disen-
tangles the digits.

MNIST Quantitative Results
PSNR↑ SSIM↑ LPIPS↓

Det-LSTM 21.06 0.891 0.090
Det-Trans 21.02 0.883 0.092
SVG 100 Pred 23.60 0.941 0.043
SVG 1 Pred — — 0.054
SVG Posterior — — 0.044
STTR 100 Pred 21.57 0.896 0.082
STTR 1 Pred — — 0.093
STTR Posterior — — 0.084

Table 5.2: Our prediction models applied to the deterministic Moving-MNIST
dataset. In addition to the normal prediction of 100 Samples, we
also test making a single prediction from the stochastic models (in
”... 1 Pred”). We further report results using the non-causal poste-
rior branches of the stochastic models.
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SMNIST Quantitative Results
PSNR↑ SSIM↑ LPIPS↓

Det-Trans 17.70 0.684 0.355
SVG 19.26 0.852 0.063
STTR 17.88 0.803 0.112

Table 5.3: The Quantitative results of four models tested on Stochastic Moving-
MNIST

Figure 5.3: Predictions on the DIR-
SMMNIST Dataset. Change
occurs in the last context
frame, which is continued for
all predictions until Frame
5. Direction changes again
and variance is shown in the
Best/Random/Worst Predic-
tions

Figure 5.4: At every 5 frames the direc-
tion changes in DIR-SMMNIST.
This corresponds to strong vari-
ance in the prior distribution.

To more cleanly illustrate the variance of our predictions, we simplify the stochas-
ticity. In Dir-SMMNIST, we change the direction of the digit instead of the speed,
which stays constant. At every 5 frames our STTR gives a spike in variance as
shown in Figure 5.4, thus indicating that the STTR has learned the underlying
stochasticity of the data. Also, note the lack of any variance spike in the posterior
as it has non-causal knowledge of the future. This is shown next to a qualitative
example of DIR-SMMNIST in Figure 5.3.

5.2.4 KTH Actions
In this section, we make qualitative analysis over sequences selected from the
KTH dataset. Through these, we will show our models latent space capacity by
comparisons of best/worst predictions. We also draw examples from the posterior,
which maximizes potential of the latent sample.
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Figure 5.5: Blank-context prediction of stochastic models. We take the best LPIPS Score
out of 100. The SVG does not make a person appear in this scene (on the
indoor background). The STTR (Ours) and SRVP [17] successfully predict
the appearance of a person.

Quantitative results are given in the earlier Table 5.1 and Framewise LPIPS
scores are shown in Figure 5.7. Our STTR perform very similarly in per-frame
LPIPS to the SVG. The Deterministic Transformer outperforms its LSTM coun-
terpart.

The KTH Dataset is filmed with a static background and an unmoving camera.
When we feed context images containing only the background, we investigate the
sampling capacity of the prior distribution. Predictions from three stochastic
modules are shown in Figure 5.5. In this situation, the SVG fails to predict the
appearance of a person, while our STTR and the SRVP [17] succeed.

Our next example in Figure 5.6 highlights the expressive power of the STTR
latent vector. Samples were sorted according to their mean LPIPS score. We
display the best, worst, a random and posterior samples. Each latent vector makes
a unique prediction of the target. The worst sample successful generates a person,
but does so too late and is out of sync with the target. The result is it having the
worst LPIPS score among 100 predictions, despite being a reasonable guess.

As a small ablation, we restrict the max number of tokens that the transformer
can attend to. We hypothesized, that the positional embedding is difficult to
extrapolate past the training prediction horizon. This is confirmed in Figure 5.8
by allowing the transformer to attend over all previous tokens, and giving worse
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Figure 5.6: Evaluation of the STTR on test sequence #518. We show the different results
over selections of the top 100 samples. We also include the non-causal sample
to show the expressive power of the latent vector.

performance. There is still a sharp decrease in performance at around Frame 23,
when we begin to remove context tokens from the input. We report the better
results by attention over the last 20 frames.

Our analysis on KTH shows clear potential for the STTR. Despite only out pre-
dicting the SVG in one qualitative metric, we are confident with additional training
time and hyper-parameter tuning these results can see further improvements. Our
model captures strong measures of uncertainty in its prior distribution, and uses
these to make realistic guesses of the future frames.

5.3 Human Pose Prediction
In this section, we briefly present results on H3.6M for the task of human pose
prediction. Due to long training times required in hyper-parameter optimization,
we only report results using a single metric on a few actions, although our models
used all actions during training. Further optimizations and evaluation on more
metrics are left as future work.

We start by reintroducing the metric used during training, the MPJPE. Quanti-
tative results from this metric are in Table 5.4. The we present qualitative analysis
of our models using two samples taken from the walking action.
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Figure 5.7: Quantitative analysis of all our
models with the SVG and
STTR showing comparable per-
formance. 95% Confidence in-
terval is shaded.

Figure 5.8: Ablation over the number of
attention tokens given to the
STTR. Performance is stronger
by restricting the number of to-
kens to the training prediction
horizon.

This action highlights the long-term generation potential of our stochastic block.
Our models were trained using all actions.

MPJPE

The Mean-Per-Joint Position Error calculates the end effector of every joint against
the ground truth. This is an average distance, recorded in mm. We calculate the
MPJPE by:

LMPJPE =
1

J ×M

J∑
j=1

M∑
t=1

∥x̂(j)
t − x

(j)
t ∥. (5.3)

Where ∥·∥ is the l2 norm and y
(j)
t is the position of joint j at timestep t.

This metric does not always depict realism in motion. This is in part because
it weights every joint equally, while in real motion the placement of the left hip is
more important than the left arm. Furthermore, it loses validity as we get further
away from the context sequence. Natural motion can develop in many different
ways from a common seed.

