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Abstract

The increasing availability and affordability of unmanned aerial vehicles (UAVs)
have facilitated their use in various applications, including construction and disas-
ter response. In many of these applications, it is necessary to determine the global
position of the UAV.

Global navigation satellite systems (GNSS) can provide this information but are
susceptible to errors caused by terrain obstruction. GNSS results can be highly
coarse, especially in urban environments where high buildings can block or re-
flect signals. This thesis presents a method for improving pose graph consistency
through global pose refinement. To generate these improved robust global results
in urban environments, we utilize georeferenced models.

For our method, we first assemble a local map by combining multiple LiDAR
scans and applying semantic and constraint filters. After placing the local map at
a GNSS pose estimate, we repeatedly register it against a georeferenced model at
different positions inside the margin of error of the GNSS pose. We use a novel
plausibility score to determine the most plausible local map placement. We base
the score on the principle that LiDAR rays may not cross through objects while
the ray endpoints should not be in free space. The refined coordinates are then
passed along with relative data to a graph optimizer to obtain globally consistent
georeferenced results.

We evaluated our GNSS refinement strategy on numerous flight datasets and
utilized a georeferenced model of North Rhine-Westphalia. The results show sig-
nificant improvements near buildings. Finally, we discuss possible improvements
and modifications to our method.
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1. Introduction

The demand for unmanned aerial vehicles (UAV) has rapidly increased due to
lower prices, maturing software and many applications in the industry becoming
more feasible. They are already being used in industries, such as agriculture [10,
35, 58, 62], constructions [24, 25], or disaster response [1, 2, 28, 44, 46, 50, 57, 59].

The German rescue robotics center (DRZ) aims to support first responders in
high-risk situations by employing multiple robots in a team. One of the robots
is a UAV tasked to survey and assess dangerous situations. Figure 1.1 depicts
the demonstrator D1 during an exercise to explore a warehouse after a reported
chemical spill. [28]. The UAV provides the first responders a valuable live view at
the site without endangering any personnel. The images can also help operators
of other robots, such as ground vehicles (GV), with more limited perspectives.
Advances in autonomous assistance functions promise for the future to help first
responders to perform surveying more safely even in stressful situations [47]. For
this system a global positioning system is useful,e.g., to show the different robot
positions.

Figure 1.1: UAV demonstrator D1 [47] during an exercise [41].

The above-mentioned industrial applications require UAVs/UGVs to locate them-
selves globally, primarily for higher-level applications, not concerned with control-
ling the robot momentarily but with bigger-picture tasks. These tasks may include
flight path calculation with global estimates, coordination of multiple robots or
path finding to the objective from global coordinates. An additional use-case may
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Figure 1.2: Structures like buildings interfere with GPS through signal reflection and
occlusion, taken from [19].

be the access to information in priori annotated or generated maps. For these
purposes, Global Navigation Satellite System (GNSS), like GPS and GLONASS,
are employed to locate in current positions in global coordinate systems, such as
the Universal Transverse Mercator (UTM) [37].

Satellite-based GNSSs, like GPS, are available worldwide. Nevertheless, they

have two noticeable drawbacks: GNSS does not work underground, and GNSS is
coarse with around 5m [56], particularly in urban environments. In addition, it
is affected by the weather phenomena such as clouds or storms. In the exemplary
case of GPS, ideal conditions for GPS are a clear sky and a plain field without
any obstacle that might cause interference; these conditions are only possible for
limited applications such as missions high above ground or over the ocean. This
thesis will focus on a more urban environment that is not conforming to these
conditions.
The urban environment has a high density of obstacles, i.e., buildings. FEach
building may causes interference by either completely blocking the GPS signal or
creating reflections that delay the signal. These two effects combined create the
canyon effect and reduces accuracy even further. This causes even more coarse
positioning and is most common in streets with tall building facades, as shown in
fig. 1.2 [19].

Consequently, relying on GNSS alone for low-level applications, such as collision
avoidance, that require localization with cm-accuracy is undesirable. Hence, local
positioning is generally achieved with odometry computed from onboard sensors



like cameras, IMU, and LiDAR. For UAVs, ultrasonic sensors or barometers pro-
vide additional height information. Positioning based on odometry yields higher
accuracy than GNSS in the short term. However, it has the downside that minor
errors add up over time and create drift, leading to inaccurate global results. In
this case, the coarser global positioning may negate these errors. For this purpose,
one can identify landmark locations, such as revisited locations, since these may
be used for a spline-based optimizer to revise the global position estimate.

A possible approach to refine GNSS data into a more reliable and precise local-
ization is to find the position of the UAV in a georeferenced model of its mission
environment. CityGML LOD1 model include georeferenced low-polygon building
models, and digital elevation models (DEM), i.e., a low detail representation of the
world. Such CityGML models are available in many German states [21]. North
Rhine-Westphalia’s (NRW) CityGML data [36] is available for free.

The position of the UAV in a georeferenced model may be determined via a local
map generated from the UAV data, i.e., fitting the local map into the model. To
reduce inconsistencies between the model and the local map, we may use semantics
[8] to filter clutter.

Fitting the local map into the model may be achieved via registration methods
like ICP [4], NDT [31], or registration with surfel maps [39].

Unfortunately, a single registration may lead to incorrect results. Thus one can
attempt registration at multiple locations given the GNSS’s uncertainty. In order
to then determine the most plausible result, the quality needs to be evaluated, e.g.
as done by Shetty and Gao [48], and Torres [55].

Our method streamlines the above concepts into a straightforward pipeline and
proposes a novel plausibility score based on the percentage of uninterrupted rays
and hits of a registered LiIDAR scan. The thesis is structured as follows: We
introduce related work in chapter 2. Chapter 3 presents our pipeline for robust
registration, our plausibility score, and its application in pose graph optimization.
We then evaluate the proposed method in chapter 4 and present the conclusion
and future works in chapter 5. This thesis contains the following contributions:

1. A robust registration approach: Our pipeline constructs local maps and
registers them against a georefrenced model at multiple potential positions
to avoid getting stuck in local minima, increasing robustness.

2. A novel intuitive plausibility score: We base the score on the assump-
tion that LiDAR rays can not be inside models, and meanwhile, ray end-
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points should not be in free spaces.

3. An improvement to robustness and consistency of Pose graphs: We
feed the refined GNSS results from our registration approach as additional
constraints into a pose graph optimization to georeference the pose graph
while reducing overall drift.

4. An improved global positioning of pose graphs: The graph is globally
positioned, e.g. allowing the fusion of coarse environment models with more

detailed LiDAR data.

5. A thorough evaluation: We extensively evaluate the robustness and con-
sistency of our registrations and the pose graph on diverse flight datasets
and two CityGML models.



2. Related Work

The following will discuss related works to our method. The first topic covers
different urban datasets. Secondly, we introduce building information models,
such as CityGML. Thirdly, we discuss different registration approaches. Then, we
showcase different approaches to generate possible registration poses and present
alternative plausibility evaluations to our method. Consider that some of the
authors do not explicitly refer to the mentioned plausibility evaluations as such.
Lastly, we introduce some alternative GNSS refinement approaches.

2.1. Datasets

In the problem statement, we briefly mentioned that one of the drawbacks of the
registration against an existing model is that it has to be generated prior to the
actual flight. One approach is to survey the mission site in advance with a UAV to
generate a map from higher altitudes with a valid GNSS connection. Christie et
al. implemented this technique and mentioned several drawbacks. The top-down
perspective of the map has up to no information on walls which are crucial. In
addition, high altitudes still do not ensure precise localization as explained in the
introduction [11].

Another approach is to manually survey the mission location beforehand to
generate highly accurate and detailed maps, as was done in the Newer College
dataset by Ramezani et al. [40] for their ground truth calculations. They used
a tripod-mounted stationary survey-grade BLK360 LiDAR scanner to generate
millimeter-accurate maps for this task. This process is time intensive as one has
to be at the mission sites beforehand, and the scanner has to be handled by experts.

In contrast to the two previous approaches, the open street map (OSM) collab-
orative project encompasses large regions of the world, e.g., all cities of Germany.
However, this data is significantly less accurate than the model from the Newer
College dataset, as the OSM data is based on crowdsourcing. Numerous users
gather GPS positions and combine them into lines (e.g., streets) or polygons (e.g.,
buildings). In addition, users can tag the buildings and insert vital building details
such as the height, roof shape, and level number. The tags can also encompass
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Figure 2.1: Differences in detail are obvious for Open Street Map in the city center of
Berlin [33].

more advanced model details, such as color, roof style. Fig. 2.1 shows generated
rough 3D models. The level of detail supported is highly dependent on the re-
gion. The Netherlands donated their state-maintained building databases to the
OSM project providing detailed and accurate data [17, 22]. Although, OSM can
indirectly store 3D information, it is pretty inconvenient.

