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Abstract
Most LiDAR-based odometry systems use only geometric information extracted
from point clouds. Modern LiDAR scanners provide further per-point information
such as an intensity measurement of the reflected signal. This information could
be used to improve localization performance. The measured intensity depends,
e.g., on the distance to the hit surface, the rays’ incidence angle and the surface
reflectivity. This results in differing intensity estimates for the same surface mea-
sured from various vantage points. Hence, correct intensity correspondences may
be difficult to establish for registration methods, as they require similar intensity.

This thesis investigates the characteristics of the LiDARs’ intensity channel and
its application for LiDAR-based odometry. This work develops a set of compen-
sation models and a corresponding approach to estimating the parameters. Using
range measurements combined with incidence angle and sensor specific compensa-
tion visibly improves intensity values, resulting in more even intensity on similar
surfaces. To test compensated intensity for localization an intensity residual is
added to FastLIO2. First input points are filtered and the intensity compensation
is computed. The residuals are generated by estimating local intensity gradients
on the map plains used by FastLIO2 for geometric residuals. Tests show that
the intensity residuals can improve localization performance, while still retaining
real-time performance.
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Figure 1.1: a) Raw intensity Ip, e. g. measured by an Ouster OS0 LiDAR, strongly
depends on b) range r and c) incidence angle cos (α). d) The ”reflectivity”
channel ρ̄ reduces these effects, but remains inconsistent over larger surfaces.
e) We estimate a consistent pseudo reflectance ρ̂ and extend FAST-LIO2
with pseudo reflectance residuals to improve its accuracy.

1 Introduction

LiDARs ability to accurately measure range led to their broad adaptation in
geodesy [Kashani et al. 2015] for land surveying and mapping with airborne (ALS)
or terrestrial laser scanner (TLS) on the ground. Autonomous robots are depen-
dent on accurate environment information, for orientation, mapping and localiza-
tion. For this purpose short range LiDAR sensors are usually employed. These
LiDAR scanners provide a wide field of view and high quality range estimation.

LiDAR usually also provides a measure of the return energy: Intensity. This
has seen uses e. g. for colorization, land cover classification [Höfle and Pfeifer 2007;
Jutzi and Gross 2009; Yan et al. 2012], fault and damage detection after natural
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1 Introduction

disasters [Kashani et al. 2015] or for robot localization in prior maps [Barsan et al.
2020; Hata and Wolf 2014; Levinson and Thrun 2010].

Establishing point correspondence using intensity is difficult, as intensity de-
pends not only on the surface hit, but also on a number of factors such as range
to target, incidence angle or sensor intrinsics. To use intensity in localization the
points only need to correspond between sensor scans. Accordingly retrieving the
real surface reflectance is not necessary.

Using the classification proposed by Kashani et al. [Kashani et al. 2015], intensity
correction and normalization should suffice. This includes compensating intensity
such that it minimizes non-surface based variations between points in a single scan.
Normalization than seeks to ensure that this holds across scans. Luckily for short
range LiDAR applications the last step is usually trivial, as atmospheric factors
have little effect on short range applications.

Accordingly this work employs an exponential range and angle model proposed
by Jutzi and Gross [Jutzi and Gross 2009] for scan geometry compensation and
augments this approach by sensor specific compensation modules, such as a short
range compensation.

Without the need for real reflectance values, compensation model parameters
can be estimated using raw sensor scans. Multiple raw LiDAR scans are fused
using preregistered poses. If this fused point cloud contains enough variation in
incidence angle, range etc. usable model parameters can be estimated. It might be
possible to generate model parameters, using real world data combined with simple
guidelines to maximize usable points, without a specialized calibration scene.

To test intensity in localization this work extends the state-of-the-art inertial
odometry algorithm FastLIO2 [Xu, Cai, et al. 2022] to not only use geometric
information, but also compensated intensity. First a compensation node running
in parallel to the odometry estimation, compensates the incoming point clouds.