It is for these reasons that we do not heavily weight the results in MPJPE, but
instead concentrate on the realism of the generated skeletons. Further discussion
is added in the next sub-section.
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MPJPE (mm) on H3.6M

Walking
Frame (time): 2 (80ms) 4 (160ms) 8 (320ms) 10 (400ms) 25 (1000ms) Mean

ST-Trans 26.1 50.3 86.4 101.3 135.2 92.7
ST-STTR 28.0 52.7 83.0 90.6 139.1 93.2

Eating
Frame (time): 2 (80ms) 4 (160ms) 8 (320ms) 10 (400ms) 25 (1000ms) Mean

ST-Trans 13.7 26.7 47.5 56.5 98.7 59.6
ST-STTR 16.2 30.0 49.9 57.5 102.0 58.8

Smoking
Frame (time): 2 (80ms) 4 (160ms) 8 (320ms) 10 (400ms) 25 (1000ms) Mean

ST-Trans 15.3 30.4 54.9 65.6 110.4 67.1
ST-STTR 17.8 32.8 55.5 64.4 115.4 71.6

Discussion
Frame (time): 2 (80ms) 4 (160ms) 8 (320ms) 10 (400ms) 25 (1000ms) Mean

ST-Trans 21.7 41.2 74.4 88.4 144.0 94.5
ST-STTR 24.8 45.8 75.5 85.6 132.6 85.2

Table 5.4: MPJPE For 4/15 Actions on the H3.6M Dataset
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Figure 5.9: We use our ST-STTR and the ST-Transformer to generate predictions 6
seconds into the future. Our ST-STTR continues to show realistic motion
until around 4 seconds of generation.
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Figure 5.10: We plot the best and worst predictions from our ST-STTR to show variance
in the samples. Frame 18 shows that stochasticity is primarily present in
the position of the foot. Further deviation occurs in the last frame where
our best prediction more closely follows the ground truth.

Results

In Table 5.4, our ST-STTR is outperformed by a deterministic counterpart in al-
most all situations. This is not surprising, as the ST-Transformer is only optimized
over the MPJPE. In our stochastic method, we also minimize the KL Divergence.
We see a similar result in the Stochastic Moving MNIST in Table 5.3, where the
Deterministic Transformer almost matches performance in PSNR. This signifies a
larger problem with l2 loss functions where the objective is get close to the mean
of the data instead of sharp, realistic predictions

Stochastic sampling is a powerful technique which has potential in abstracting
small motions into the latent vector. This motion can be used to correct for the
drift between the prediction sequence and the ground truth target. Figure 5.10
shows a best and worst prediction, along with the ground truth. Frame 18 of this
figure particularly demonstrates the variance learned by our model.

To test the ability to condition and generate based on the models own prediction
distribution, we forecast predictions to 150 timesteps as shown in Figure 5.9. This
equates to predicting 6 seconds of walking after seeing the motion for 0.4 seconds.
At the end of this long generation sequence, both the Spatio-Temporal Transformer
and our ST-STTR break down and the skeleton loses form. The results are very
encouraging as we succeed in making well-formed prediction far past the frames
that the model was originally conditioned on.
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6 Conclusion
In this thesis, we proposed and investigated the Stochastic Transformer Module
(STTR), a causal self-attention mechanism which learns a distribution of possible
futures from a non-causal teacher. Our model is able to maintain strong variation
in the prediction, leading to accurate guesses of the sequence continuations despite
lack of information in the context. When compared with other state-of-the-art
models, ours produces comparable results while having strong predictive powers.
We further demonstrate the empirical benefits of a stochastic models with their
ability to generate shape, realistic predictions.

Although our model faced difficulty in outperforming metrics, we believe this
could be in part due to unconverged training in the case of Human Pose Predic-
tion and overfitting on the KTH Actions dataset. Hyper-parameter tuning and
optimizations is a time consuming task to perform on two different modalities.
This is especially so in transformers, which increase with a squared complexity to
the attention tokens used. A posterior branch that attends over the entire input
sequence makes a very powerful predictor, but requires a lot of computation.

Future work could be led in applying additional regularization to our model.
Discriminators have been popularly used to increase the fidelity of predictions [39].
We believe that regularization would give a strong boost to our model performance
and propose use in future work.

This work could also be scaled up to larger images and videos. A ViT [12] based
frame encoder would create both spatially and temporally localized tokens that
could be directly used by our ST-STTR. The ViT encoder, however, requires large
datasets to overcome its lack of spatial biases [34].

We conclude with a summary of our contributions in this thesis. We proposed
a novel model, the STTR, which gives competitive performance against strong
baselines, particularly in more realistic videos. Then we run a series of experiments
on the STTR to better understand the predictive power of our model. Finally, we
proposed an extension of our model to separate temporal and spatial information
and test it on the task of Human Pose Prediction.
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7 Appendix
This appendix adds two additional figures from our models on SMNIST, and KTH.
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Figure 7.1: This figure shows the failure of determinstic models to make predictions on
stochastic datasets. The speed of the digits changes on the red lines. The de-
terminstic transformer is force to predict the mean over possible locations of
the digits. Note that because the first four prediction frames are a determin-
stic continuation of the context, it is only at Frame 5 that the determinstic
transformer fails.

Figure 7.2: This figure shows a prediction on the KTH Dataset. The SVG performs
best according to LPIPS, but losses prediction quality in later frames. The
STTR learns strong priors from the underlying distribution of the dataset.
Due to this, the STTR manifests an additional person to appear at frame 19.
We believe this is due to the shadow (blue box) which occurs three frames
earlier.
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