A collection of datasets for cities all over Germany exists in the CityGML format
[38]. Goetz [16] proposes an approach that uses OSM tags to generate highly de-
tailed buildings for the CityGML format. However, the standard approach is that
government surveying offices publish their data. The German state North Rhine-
Westphalia allowed open access to CityGML datasets for every region, including
over six million models [29]. However, these models are primarily prism-shaped
buildings similar to fig. 2.1 . In the subsequent section, we will examine the GML
format as well as others.

2.2. 3D Model Formats

This section introduces the common 3D model formats (stl, obj, and ply) and then
discusses a format specifically designed to store building and city information: the
CityGML format. At last, we will review two formats we used for our methods
implementation: the Point Cloud 2 and Surfel Map formats.

2.2.1. STL, OBJ, And PLY

This section will introduce four 3D model file formats: STL, OBJ, PLY, and GML.
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STL stores per triangle one normal vector and three vertices. This technique
leads to many redundant duplicate vertices. STL can also not represent round
surfaces. Instead, it requires to use an approximation with numerous triangles.
Despite these two shortcomings and a lack of storage for additional information,
the format is popular due to its use in numerous computer-aided design and man-
ufacturing (CAD and CAM) softwares [34, 51].

In contrast, the OBJ format contains a wide variety of possible geometric types.
The format stores 3D information by defining each model element as a key-value
pair. As an example, OBJ stores vertices as individual keys with coordinates.
Later on, when defining a face key, they solely refer to the vertex keys, which
avoids the problem of vertice duplicates. In addition, there are keys for materials,
textures, groups, and parametric surfaces, i.e., round surfaces are possible.

The ply format is very similar, although it separates the data from the descrip-
tion. The format is popular among academics since adding new user-defined keys
is straightforward [34]. Tab. A.1 shows a triangle face representation in the three
formats.

2.2.2. CityGML

The city geographic markup language (CityGML) format [21] was explicitly de-
signed to hold building information and embed relations between models in order
to model whole cities or countries, unlike the previous formats. It is used for
the CityGML dataset. An additional motivation for the format was to make it
reusable and accessible for many applications, e.g., autonomous driving, mobile
robotics, city planning, etc.

CityGML is implemented in XML and has different levels of details (LOD) [21]
based on how much information a file provides. This categorization ranges from
zero to four and is listed below.

« LODO, this LOD used to be a digital elevation model only, but a later version
of GML added the representation of buildings as simple ground planes.

« LODI1 presents buildings as prism-shaped blocks. It includes . There are no
further details such as vegetation.

o LOD2 adds details like roof shapes. It is also possible to color-code different
materials and include vegetation.

« LOD3 is as detailed as possible (for the exterior). This LOD may also include
high-resolution images.
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o LOD4, this category adds to LOD3 by incorporating room layouts, stairs,
and in some cases, furnishings.

Figure 2.2 showcases all five LODs. The first three LOD purpose is to represent
grand-scale urban datasets, in which LOD2 exhibits landmarks only. In contrast,
the last two LODs’ primary use cases are individual projects.

Figure 2.2: Examples for the different LODs, taken from [21].

2.2.3. Point Cloud And Multi-Resolution Surfel Map

We primarily employ two formats: point cloud [43] and multi-resolution surfel Map
[39], to implement our method. We chose the former since this is the most natural
way to store LIDAR data and is supported by ROS via their implementation of
sensor__msgs PointCloud2. Meanwhile, the former increases registration efficiency
considerably by combining multiple points via surfel.

The point cloud format is straightforward; it only stores 3D model information
as points p; € R3. This format is ineffective in terms of storage efficiency but is
convenient for conserving the output of LiDAR scanners. The point cloud imple-
mentation in sensor__msgs PointCloud2 can store additional information, such as
the signal’s intensity, the point’s color, or semantics (will be expanded upon in a
later section) [39, 43].

Processing raw point cloud data (e.g., for registration) becomes increasingly
challenging to compute quickly due to newer LiDAR scanners’ high output fre-
quency and point density. Hence, Quenzel and Behnke [39] employ a surfel map
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to reduce computing time. This approach divides the given point cloud via voxels
or tetrahedra into cells. A surfel summarizes points falling into a cell by their
mean p and covariance X, which are calculated as follows:

pi = (.Tf,y,Z)T, (21)
Ny = |pl, (2.2)
1 &
Covg,y = 2w — 7)Y — ) (2.4)

N,—1

Covgy, Cov,, Cov,,
Y= |Covy, Cov,, Couv,,]| . (2.5)
Cov,, Cov,, Cov,,

The surfel normal is oriented along the Eigenvector of the smallest Eigenvalue
min( ) of the cell covariance.

det(X — AE) =0 (2.6)

(8= AE)-2=0 (2.7)

In addition, the surfel map has different levels of detail. The base level one has the
original cell size. Meanwhile, for each higher level of detail the cell size is divide,
e.g., an original cell size of 1m becomes 0.5m in a higher level of detail. Higher
detail levels are applied based on the distribution of the points [39].

2.3. Registration

In this section, the source refers to the local map that must be aligned with the
static models, which will be referred to as the target.
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2.3.1. ICP

The Iterative Closest Point (ICP) Algorithm by Besl and McKay [4] consists of
two main steps. It first establishes correspondences between the source and tar-
get points by finding the closest point match for each point in the source. The
second step minimizes the distance between each point and its correspondent by
employing a least square error function that considers rotation and translation to
reduce the error. The algorithm keeps iterating over the two steps until it reaches
a convergence criterion and matches every point, i.e., it assumes a match-point in
the target map to every point in the source map. Therefore the algorithm is less
robust and prone to mismatches at the presence of many outliers, e.g., clutter [45].

2.3.2. NDT

An alternative to the ICP algorithm is the 3D Normal Distribution Transform
(NDT) algorithm proposed by Magnusson et al. [31]. It uses divisions similar
to the Surfel Map format approach but characterizes the subspaces by a normal
distribution instead of surfels. The core loop of the algorithm is also iterative: It
minimizes a score function based on how well the points from the source map fall
into the normal distribution. NDT algorithm is considerably faster than ICP [31].

2.3.3. Registration With Surfel Maps

Quenzel and Behnke [39] use a Surfel Map as a basis for their registration, i.e., align
surfels instead of points. The registration implements an expectation maximizer,
that iteratively reduces the distances between matched surfel. Their approach
considers the surfels’ position and their normal and viewing direction. In addition,
surfels representing the same surface are merged into one. In conclusion, this
algorithm is also considerably faster than ICP [39].

2.4. Pose Search

The three registration algorithms introduced above all minimize functions itera-
tively. Hence, the algorithms will converge to some minima, which is not necessar-
ily the global minimum. The authors of the ICP algorithm [4] Besl, and McKay,
mention two approaches to test multiple minima to find the global one, i.e., they
propose a pose search. These searches do not cover the task of determining the
global minima yet. We discuss this in the following section.

10
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Figure 2.3: Particles, representing poses, are removed from unlikely positions and focus
on certain spots, taken from [15].

2.4.1. Brute Force and Reduced Search

They explore a brute force strategy that tests almost every translation-rotation
pair in a prior determined target area. Nevertheless, they conclude that the ap-
proach is computationally wasteful. On the other hand, they propose that ICP is
not very sensitive to the initial translation, and thus a reduced pose search with
different rotations alone will suffice. This assumption only applies to sources that
include large portions of the target and is not the case for our problem [4].

2.4.2. KLD-Sampling

A popular method to compute probable poses is the Monte Carlo Localisation
approach and its variation: the KLD-Sampling [15] by Fox. The general idea is to
initially represent possible poses as uniformly distributed particles, remove those
that are unlikely given some measurements, and add additional particles around
the more likely ones. As shown in Fig. 2.3 the particle density increases in a few
locations after several iterations. Fox adds adaptivity to the number of samples
used to avoid computational inefficiency. This addition reduces particles when
the position is unambiguous and increases the amount when it becomes uncertain
again.

11
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2.5. Plausibility Score

The previous section discussed different pose search approaches to find many pos-
sible poses. The topic of this section is to differentiate between more and less
suitable poses, i.e., the most plausible registration. A plausibility score allows an
algorithm to identify the most suitable pose that fits the local map into the model.

2.5.1. Feature Extraction Based

The following two approaches base their plausibility score on feature extraction.
Shetty and Gao [48] use features to score the suitability of the registration envi-
ronment, while Torres focuses on wall intersections to determine the best fit.