Using the estimated local planes, utilized by FastLIO for point-to-plane dis-
tances, a local intensity gradient on said plane is estimated using found close map
point intensity. This gradient can then be used to estimate an intensity residual.

As will be shown usable intensity compensation parameters can be estimated.
using non-specialized data, altough with some restrictions. Using this compensated
intensity, can improve the localization performance of FastLIO2 and the resulting
maps display more consistent intensity.
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2 LiDAR Fundamentals

2.1 LiDAR
LiDAR sensors allow to measure the distance between the sensor and the environ-
ment. The transmitter sends out a laser using usually an infrared wavelength. The
laser is scattered when hitting an object. Parts of the scattered laser are captured
by the sensor. This signal is received by a detector installed in the LiDAR sensor,
which is build to react to signals of the used laser wavelength. To reduce the effect
of ambient lightning the laser band-width is usually chosen to be within wave-
lengths with little ambient light. Some modern sensors like the Ouster OS0 may
also use wave-length with larger ambient footprint, combined with other methods
to account for non-laser derived signals.

Two types of LiDAR system are commonly employed: Beam steering LiDAR
uses a set of laser emitters and detectors which rotate or are otherwise steered to
scan different areas of given scene. This is achieved by either using actually moving
functional components or by steering the send and return signal using e. g. mirrors
or lenses. Flash LiDAR uses a laser source to illuminate a larger area at once. The
resulting backscattered signals are received by detector systems akin to a camera
sensor and create an image of an actively illuminated scene.

Modern MOSFET-based LiDAR sensors use a combination of beam steering and
flash. These sensors use a single laser source. The laser is projected trough a set
of lenses and mirrors. These elements are steered towards the angle to be scanned.
There the laser pulse is fanned out according to the sensor design vertical scan
angle and illuminates a small area at the same time. Fig. 2.1 shows the described
principle.

The reflected laser signal is send back trough a lens aperture. This aperture
directs the laser beams towards the correct detector element. In MOSFET-based
detectors these detectors are tightly packed on-die, often with small spacial offsets
orthogonal to the detector line. This increases packing density and accordingly
vertical resolution. Without the offset signal that should be received by one detec-
tor might bleed into adjacent detectors and introduce noise into the measurements.
These offsets will results in vertical scans of points which to not perfectly align
along a vertical line in reality.
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Figure 2.1: Beam-steering flash LiDAR principle. A single laser source is used to illumi-
nate an area in front of the sensor. A set of stacked detectors each generate
a single range and intensity measurement, which combine to a single vertical
scan line. Horizontal angle θ and verical angle φ are also provided. Note that
while θ is the same for a vertical scan, in practice tightly stacked detectors
will result in slight deviations in θ for each detector.

Each measurements measures the round trip duration from send and received
signal. Accordingly given a laser puls with recorded round-trip distance τ and
light speed c:

r =
1

2
c · τ (2.1)

Should τ exceed the scan time ∆t no measurement can be taken. How such a
case is transformed to data output is sensor dependent. Some sensors report these
points as r = 0 or other invalid values. Another way may be to not include such
measurements at all. Following, the assumption is made that invalid points are
included in the datastream and can clearly be identified as invalid.

Given the resulting range measurement r, the corresponding angles (θ, φ) are
defined by the read detector and the current orientation of the sender/receiver
element. These measurements are transformed to a position p = (x, y, z)⊺ ∈ R3
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2.2 Point Clouds
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Figure 2.2: The returning laser is recorded at horizontal angle θ and vertical angle φ. The
angles are measured in sensor frame. In the idealized model the returning
laser hits the sensor directly without redirection. As can be seen in Fig. 2.1
the incoming rays are often redirected.

using the sphere to Cartesian coordinate transformation:xy
z

 =

r · cos(θ) · cos(φ)
r · sin(θ) · cos(φ)

r · sin(φ)

 (2.2)

These points are accordingly defined in sensor-frame. The z-axis is the axis of
revolution. The position θ = 0 id sensor model dependent. φ = 0 is usually the
x,y-plane. An idealized relationships between (x, y, z), r, θ and φ can be seen in
Fig. 2.2.