Shetty and Gao [48] present a plausibility score based on the environment’s
ability to constrain the registration. They presume that strong constraints lead
to accurate ICP registrations. Consequently, they focus on the quality and quan-
tity of these constraints. To identify constraints, they locate feature surfaces and
edges (distant features are given less importance due to LiDAR being more ac-
curate in short ranges). The features reduce the position error accordingly: for
surfaces along their normals, and edges along perpendicular directions, e.g., hor-
izontal edges would reduce the error in the vertical direction. They visualize the
degree of constraint as an ellipsoids. The smaller the ellipsoid, the more confident
they are with the results. Fig. 2.4a shows how building corridors constrain the
position error along the wall normals. Meanwhile, the other directions have a
higher uncertainty due to the lack of walls that could produce constraining feature
points. In addition to this metric, Shetty and Gao use the model to determine
whether any GPS signals are non-line of sight (NLOS) signals. This way, they
remove signals received due to the canyon effect (Fig. 2.4b). This information
generates an additional accuracy score, which Shetty and Gao also use as input
for the unscented Kalman filter [48].

Torres [55] proposes a plausibility score based solely on wall intersection points.
His approach is somewhat similar to ICP in that he also finds matches and pulls
them closer together. Nevertheless, the match finding is more specific and detailed
in Torres’ case, although it only applies to two-dimensions. Torres utilizes the
intersection point of walls as relevant features only. For this purpose, he first
reduces the local and model to the x-y-plane, resulting in a floor plane. A RANSAC
algorithm then detects walls and, subsequently, wall intersections. Torres then
detects possible matches between the points by comparing the intersection angles.
Then a mixed-integer linear program produces a transformation that maximizes
the number of possible matches. This algorithm segment integrates the number of

12
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Figure 2.4: Shetty and Gao evaluate the local map as well as the GPS signals. The image
on the left incicates the number of constraints offered by the local map as an
ellipsoid, they improves the registration quality. For the figure on the right,
red signals are non-line of sight (NLOS) signals. Meanwhile, Green rays are
unobstructed, taken from [48].

wall intersections as a plausibility score, i.e., Torres determines that numerous wall
intersection matches indicate that the transformation is correct. After applying
the x-y-transformation, Torres aligns the z-axis as well. The algorithm is robust
as it considers every possible match in the model, thus requiring only a very rough
initial estimate. Although it can be noted that having an adequate amount of wall
intersections in the local map is often not feasible.

2.5.2. Ray-Casting Based

The following two approaches simulate casting the ray from the LiDAR scan in the
model and compare the results to the original measurement. We, too, employ this
technique. Christie et al. [11] propose a plausibility score for the following scenario:
a registration of a local map generated by an Unmanned Ground Vehicle (UGV)
against a model created by a UAV. The challenge is to find features to compare
that are equally well represented from a bird’s eye view and a frog’s perspective
to evaluate a pose’s plausibility. The authors define a two-dimensional descriptor
system based on features detectable from both maps. The descriptor stores the
results from multiple circularly cast rays from the estimated position in the height
of the UGVs sensor. The results include the range of each ray and semantics, i.e.,
the type of obstacle that blocked the ray. The semantics are divided into obstacle
categories detectable by a UGV and a UAV, e.g., buildings and vegetation. The
authors generate one descriptor for the local map and all possible positions on
the model. They then compare the descriptor of the local map with different
descriptors from the model. The score is the normalized sum of the individual ray

13
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Ik*
Zy Zmax

Figure 2.5: Probabilistic likelihood for a range measurement. 2,4, iS the maximum
measurement range of the LIDAR scanner and z}* is the actual value, taken
from [53].

scores and falls between 0 and 2, considering whether semantics agree, and the
range difference between the UAVs and the UGVs descriptor [11].

The plausibility score proposed by Thrun et al. [53] considers four different
measurement error types that can occur while scanning. For their score calculation,
the authors compare the distance of each ray measured by the LiDAR scanner with
the distance measured from a computed ray cast from the estimated position in
the model. From now on, the actual value refers to measurements obtained by
the model, and the measured value refers to the one acquired from the LiDAR
scan. Thrun et al. solely incorporate the discrepancy between the measured and
actual value. This discrepancy would be zero in an ideal scenario. The likelihood
that a given discrepancy stems from a correct measurement is modeled by four
distributions that represent the following four scenarios:

1. Correct measurement with noise: the sensor measured correctly but still
has incorrect results due to sensor inaccuracies that were known before-
hand. These errors may result in slightly varying range measurements. The
likelihood of measurements being correct but being affected by a sensor inac-
curacy increases the smaller the discrepancy between the real value and the
measured one becomes, i.e., a zero-mean Gaussian distribution distribution
around the real value can represent this error’s effect.

2. An unexpected object blocking the ray scenario: the ray was unable to reach
the correct length due to dynamic clutter, e.g., people. The likelihood for
interference by dynamic clutter increases the shorter the measured value is.
Since clutter closer to the scanner can block more rays and hide objects

14
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behind it, furthermore, this effect cannot occur behind the obstacle. An
exponential distribution can represent the error.

3. Rays that do not return scenario: this effect occurs when the target is out
of the sensor’s range or due to reflection and absorption. In all these cases,
the ray does not return to the scanner, and the LiDAR will mark it this
way (Thrun et al. assume that the LIDAR returns the maximum range). A
small uniform distribution represents this scenario at the end of the LiDARs
range Zmaz-

4. The random measurement scenario: this accounts for all other possibilities
that a measurement failed, such as mirrored rays or interferences by other
sensors. This error is independent of the measurement margin, and thus it
is modeled with a uniform distribution.

Fig. 2.6 shows the one can see the combination of all distributions [53].

2.6. GNSS Refinement Methods Based On 3D
Models

Our approach can be categorized in the Global LiDAR Localization problem. The
survey by Huan et al. [61] divides approaches into four categories which are made
up of two components, place recognition and pose estimation. Place recognition
finds the rough current position by comparing the LiDAR with previously gener-
ated descriptors and the pose estimation refines its position an returns an exact

position.

Pinput - Pinput Pinput T,Cg Tyt
M., Place Recognition —_— My, Place Recognition Mier Pose Estimation ——

— —_— —_—

(a) Section III-A: Place recognition only (b) Section III-B: Place recognition followed by local pose estimation

Pinput  Place Recognition Pinput

—_— Test . . Tcst

My —_— Mygiobar  Pose Estimation ———

Pose Estimation
(c) Section III-C: Pose estimation-coupled place recognition (d) Section III-D: One-stage global pose estimation

Figure 2.6: Pippu: indicates an input data (LiDAR point cloud). My, and Mgopa
represent prior keyframe-based submaps and a global metric/feature map
respectively. M, and T,.; represent a keyframe and a robot pose by place
retrieval in the keyframe-based submaps. .4 is a robot pose output by pose
estimation module, taken from [61].
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2. Related Work

2.6.1. Lucks et al.

Lucks et al. [30] propose a pose refinement approach by employing CityGML
LOD1 models. They start with a local map generated from odometry and a
LiDAR scanner. Then they extract facades and streets separately and register
the local map against the CityGML models with NDT. Since they use LOD1
models only, the researchers removed any ground or other clutter elements. They
implemented this filter with a random forest that detects walls. Lucks et al. do
not employ a pose search. Instead, to reduce local inconsistencies they segment
the path trajectory and latter interpolate between them.

2.6.2. Cappelle et al.

An other pose refinement approach [9] relies on LOD3 and LOD4 models with high-
resolution textures. Their approach directly relies on the map looking similar to
the real world. They use a single monocular camera and compare its footage with
a virtual camera placed in a model scene. The placement is based on GNSS or, in
case of invalid GNSS, on odometry.

The authors then extract Harris keypoints from both images and match them.
They calculate the transformations between the features and the deriving offset
of the actual camera. This transformation is valuable as the virtual camera has
a coordinate in the model, which is geo-referenced. The offset and the virtual
camera together result in a refined GNSS.

2.6.3. Tang et al.

Tang et al. [52] employ place recognition followed by pose refinement strategy.
Their map is based on google maps data. A priori they create many snapshots of
the vehicle path and simulate two-dimensional LIDAR scans from their center, i.e.,
they ray-trace until a building is hit. They use multiple of these simulated scans
to implement place recognition: The LiDAR scan of their vehicle is condensed to
a two-dimensional version to achieve the cross-modality (Fig. 2.7). The reduced
scan is then matched with one of the snapshots. The pose refinement is achieved
with deep closest point (DCP).

2.7. Relative and Absolute Pose Graph Fusion

Our pose graph consists of many nodes and has edges from different relative mea-
surements . Regarding absolute measurements, there are multiple modeling ap-
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2.7. Relative and Absolute Pose Graph Fusion

Figure 2.7: Virtual LiDAR scan extraction (top row) from google maps photo and re-
duction of corresponding measured LiDAR scan (bottom row), taken from
[52].

proaches to incorporate them in a pose graph, [13] by Das and Dubbelman evalu-
ates three of them. The first one represents absolute poses as further measurement
edges, the authors conclude that this modeling approach is too rigid. They achieve
better results by modeling the absolute poses as additional nodes. That are con-
nected to the pose graph with edges that represent the global poses accuracy.
They attempt this with the nodes position being adjustable or static. Their test
show that, that adjustable nodes for GNSS data is most effective as it allows for
more flexibility and thereby improves convergences.
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3. Our Method

In order to refine our GNSS position estimate for the graph optimizer, we create
a local map and register it against a model constructed from CityGML and DEM
models. Our methods pipeline is constructed as follows.

Fig. 3.1 showcases our pipeline. We will now introduce the relevant and optional
input data required for our algorithm (Sec. 3.1). Then we detail the local map
creation (Sec. 3.2), before describing the registration and grid search (Sec. 3.3).
Lastly, we describe how we generate relative transformations and feed them as
constraints into a pose graph optimizer (Sec. 3.4).

The local map combines multiple semantically annotated LiDAR point clouds in
a sliding window. Before combining the point clouds, we filter out clutter objects
not represented in the model and transform the point clouds from the LiDAR
frame to the map frame. After the map is created, we initialize the local map at

a GNSS pose.

INPUT
scans == Clutter . . [PleRE Plausibility
o Filter Registration fpp Score
odomety + I bad new best
measured GNSS Local Map score score
geo-refrenced model Creation ) Save
Pose Graph _
OUTPUT 4- . R.eli[atl\t/.e
refined relative <=y A egistration \ 4
refined GNSS < Filter (?heck
(Covariance)

Figure 3.1: An overview of our pipeline.

We then offset the initial pose using a grid search. For every pose, we register
the local map against the model, selecting the result with the highest plausibility
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3. Our Method

score. Our score considers the distance between the LIDAR scanner, the hit point
for each ray in the model, and the hit/miss ratio.

The refined GNSS positions are able to georeference the spline optimizer. Nev-
ertheless, relative transformations are essential to improve spline accuracy. We
first detect loop closure match candidates. The candidates are then registered to
obtain a relative transformation that is fed into the pose graph optimizer.

3.1. Input Data

Our method semantically annotated point clouds, odometry, GNSS, and a geo-
referenced model, e.g., CityGML and DEM, of the scenery location.

The semantic module [8] fuses multiple sources, such as thermal and RGB cam-
eras, to annotate the LiDAR scans.

We define poses as 3D poses [54], elements of the Special Euclidean group SE(3),
where R is our rotation and ¢ is our transformation:

SE®3) = {T _ {10% ﬂ IR SO@3),te R3} (3.1)
SO(3) = {R e R”?|RR" = I,det(R) = 1} (3.2)

We derive our GNSS poses from a combination of a GNSS-generated translation
t, UTM [37] values based on longitude and latitude from the UAV, and a rotation R
based on UAV measurements, i.e., the IMU’s roll and pitch and the magnetometer’s
yaw .

Height Sensor An ultrasonic sensor may replace the GNSS for more accu-
rate height results. However, flights in high altitudes next to buildings can pro-
duce errors for ultrasonic sensors. The sensor can misidentify the ground, e.g.,
skyscrapers’ facades as the ground floor (as happened at MBZIRC [5]). So to
avoid mistakes, higher altitude measurements are conducted by barometers.

We generate our original odometry from the raw data with MARS [39] by Quen-
zel and Behnke to fuse the data into odometry poses . As mentioned before, the
odometry is less prone to large jumps and locally more accurate than GNSS, as
shown in fig. 3.2.
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3.1. Input Data

background
sky
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road
sidewalk
person
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vegetation
water
hydrant
bicycle
train
vehicle
other object

Figure 3.3: Example of semantic annotations, taken from [8].
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Figure 3.2: Inconsistencies between odometry and GNSS (left). Trajectory color-coded
by error (right). Gaps are caused by unreliable GNSS.

3.1.1. Point Cloud Semantics

A common registration problem stems from scene measurements without corre-
spondence in the model. The discrepancy reduces the registration quality since
this results in mismatched points, possibly preventing convergence and resulting
in implausible results [45].

We refer to points not present in the model as clutter. To remove these points,
we segment points into different relevant semantic categories using the approach
of Bultmann et al. [8]. Clutter categories include dynamic objects, such as people,
means of transportation, and vegetation.
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3. Our Method
3.1.2. Model And Height Map

For the model, a point cloud is subsampled from a CityGML model and a DEM,
which we show in Fig. 3.4c. Based on this point cloud, we generate a height map.
The height map is a square grid with a side length h,, that we divide into cells
with A intervals. Each cell stores the height of the highest point that falls into
the cell. Fig. 3.4d shows an exemplary height map. Finally, the point cloud is
also converted into a surfel map for registration with MARS [39] as shown in Fig.
3.4b. The surfel are calculated according to Sec. 2.2.3.

(a) google earth [18] (b) surfel map

(¢) point cloud

(d) height map

Figure 3.4: Fig. a shows the Poppelsdorf campus of the university of Bonn. The figs.
b-c¢ shows the same scene recreated from a CityGML model and a DEM in
different formats.
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3.2. Local Map Creation

(a) (b)

Figure 3.5: Point cloud with semantic categories - building (red), road (orange), people
(yellow), vegetation (green). (a) before semantically-assisted clutter removal
and (b) after the removal, mainly the person, the lamppost, and the tree,
were removed.

3.2. Local Map Creation

This section discusses our local map creation. On the one hand, it would be
possible to only register a single scan, they will include less features, may be
obstructed, and have a restricted field of view. On the other, local maps avoid or
reduce these flaws by aggregating multiple scans, reducing the effect of outliers.

3.2.1. Semantically-assisted Clutter Removal

A modern LiDAR creates an organized point cloud with precise measurements.
The point data is in spherical coordinates with two angles and the measured range.
Due to the organized structure, we have to discard any invalid measurements, e.g.,
too close or too far.

We then remove all points with semantic categories that are either dynamic
entities or are too detailed for the LOD2 CityGML model we used in our experi-
ments.

Thus, we choose to filter points from the following categories: person, rider,
vegetation, sky, water, hydrant, motor-/bicycle, train, vehicle, and foreground
objects. Fig. 3.5a shows the color-coded semantic point cloud before (3.5a) and
after removal (3.5b).
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3. Our Method

3.2.2. Transformation

The following transformations are needed to transfer a point cloud from the LiDAR
frame to the map frame:

1. The transformation 73, from the LIDAR scanner to the base;ink of the UAV.

2. An odometry transformation T, to locally position the UAV (this contains
drift error).

The uncertainty of the local estimates increases over time (due to accumulated
drift). Therefore, it is vital to reduce the uncertainty with global GNSS position
estimates.

After applying all transformations, the point cloud is ready to be inserted in the
local map.

3.2.3. Extending the Local Map

Our local map is a collection of N, point clouds with a Euclidean distance of
d,. We employ a map window, i.e., limit the number of simultaneously observed
LiDAR measurements. A low N, keeps the computational time reasonable by
limiting the number of points to consider in the plausibility evaluation while re-
ducing the effect of drift. Meanwhile, a larger N,, contains more scene information
and, thus, more registration constraints. In a similar vein, a large NV,, is prone to
include drift errors and a small N, only covers little scene information.

We build a local map with N, and d,, for each point cloud with a valid GNSS
signal (the GNSS health provided by the sensor fulfills the criterion < Ognss)-
Before employing our pose estimation, we evaluate the condition number x of the
local map. The  describes how well the surfel map (Sec. 2.2.3.) is constrained
and is based on the normal distribution of the observed surfels. For this pur-
pose, we calculate the covariance matrix ¥ of the surfel maps normals and take
the smallest and largest eigenvalues \,,;, and \,,,,. Local maps where the ratio
between minimum and maximum surpasses a 7, are discarded:

= —= < . .
K () = Kih (3.3)
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3.3. Relative Pose Estimation

(a) point cloud (b) surfel map

Figure 3.6: We use the point cloud on the left (a) for our plausibility check and the surfel
map format on the right (b) for registration.

We then position the map at the GNSS estimate, that is temporally closest to
the first cloud of the local map (this was determined before building the local
map). Fig. 3.6 shows an example result from our tests.