The actual transformation depends on the sensor construction. Depending on
parameters such as lens geometry, aperture geometry, mirror geometry etc. the
laser might travel a short distance before being redirected towards its final orienta-
tion. These parameters have to be taken into account for retrieving the positions
but are highly dependent on the actually used sensor.

2.2 Point Clouds
When further talking about a scan, unless otherwise specified, a full LiDAR scan
sweep is described. In short range LiDAR applications this is usually the data
generated by a full 360° laser sweep. The range measurements are transformed
to positions and assembled in a single point cloud P . Fig. 2.3 shows such full
LiDAR scans sampled at different position taken from the Newer College dataset
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2 LiDAR Fundamentals

Figure 2.3: Single scan point clouds taken from the Newer College Dataset [L. Zhang,
Camurri, and Fallon 2021]. Three point clouds taken from the Quad-Easy
dataset. The clouds are colored according to point distance to the sensor
with blue being close. Points with invalid range measure are not shown.
Note that the blind spot at the sensors back is due to the cable mount.

[L. Zhang, Camurri, and Fallon 2021].

A multi-beam LiDAR system records h measurements simultaneously. Each
detector has a fixed vertical angle φ while the horizontal angle θ varies equidistantly
w times throughout a full revolution. The horizontal slices are measured one at
a time. Hence an assembled point cloud P consists of slices recorded at slightly
different times. During sensor movements the measurement origin o may change
and distorts the point cloud P if the motion is not compensated. This may be
necessary for fast moving applications.

Each point cloud row is called a ring ν ∈ [0, h − 1]. As points belonging to
the same ring, are recorded using the same detector they share the same internal
signal path for sending and returning signals. This parameter is recorded for each
point. It is eiter provided by the sensor directly or can be inferred from φ or, if
the scan line is complete and ordered, by its iterator.

All measurements may be ordered as a w×h image. Using the assumption made
for invalid points the, resulting image representation is dense. Hence the ring and
horizontal position of every point can be directly retrieved from its iterator i in
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2.3 LiDAR Intensity

P . Assuming the point cloud is ordered in row-major order:

νi = ⌊
i

w
⌋, (2.3)

wi = i mod w. (2.4)

LiDAR Point

A point cloud p with vertical resolution h and horizontal resolution w consists
of w × h points p. Each point consists of the sensor provided ring ν, range r,
intensity I and for certain sensors reflectivity ρ̄. These are augmented by the
point position parameters that can be computed using just p. The local point
normal n is the normal of the local plane. This can be estimated using the local
point neighborhood. Using n the local incidence angle α can also be computed,
see also Sec. 4.1.

Putting these together, a point is defined as:

p = [ν, r, Ip, ρ̄,p
⊺,n⊺, α]⊺ , (2.5)

2.3 LiDAR Intensity
Most LiDAR sensors provide not only positional data, but also a measure of re-
ceived energy. A detector receiving a back scattered laser returns this energy as
LiDAR intensity I for each point. The hit surface will absorb some of the re-
ceived energy and reflect the remainder. This ratio is a near constant surface
characteristic and can be used to distinguish between different surface types.

The amount of reflected energy is the surfance reflectance ρ. Reflectance changes
depending on the reflected wavelength λ and incidence angle α. As LiDAR uses di-
rect illumination with small bandwith, λ is assumed to be a single value depending
on the sensor model.

The surface gloss η describes the amount of specular reflection. Gloss describes
the ratio of diffuse to specular reflection. High gloss results in high directional
reflection, while high diffuse reflection refracts the light more evenly independent
of α. Gloss cannot be estimated by single point observations. Following lambertian
reflectance is assumed for reflectance measurements.