3.3. Relative Pose Estimation

To estimate the relative GNSS offset, we employ a grid search followed by fine
registration. Each iteration within the grid search consists of offsetting the raw
GNSS pose, registering the current local map against the model, and evaluating
the outcome with our plausibility score.

We do not solely rely on registration because the convergence radius of MARS is
smaller than the GNSS error margin. Hence, the registration may converge to a
local minimum. To identify the global minimum among the local ones, i.e., the
best-fitting pose, we shift the starting position for the registration by moving the
local map along a grid. After each shift, we register the local map against the
model, and then we calculate our plausibility score and select the registration-
adjusted pose with the highest score to obtain a more robust result in a wide
user-defined area, e.g., a 16-meter radius as shown in Fig. 3.7.
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3. Our Method

Figure 3.7: Our search grid (black) with a radius r,=16m and a cell size §;=2m overlayed
on the model point cloud.

3.3.1. Grid Search

For our initial pose search, we employed a grid search (Fig. 3.7). We center the
circular grid around the original GNSS pose and exclusively change the transla-
tion of the pose, excluding the height estimate, since it is adequate due to the
barometers’ small angle error. Our search’s circle grid radius size r, depends on
the typical upper bound for the GNSS error, e.g. 16 m. Meanwhile, the search
grid cell size J, depends on the registrations’ basin of covergence. For all initial es-
timates within the same basin, the registration will converge to the same minima.
This way, we can find and compare all minima to identify the global one.

Usually, this approach would require testing many possible poses, c.f., AMCL
[42]. This approach is unnecessary for our problem scenario due to its many
constraints. Unlike AMCL, our search area only includes a small region within
the model since we only have to check an area around the GNSS estimate. In
addition, the registration mitigates minor orientation errors and the height of the
UAV. A slightly different orientation does not have to be evaluated explicitly e.g.
with a modified rotation R of the GNSS pose, i.e., modifying the rotation R of the
GNSS pose. We graphed the error of a test flight (Fig. 3.8) to confirm that the
angle and height error is in the convergence basin. More flights are represented in
Fig. B.1.

3.3.2. Single Ray Plausibility Score

The different poses generated by our grid search require a score for plausibility to
determine the most fitting placement of the local map in the model. We propose
an intuitive metric that compares the measured LiDAR ray with a projected ray at
the estimated position in the model. The plausibility score returns values between
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Figure 3.8: Error margins recorded for our fine tuning flight 16-44

zero (highly implausible) and one (highly plausible) The metric uses two evaluation

criteria:

e The ray criterion rays compares the number of cells along the measured

ray in cells L and the number of unobstructed cells along the projected ray
within the model M:

rays = min <

M
—,1).
o)

(3.4)

e The hit criterion hit; considers whether a projected ray overlaps with the

model, i.e., the endpoint’s height h, is below or above the model’s height

Ry

i fhp, > endhy,

, 1
hits = (3.5)
0 otherwise.

Each criterion rewards good placements and penalizes implausible placements
differently. However, both enforce a basic assumption: a LiDAR ray can only
intersect with the terrain once, specifically at its reflection point. Therefore, any
premature overlap of a projected ray with the model is implausible since a LIDAR
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3. Our Method

scanner would have detected a shorter range in the real world. Respectively, no
intersections would have yielded a longer range.

The ray criterion considers this assumption by penalizing poses that place the
projected rays so that they overlap with the model prematurely. Meanwhile, the
hit criterion rewards placements that ensure that the endpoint of the projected
rays hit.

We now detail how we compute the ray and hit scores. In order to detect the
collision of a projected ray, we use Bresenham’s line algorithm [7] to efficiently
calculate the height map cells passed by the ray.

Ray criterion We calculate the ray criterion score for every ray of the clouds
in the local map window using the previously generated height map (Sec. 3.1.2).
rays is calculated as follows:
M
rays = - (3.6)

Where M is the number of cells from sensor origin until the first intersection with
the model and L is the number of total cells, i.e., all height map cells along the
ray. To calculate M, we utilize Bresenham’s line algorithm and analyze all cells
between the sensor origin and the endpoint until a collision is detected. For each
cell at x and y, we compare the lowest point in the cell h,(z,y) of the ray with
the model elevation hy,(x,y): h.(z,y) > hp(z,y).

We calculate h,(x,y) at the cell’s border, where the ray is lowest (based on the
rays slope). If a ray segment does not fulfill the height condition, we detect a
collision and terminate, returning the number of cells passed L until now.

Fig. 3.9 shows an example of how the rays traverse the height map cells and
stop at the first model intersection.

Hit criterion Similarly, we calculate the hit criterion for every ray of the scan
in the local map window. This time, we only examine the ray’s end point. For
this purpose, we again employ the height map to detect hits and misses. A miss
requires the end points’ height map cell to be lower than the end point’s height.
In contrast, a hit requires the end point to be above the cell height.. In addition,
we check whether the endpoint is close to a cell border. If this applies, we extend
the ray and try a second attempt, i.e., compare the height map cell height with
the end point height because the cell borders are arbitrary. The indicator function
for a single ray is as follows:
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3.3. Relative Pose Estimation

Figure 3.9: The rays are segmented based on the height map cells. Collision (red) with
the model (black) occurs when the ray segment intersects the map. Ray
segments above the map are collision-free (green).

Figure 3.10: The figure indicates different endpoint scenarios: hits(green), initial
misses(blue), second attempt hits(yellow), and second attempt misses(red).

_ 0, miss
hits = (3.7)
1, hit

Fig. 3.10 shows the color coded end points.

3.3.3. Complete Point Cloud Plausibility Score

We combine the results of the individual criterias for a single ray as a weighted
sum with weight hit,, as follows:

single; = rays, - hit,, + hit,, - (1 — hity,), hit,, € [0, 1]. (3.8)
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(a) rays = %, hits =0, R; = 0.25 (b) rays = %, hits =1, R; =1

Figure 3.11: Simplified side view: The map model is divided into cells (gray dotted), and
the area under the ray is colored based on whether an intersection occurred:
unobstructed (green) or obstructed (red). The endpoint criterion is based
on the overlapping of the ray’s end.

We continue to calculate the per cloud results of the clouds and then of the local
map with the mean to get a score between zero and one:

Ip| |wl

1 1
Ci = |—| Z S'inglei, Slocal map = m Z Ci- (39)
PliS Wi

Figs. 3.11 showcase the score critria. Fig. 3.11a shows a sub optimal placement.
The ray overlaps early with the model. The ray criterion rays; is, % and since the
endpoint is not overlapping with the model, the endpoint criterion hit, is zero. In
the ideal scenario in fig. 3.11b the ray is passing all cells unobstructed, and the
endpoint is connected with the model resulting in an R; of 1.

In conclusion, the calculation of our metric is an intuitive approach to measuring
the plausibility of a given positioning that detects estimated poses that disconnect
or overlap the local maps with the model.

3.4. Graph Optimization With Absolute Poses

The graph optimizer [20] is a separate component to our pose refinement pipeline.
The graph consists of nodes X; and edges e;;, which are initialized with multiple
multi-modal measurements. The nodes are poses and the edges are measured
constraints. These constraints may contradict each other, e.g., due to drift error.
The optimizer will then attempt to reduce the overall error, i.e., adjust the poses
so that the error w.r.t. all measurements is minimized. This is done iteratively
each iteration adjusts the poses until the optimizer converges.
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Figure 3.12: An abstract pose representation. Key-frames, i.e., our registration results
are marked with purple, relative measurements, e.g., raw odometry are
marked with white. Global nodes, e.g. GNSS poses are marked with a
Cross.

For this thesis, we use an optimizer implementation by Imbusch and Quenzel,
that optimizes a continuous-time B-spline trajectory [49] using a pose graph. Time
continuity allows to query the pose at any intermediate time without explicit
representation of all intermediate poses. We feed our graph optimizer a number
of inputs, including global poses. This enables us to add accurate georeferenced
context to UAV positions. The global poses are modeled as additional graph
nodes that are connected to the graph with an edge that represents the global
poses uncertainty. Fig. 3.12 showcases an abstract graph representation of our
pose graph. Regarding input, we use absolute refined GNSS and raw relative
poses from the integrated sensors. In addition, we use MARS [39] odometry to
increase local accuracy.

3.4.1. Relative Loop Closure Transformations

The following section explains a supplementary approach we implemented and
evaluated. We add a new constraint by generating relative transformations be-
tween our global poses.

To increase in the accuracy of the optimizer, we process our optimized GNSS
poses further. After each successful global pose refinement, we store the surfel map
of the first LIDAR scan along with the refined pose. We then compare the new scan
with previously refined scans based on a time and distance threshold. We use the
time threshold 7; to reduce redundancy, i.e., odometry on short distances is very
accurate, and improvement is unlikely. The distance between refined GNSS poses
is thresholded with 7; to ensure a reasonable overlap between the two scans, such
that an appropriate registration is possible. When two scans fulfill both thresholds
and 7., we register them against each other with initialization from their refined
poses. The overlap between the two has to also fulfill 7,. We then store the relative
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Figure 3.13: Two scans with refined global poses, clear the our criteria and are being
registered. (a) The previous scan (yellow) and new scan before registration
(orange). b) We registered the previous scan (yellow) against the new scan
(green) and stored the relative transformation (blue). The close-ups before
(c) and after (d) showcase the fine aliment of a wall.

transformation. This transformation has loop-closing qualities since 7, allows us
to detect recurring positions based on the refined GNSS. Lastly, store the relative
results along the original refined poses with time stamps and covariance from the
registration. Fig. 3.13 exemplifies the registration process.
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4. Evaluation

This chapter covers the evaluation of our GNSS refinement pipeline and its effect
on the optimizer. We separate these evaluations into two parts, beginning with
the GNSS improvement. In both cases, we use datasets collected with a UAV at
the Poppelsdorf (POP) Campus at the University of Bonn and the test center of
the German Rescue Robotics Center (DRZ) [28]. The flights are listed in Tab.
4.1.

(b)

Figure 4.1: On the left is the Poppelsdorf (POP) site (left): lecture hall (1), b-it building
(2) and diet and simulations institute(3), Mensa (4) and the plain (5). We
marked flight ”16-38” (blue) and flight ”716-44” (green). On the right is the
German Rescue Robotics Center (DRZ) site (right) the flights revolve around
three halls: main hall (1), long hall (2) and small hall(3). We also marked
the flight ”18-42” (blue) and ”18-33” (green). Please consider that the flights
were roughly overlayed for visualization purposes and may differ from actual
results.
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Model| Flight- | Description Scan | GNSS | Duration
name msgs | msgs | [s]
16-44 A straight flight along the lecture hall (1) | 1030 | 5148 102
wall facing the simulations institute (3).
14-18 Starts at the t-section between lecture hall | 2241 | 12028 | 240
POP (1), simulations institute (2), and the b-it
building (3) and ends at the plain (5)
16-38 | A loop around the field (5) starting and end- | 2599 | 12996 | 259
ing at the intersection of the lecture hall (1)
and the simulations institute (2).
18-33 | In front of the large hall (4) and entering it. | 1197 | 2993 60
18-34 | From the front of the large hall (4) to along | 1671 | 4179 83
DRZ the long building (2)
18-42 This flight starts behind the main hall at (5) | 9004 | 22511 | 367

and goes back and forth to (4)

Table 4.1: Path description of the flights on the Poppelsdorf (POP) campus and
the German Rescue Robotics Center (DRZ) test site. The numbers
refer to the maps in fig. 4.1

4.1. GNSS Reference Generation

For our GNSS accuracy refinement evaluation, we generated reference poses. For
this, we rely on two point clouds. The first cloud is computed by precisely aligning
the LiDAR scan point clouds with FAST-LIO [60] by Xu et al. and combining
them into one. The second cloud is based on terrestrial laser scanning (TLS)
data. The TLS data was acquired with a stationary survey-grade LiDAR scanner
and converted into a point cloud by the Institute of Geodesy at the University of
Bonn'. We register the surfel maps of the aggregated LiDAR cloud from FAST-
LIO against the TLS data, similarly to the Newer College dataset [40]. We then
apply the resulting transformation to the optimized odometry from the FAST-LIO.
This yields the reference poses for the following evaluation. Unfortunately, no TLS
data was available for the DRZ site. Instead, we used the long 718-42” flight after
positioning it in the model and registering it. This approach may impact the
reference accuracy negatively. Both resulting references are oriented east north up
and have a UTM origin.

Lhttps : /Jwww.gib.uni — bonn.de/?setanguage = en
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4.2. Model Conversion

We produced the model by combining a DEM and building models. Both models
are available for free in North Rhine-Westphalia [36]. The DEM is based on airborn
Laser Scanning (ALS) data and stores the terrain height in a grid of one meter cell
size. The DEM is updated every five years, and buildings have been removed. The
building models are stored in the CityGML format and are updated yearly. They
are based on floor plans of the government cadastral office with additional height
and roof shape are derived from ALS data. The shape of the roof is approximated
with a typical roof shape that best fits the scanner data. This might cause intricate
roof details to be lost.

Both models are converted to point clouds and combined, as shown in fig. 4.2.
The DEM [27] cell width is one meter. Hence, bilinear interpolation on a 2D grid
is used to obtain a denser ground model in point cloud. The building models [26]
are first transformed from CityGML to CltyJson with [6] and then to OBJ [3].
Then polygons of the OBJ data are transformed into the point cloud format as
follows. The point cloud is then subsampled with [12, 32] with a point density of
400 per m? of mesh surface area.

Buildings

CityJSON Mesh
CitygmI-t00Ils [mp Cjio =P Subsampling

|
. point
CltyGML ground _ lcloud
point

i cloud
Geobasis Interpolation =g Model

NRW

Figure 4.2: Model conversion pipeline

4.3. Evaluation Implementation

For our implementation, we chronologically read the LiDAR scans and GNSS mes-
sages. We then use two buffers: One for all scans with valid GNSS and one for all
scans relevant to creating a local map for each, i.e., scans with correct d,, relative
to a valid GNSS scan. A local map is created whenever a window is possible with a
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leading scan with valid GNSS and N,, — 1 further scans that fulfill the d,, criterion.
We remove clutter based on the CNN semantic annotations [8].

To test how well the local map is constrained, we calculate the local map’s &
and check against a 7,. We position it at the raw GNSS estimated and start a
grid search. Since individual shifts are independent from one another, we run the
registration and plausibility evaluation in parallel. After the registration, we also
check the k of the model area that overlaps with the local map, to confirm that
the registration was well constrained. We then store the resulting estimated poses
and evaluate them with our plausibility score. We then apply the plausibility as
descriped in Sec. 3.3.3. and select the refined pose with the best score. For com-
parison to our score, we also included the beam model scoring introduced in Sec.
2.5.2. We implemented the beam model proposed by Thrun et al. [53] from the
ROS AMCL package [42]. The parameters for the beam model use the recommen-
dations by Laet et al. [14].

4.4. Hyperparameter Evaluation

First, we analyzed the adjustable parameters (Tab. 4.2)and determined the most
effective values, the calculated root-mean-square deviation (RSME) for all value
sets is shown in Tab. A.2. We used the Popelsdorf 716-44" flight for hyperpara-
mater estimation. Fig. B.2 shows the discrepancies between the reference and the
GNSS estimates on this flight. Additionally, during the flight, there was a large
dirt pile on the plain, highlighted in Fig. B.2a. This compelled the registration to
match points from the pile with the plain in the CityGML model.

Local Map Parameter

The defining parameters of our local map are N, and d,,. Both affect the distance
covered by the map, the distance is euqal to the product of the two. We expect to
see the following correlations: too long distances introduce too much drift and too
short distances do not cover enough features. To effectively compare the result
we will from now on use the euclidean distance between the reference and the
refined results. We used the cumulative sum and then divided it by the total
measurements.
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4.4. Hyperparameter Evaluation

’ Parameter \ description \ tested \ selected ‘

Ny Number of scans in the map win- | 1/5/10/20/40 | 20
dow, i.e, how large is the window

dy Euclidean distance between the | 0/0.5/1(m) 0.5
scans in the window

Th Threshold on well-posedness of | 5/10/15/20 | 15
translation

semantics Filter of clutter, e.g., trees and | true/false true
people

M, The size of the largest cell size of | 1/2/4 2
the surfel map

Mien The side length of the square area | 512(m) 512(m)
covered by the surfel map

M, Additional level allow surfel to be | 1/2/3 3
included with half the size of pre-
vious levels beginning with M.,

Tq The radius length of the circle | 16(m) 16(m)
area of the grid search

dg The grid interval size 1/2/4 2

hy, Number of intervals in the Height | 300 300
map

howidth Size of one interval of the Height | 0.4(m) 0.4(m)
map

Td Maximum distance covered by a | Ny, - 0.5(m) | N, -0.5(m)
local map

Ty Minimum time covered by two | 50(sec) 50(sec)
scans before they are compared

Table 4.2: The Hyperparameters of the experiment and their tested alternatives.