Surface reflectance ρ is the amount of energy reflected when the surface is hit
by electromagnetic waves and may hence allow to distinguish between different
surfaces. This can be of use for feature extraction, classification and odometry. To
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2 LiDAR Fundamentals

Figure 2.4: Multiple 2d projections taken from the Newer College Quad-Easy dataset.
Images are colored by the recorded intensity value clamped to range [0, 0.35 ·
Imax]. The scans are taken 40 LiDAR frames apart. The image center is the
forward direction for sensor movement.

do so ρ or another measure identifying the hit surface should be extracted from
intensity I.

2.3.1 Measurements Parameters
Kashani et al. [Kashani et al. 2015] list four categories of factors influencing LiDAR
intensity: Target Surface Characteristics ρ and η, Acquisition Geometry r and
α, Instrumental Effects ηsys and Environmental Effects ηatm. Fig. 2.5 shows an
overview where these parameters interact with intensity acquisition.

Target Surface Characteristics

The target surface influences intensity when the laser is reflected from the hit
surface depending on the surface reflectance ρ and gloss η.

Surfaces with high gloss can result in very high return energy. Intensity mea-
surements on close objects may results in very high signals. High gloss objects
can be detected over longer ranges compared to lower gloss surfaces. The high
reflectance may lead to return signals not only hitting the designated detector,
but also adjacent detectors leading to a bloom effect. This may override the cor-
rect laser signal or lead to loss of return signal. Examples of this can be seen in

8
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ρ
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Figure 2.5: Measured intensity depends on four distinguishable parameters: ηsys the
sensor intrinsic parameters such as laser energy or aperture construction,
ηatm atmospheric effect e. g. temperature or air pressure, surface reflectance
ρ and gloss η and acquisition geometry range r and incidence angle α.

Fig. 2.6.

Acquisition Geometry

Laser energy is lost during travel. This is e. g. due to atmospheric absorption
or scattering. Another important factor is beam divergence. During travel the
laser expands and increases the area under the laser. This reduces energy density.
Accordingly the measured intensity I reduces with increasing range r.

The second geometric parameter is incidence angle α. Assuming Lambertian
reflectance the energy reflected by a hit surface decreases with growing incidence
angle. High gloss η may further amplify this effect, as more energy undergoes
specular instead of diffuse reflectance.

Instrumental Effects

These encompass all effects derived from the sensor setup. The used laser emitter
influences the emitted initial energy as well as wave length and hence the measured
absorption spectrum. The detector structure decides how much energy can be
received, as well as how this measure is scaled and represented. Depending on
sensitivity this might also effect noise in measurements.

Internal lenses and mirrors both further influence send and received energy.
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2 LiDAR Fundamentals

I r

Figure 2.6: Cropped 2d projections of point clouds taken from Newer College Math-
Medium. Left: Point intensity clamped to [0, 0.35 ∗ Imax]. Right: Measured
range per point from colored red/yellow for short range to blue for far ranges.
Scanning non-lambertian surfaces like glass results in very different results
depending on incidence angle α. For small α the glass returns high energy
reflections. Points surrounding these areas are often lost.

Possible effects are e. g. vignetting introduced by lense structures or loss of energy
for imperfect transmitting components.

Sensor specifications also decide how intensity data is encoded. Depending on
model this is usually either as integer (8- or 16-bit) or floating-point number.
All these factors are combined in ηsys. While some components such as output
format are usually provided by the manufacturer, other factors such as internal
transmittance or laser specifications are often not publicly available.