One can see drastic changes
in accuracy, especially between the first three parameters of N,. In addition,
N,, = 40 appears to reduce accuracy. We receive the best result with a d,, of 0.5
and a N, of 20, covering exactly 10m (RMSE=1.252).

The results show the trends mentioned above.

The MARS map used for the registration has the three parameters M, ..., M.,
and M. M., has to be a power of two due to implementation restrictions and
be large enough to ensure that the target position is included. Therefore, we made
M., conservatively sized. We picked 512m.
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4. Evaluation

Figure 4.3: The graphs showcases the euclidean distance between the reference and our
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Figure 4.4: The figure showcases the euclidean distance between the reference and our
refined GNSS with adjusted My,; and M.

Meanwhile, M,., is adjustable as it decides the granularity of largest cell size,
more granular cell sizes are add with M;,;. Each level of the model will have double
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4.4. Hyperparameter Evaluation

the resolution of the previous level,e.g., in our case we have cell sizes 2.0m, 1.0m
and 0.5m. We expect that too fine surfels will need more points from the clouds
to benefit the registration. Meanwhile, a too-coarse resolution will likely simplify
the scene too much. Unexpectedly 2m and 4m where more accurate than 2m, this
happend since the dirt pile was not well represented, i.e., it effect was reduced.
This was unintended, therefore the more consistent M;,; of 1 and M,., of 2 was
chosen.

Next, we tested the effectiveness of the semantics. Since we introduce the se-
mantics to reduce clutter, we expect a positive change in accuracy results. Fig.
4.5a shows that this is indeed the case (RMSE=1.134). However, we can also see
that in case of errors, these tend to be larger than without semantics.

The inaccuracy of the semantic filter-enabled results occurs around the dirt pile.
The dirt is not a category and is falsely classified as a wall. Unfortunately, we
remove the grass around the dirt since it falls into the vegetation category, which
we filter due to it also including trees. Thus, registration matches the points from
the dirt pile with the plain.

Pipeline Paramter

A criterion for the pipeline is the 7,. Since k evaluates the well-constrained local
map, we expect a negative correlation between 7, and accuracy results.

Fig. 4.5b showcases no significant differences between the different 7,, values.
Upon closer inspection of the data, only 12 scans did not qualify for a 7, of 5, which
did for 10. The flight is alongside a wall, presumably resulting in well-constrained
local maps.

The grid search has two parameters: r, and d,. The accuracy of the GNSS
dictates the former. We chose 16 m, although we never observed such coarse results
in our data sets. Therefore, we only focus on the latter. We expect ¢, to affect
how well the grid search covers all local minima. Fig. 4.5c¢ shows precisely this
(RSME=1.266). We settled 2m due reduce computation time (RSME=1.294).

beam model vs. Our Plausibility Score

Fig. 4.5¢ shows that our method (RMSE=1.179) is slightly better than the beam
model (RMSE=1.252). Nevertheless, both perform very well, which we attribute
to the beam model being very similar to our approach, despite the approaches to
find them being very different. Thrun et al. [53] considered the physical attributes
of a LiDAR scanner to conceive the beam model. Meanwhile, we focused on the
intersection of the local map and the model.
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Figure 4.5: The graphs showcases the euclidean distance between the reference and our
refined GNSS with adjusted parameters.

4.5. Flight Results

In the following section, we will present the results of our refinement evaluation.
Fig. 4.6 and Fig. 4.7 show the six flight refinement results. We expect to ob-
serve three main trends: significant improvements in accuracy around buildings,
decreases in accuracy when clutter is not filtered correctly, and extreme decreases
in accuracy when indoor environments are included in the flight data.
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Figure 4.6: The figs. show our test flights from Poppelsdorf (POP) campus measured
GNSS (blue), reference (green), and our results colored based on euclidean
distance to reference.

Poppelsdorf Campus (POP)

We will now go through the flights taken on the Poppelsdorf campus site.
The first flight, 716-44”, is the one we used for hyperparameter estimation. The

41



4. Evaluation

GNSS estimates have an offset of five to ten meters. This showcases our method’s
robustness as it does not consider the distance to the raw position in score calcu-
lation. Therefore, the results significantly improve, although some measurements
are slightly off. These errors are likely caused by a large dirt pile misclassified as
a wall (Fig. B.2).

The second flight, ”714-18”, showcases notable increases in accuracy to about
half a meter. However, the GNSS measurements do not cover the first part of
the flight. This, however, highlights our method’s single-shot characteristic, which
allows for accurate results, despite no initial positioning.

The third flight, 716-38”, shows excellent results. Nevertheless, it also captures
the downside of our approach, a reliance on up-to-date models and the inher-
ent assumption of registration results that the model and local map contain the
same information. In this case, the rest of the flight contains container buildings
not represented in the model map and open terrain where no relation could be
established. The effects of the container building can be seen in Fig. B.2c.

German Rescue Robotics Center (DRZ)

We will now go through the flights taken on the DRZ site. It is noteworthy that
this site had a lot of clutter elements, such as trees, cars, and a large gearwheel
(Fig. 4.8). In addition, most flights ended in the main hall, i.e., interiors that are
not covered by the model.

The first flight, 718-33”, is remarkable for the number of discrepancies between
the model and reality. The LiDAR scanned a truck, trees, a large gearwheel, and
a hut adjacent to the main hall, and they are all not represented in the model. In
addition, the flight finishes inside the large hall, and the result is that only the first
meters were able to pass our different thresholds. We also notice a quality drop in
our semantics, e.g., a small cabin is wrongly classified as a foreground object.

The first section of the 718-34" flight is unavailable as it mostly contains the
interiors of the main hall not covered in the model map. The latter portion,
however, is quite well-constrained and yields good results.

The third flight, ”18-42" is by far the longest. The initial results are promising.
However, accuracy decreases when the local map covers only two parallel walls,
and the interior section produces substantial errors. In addition, a large portion
of the flight has only one wall resulting in largely poor constrained local maps.
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4.5. Flight Results
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Figure 4.7: The figs. show our test flights from Poppelsdorf (POP) campus measured

GNSS (blue), reference (green), and our results colored based on euclidean
distance to reference.
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4. Evaluation

Figure 4.8: Clutter not represented in model include trees, cars (blue), a large gearwheel
(red), and the hut (yellow), taken from [23]

4.5.1. Runtime Analysis

Above, we present the improvements our method can offer and will now analyze
the runtime results for our pipeline and its components. We conducted the tests on
a computer with a 3.6 GHz Intel 19-9900K CPU with 16 cores and 64 GiB of RAM.
We will show the results with and without parallelization, and the parallelization
uses 10 threads. The test were conducted on the first 500 scans of the "16-38”
flight. The mean results can be seen in table 4.3. Registration covers a single
registration of a local map against the model. The registration loop are 197 that
are required for every grid search. The plausibility check includes the calculation of
the criteria. The plausibility check loop covers all 197 calculations. The "complete
pipeline” encompasses building the local map, registering it at different poses and
evaluating the plausibility.

The results indicate that running our method online will be possible, but only
occasionally.

name single core [sec] (1x | multi core [sec]
threads) (10x threads)

registration 0.019 -

registration loop 3.744 0,795

plausibility check 0.121 -

plausibility check loop 13.010 2,234

complete pipeline 17,133 3,416

Table 4.3: Runtime analysis with and without parallelization

44
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4.6. Optimization Improvement Evaluation

In the final evaluation, we used a continuous-time spline-based graph optimization

implementation by Imbusch.

reference (green) and GNSS (blue)

reference (green) and GNSS (blue)

reference (green) and GNSS (blue)
100 T T T T T T
ol
50
— 50 — —
£ £ £
> > k)
—20 0
0 -
| | | |
—50 0 —40 —20 0
x [m] x [m]
GNSS GNSS
100 T
0
50
—_ 50 —_ —_
£ £ )
> > >
—20 — 0
ol
| | | |
—50 0 —40 —20 0
x [m] x [m]
refined GNSS refined GNSS refined GNSS
100 T T T T T
50
A
£ £ )
> > >
—20 0
| | | | | |
0 —40 —20 0 —100 —50 0
x [m] x [m]
0 2 4 [§ 8 10 0 2 4 6 8 10 0 2 4 6 8 10
error margin [m]

error margin [m] error margin [m]
(a) POP 16-38 (b) DRZ 18-34 (c) DRZ 18-42

Figure 4.9: The figs. show our test flights from Poppelsdorf (POP) campus measured

GNSS (blue), reference (green), and our results colored based on euclidean
distance to reference.
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4.6.1. Implementation

The pose graph optimization utilizes IMU, odometry, and raw GNSS. It weights the
inputs according to their covariance. We replaced the raw GNSS with our refined
GNSS and a covariance Covgyss derived from the product of the registration
covariance matrix C'ov, and the plausibility score value Siocarmap:

Covgnss = {M = Cov, - Sivcal map| COv; € [0, 1]6%6, Stocatmap € [0, 1]} . (4.1)

4.6.2. Optimization Results

For the result analysis, consider that the local odometry is predominantly a result
of the odometry and IMU. Meanwhile, the placement of the path in the global
context is the result of either GNSS or our refined GNSS.

Regarding the results, one can see significantly better accuracy due to our
method. The error distance falls below one meter. We can see, however, that
in the 716-38” flight, errors are caused by differences between local odometry be-
tween the reference and our graph optimizer result. These errors might fall into
the margin of error of our reference. Figs. 4.10 shows the impact our method has
on the accuracy of the global spline placement. One can see that considering the
model algins the graph significantly better with buildings.

Tab. 4.4 shows the quantitative improvement of our refinement method over

GNSS.

Seq. GNSS mean | std min 25th 75th max
m|] | [m] |[m] | per- per- [m]
centiles | centiles
[m] [m]
raw 3.079 | 0.753 | 1.221 | 2.493 3.764 4.305
POP 16-38 refined 1.281 | 0.602 | 0.031 | 0.676 1.818 2.928
ref. + trans. | 0.502 | 0.338 | 0.002 | 0.180 0.802 1.172
raw 4.117 | 0.125 | 3.837 | 4.028 4.203 4.465
DRZ 18-34 refined 0.142 | 0.059 | 0.016 | 0.104 0.182 0.332
raw 3.374 | 1.749 | 1.189 | 2.011 5.002 7.699
DRZ 18-42 refined 2.307 | 1.850 | 0.124 | 1.002 4.194 6.280
ref. 4+ trans. 1.799 | 1.448 | 0.0120| 0.747 2.567 6.881

Table 4.4: Results of the optimizer with raw and refined GNSS. The values are
the mean, std, min, max of the euclidean error distance between the
optimizer results and the reference. Our goal is to minimize the error.
All data is presented in meters.

46



4.6. Optimization Improvement Evaluation

(a) GNSS (b) refined GNSS

(c) GNSS (d) refined GNSS (e) GNSS (f) refined GNSS

Figure 4.10: Result of the graph optimizer with GNSS and our refined GNSS as input.
The flight path is indicated in black. The aggregated LiDAR point cloud
(green) is overlayed with a height-colored ALS model. The significant dif-
ference is highlighted in red. (a) shows optimizer result with GNSS, that do
not align with buildings. (b) shows Optimizer result with our refined GNSS.
Since the model was considered, our global placement aligns significantly
better with the buildings. (c) and (d) are a close-up of the lecture hall
with raw and refined GNSS. (e) and (f) showcase a close-up the container
building with raw and refined GNSS.
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4.6.3. Relative Transformation Optimization

For the final evaluations we included our relative transformation introduces in Sec.
3.4.1. We evaluated the two longest flights 718-42” and 716-36", as they are most

affected by drift.

Regarding the results, one can see more significant improvements in Tab. 4.4.
We consider 716-38” improvement especially relevant as large middle sections have
been improved. For 718-42” we can see a mean improvement as well, but outliers
are placed incorrectly, again these errors might fall into the margin of error of our
reference. Fig. 4.11 shows the significant improvement over raw GNSS.
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Figure 4.11: The Figs. showcases all three tested inputs for the optimizer on ”18-42” and
”16-38”, the results are colored based on euclidean distance to reference.
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5. Conclusion

This thesis refines coarse GNSS estimates in urban environments utilizing georef-
erenced CityGML and DEM models and use these results to improve the global
positioning of a pose graph.

First, we presented our GNSS refinement pipeline, combining LiDAR point
clouds, semantics, and odometry data to generate semantic-filtered local maps.
Second, we used a grid search to place a local map in multiple positions around
the GNSS estimate and determined the most plausible placement. Lastly, we eval-
uated the plausibility with our intuitive plausibility score and fed the result into
a graph optimizer. We also tested our results thoroughly.

We achieved significant GNSS refinement in the urban environment. The im-
provement was significant when registration conditions were forthcoming, i.e.,
walls that constrain the map in multiple axis. On the one hand, poorly con-
strained local maps tended to slide along walls resulting in one-directional errors
and were filtered out. On the other hand our method assumption of constrains
means that plains as well as single walls do not yield results. The semantic filter
proofed useful, however the limited amount of categories resulted in occasional
worse registration, e.g., we could not distinguish between grass and tree leaves as
they are both labeled as "vegetation”, resulting in false removal.

Our plausibility score achieved only slightly better results than the one proposed
by Thrun et al. [53].

We were able to supply the pose graph optimizer with more accurate global
poses, allowing it to become more accurate than with regular GNSS results.

The geo-refrenced data can now be used for many high level applications, such as
visualizing the flight path on a map to drone operators. In addition, loop closures
can be detected to increase trajectory accuracy, as was achieved with our relative
transformations. Possible applications in tandem with the model entail: change
detection, e.g. the construction of a new building could be detected. Detailed
LiDAR scans may also be used to refine the model. Model addition or substation
are also possible to reflect changes, e.g., constitution or demolition of buildings.

For future work, in regards to semantics, we suggest implementing more cat-
egories or adjust certain categories, e.g., move grass to the floor category from
the vegetation category. We will also implement and test the prospect of relative
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5. Conclusion

transformation as explained in our method chapter. The less supervised Aerial
Laser scans (ALS) may also be used. As well as other registration approaches that
support single-direction constraints. Real-time deployment may also be tested.

Our implementation showcases that CityGML models and DEM can be used to
refine GNSS and enhance results of pose graph optimizer. Especially the latter
might proof useful for applications such as positioning in global maps, allowing
more reliable flight path estimations for maneuvers with drone swarm and ease of
use for pilots.
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A. Tables

Format name

Code for a triangle face

STL

facet normal 0.0 0.0 1.0
outer loop
vertex 0.0
vertex 1.0
vertex 0.0
endloop
endfacet

0.0 0.
0.0 0.
1.0 0.

o O O

OBJ

o O O
o O O
o O O

- o< <
= =0 O
N O OO

W o RO

PLY

ply format ascii 1.0

element vertex 3

property float x

property float y

property float z

element face 1

property list uchar int vertex_ indices
end header
0.0 0.0 0.0
0.0 1.0 0.0
1.0 0.0 0.0
301

N O O

Table A.1: Example code for defining a triangle face in STL, OBJ, and PLY for-

madts.
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A. Tables

Hyperparameter and values | RMSE
Ny, =1, dy = 0.0m 2.303
N, =5, d, = 0.0m 2.004
N, =10, d,, = 0.0m 1.691
N, =20, d, = 0.0m 1.379
N, =40, d, = 0.0m 1.699
N, =1, d, =0.5m 2.523
N, =5, d, = 0.5m 1.722
N, =10, d, = 0.5m 1.385
N, =20, d, = 0.bm 1.179
N,, = 40, d,, = 0.5m 1.434
N, =1,d, =1.0m 2.676
N, =5, d, = 1.0m 1.720
N, = 10, dy, = 1.0m 1.408
N, =120,d,=1.0m 1.349
N,, = 40, d,, = 1.0m 1.371
N, =1, dy, =2.0m 2.379
N, =5, dy, = 2.0m 1.680
N, =10, d, = 2.0m 1.296
N, = 20, d, = 2.0m 1.377
T = 1.153
T, = 10 1.122
7. =15 1.162
7. = 20 1.168
w/o semantics 1.216
w/ semantics 1.134
Moo = 4, My, =3 1.207
Mo = 2, My = 3 1.157
Myes =1, My, =3 missing
M,es =4, My, =2 0.885
Moy = 2, My = 2 1.238
Mo =1, My = 2 1.141
Moo =2, My = 1 0.898
Mo =1, My = 1 1.510
Moo = 0.5, Myy = 1 1.424
5, =4 1.979
5y =2 1.204
5y =1 1.266
w/0 beam model 1.179
w/ beam model 1.252

Table A.2: Root-mean-square deviation for the different hyper parameters.
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Figure B.1: The plots show the error margins that where measured between the reference
and our input. The data is collected from our test flights.
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Figure B.2:
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(a) and (b) showcase a dirt pile on ”16-44" that is only on the recorded data
and not the CityGML model. This results in incorrect matching. (c) show-
cases another dirt pile (right) on ”16-38”. The LiDAR data also includes a
container (left) that was not represented in the model, therefore the regis-
tration may align the container wall with a different building. Those result
are being discarded.
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