Environmental Effect

The transmitting medium (usually atmospheric air) can introduce further effects.
This consists of (atmospheric) transmittance ηatm influenced among other things
by humidity, temperature and pressure. Atmospheric effects may increase range
based effects and add further effects based on range. This factor is primarily of
interest for long range laser measurements and according to Kashani et al. 2015
can be assumed to be constant for short range r < 50m applications.
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2.3 LiDAR Intensity

2.3.2 LiDAR Range Equation
These factors are formalized by Jelalian [Jelalian 1992]. The proposed model
is the laser radar range equation or LiDAR range equation, which desribes the
relationship between the aforementioned factors:

Pr =
PtD

2
rηatmηsysσ

4πr4β2
t

(2.6)

Pr is the returned energy. Pt is the send energy and Dr the detector aperture
diameter. While these factors are sensor intrinsics, their influences are universal for
all setups and therefore are listed separately. βt is the laser transmit beamwidth
measured in radians. While the laser beam divergence increases over time the
beamwidth angle does not.

The target cross-section σ describes the interaction between target and laser
energy. This combines the surface reflectance ρ with the local scattering solid
angle Ω. Ω is usually position dependent and may not be consistent throughout
the surface. This also encompasses the effects of gloss η. Higher η results from
flatter scattering solid angles. At is the target area hit by the laser beam.

σ =
4π

Ω
ρAt (2.7)

Ω or At cannot simply be retrieved just using LiDAR scanners. To get a reliable
value, further sensor system or surface classifications are necessary. Another way
would be exploratory actions with LiDAR sensor to gather multiple scans of the
same surface.

Simplified LiDAR Equation

To address these parameter, a set of assumptions are made. The first assumption
used e. g. by Höffle and Pfeifer [Höfle and Pfeifer 2007] assumes Ω = 2π. This is
equivalent to the surface refracting incoming beams into a half-sphere. The second
assumption made is that the laser completely hits a single target. Accordingly the
target area At can be computed only using beamwidth βt and range r. The last
assumption made is lambertian-reflectance which adds a factor of cos α [Jutzi and
Stilla 2006].

At =
πr2β2

t

4
(2.8)

σ = r2β2
t ρ cos(α) (2.9)
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2 LiDAR Fundamentals

a)

b)

c)

Figure 2.7: 2d projections of a single point cloud taken from Newer College Quad-Easy.
a) Point intensity I clamped to [0, 0.35 ∗ Imax]. b) Measured range r per
point from colored red/yellow for short range to blue for far ranges. c) cos α
per point. α is estimated using local normal estimations. As can be seen I
quickly decreases with increasing r.

The resulting simplified LiDAR Equation now looks as follows:

Pr =
PtD

2
rηatmηsysρ cos(α)

4r2
(2.10)

To identify surfaces, reflectance ρ is of interest. Further Pt, Dr and ηsys are
sensor model specific and can assumed to be constant for scans using the same
sensor. Rearranging the Eq. 2.10 yields:

ρ =
Pr

PtD2
rηsys

4r2

ηatm cos(α) (2.11)

ρ ∝ r2

ηatm cos(α) (2.12)

While this theoretical formulation describes the relationship between the mea-
sured energy and dependent parameters, it can be challenging to get good esti-
mations of these parameters. Both instrumental effects ηsys and environmental
effects ηatm can also introduce further non-linearity into the model. This may be
caused by non-linear receiver response or internal laser signal transmission. These
parameters may also be indirectly depending on geometric effects, as the change in
energy changes how the sensor system reacts besides the expected sensor response.
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Figure 2.8: Further information channels recorded with an Ouster OS0. Top shows the
intensity and Bottom the sensor provided reflectivity. Measurements where
taken from form the Newer College Quad-Easy dataset [L. Zhang, Camurri,
and Fallon 2021].

2.3.3 Reflectivity
Some modern LiDAR scanners provide more than just distance/3D point infor-
mation and intensity I. Many modern LiDAR sensors provide precompensated
intensity. The Ouster OS0 for example provides the reflectivity channel ρ̄.

This compensation usually apply a custom compensation function based on
range r. The compensation also depends on correct calibration, as the exact mag-
nitude usually depends on sensor construction. Intensity measurements are often
clumped towards the low values. To increase intensity resolution, precompensa-
tion can include rescaling of the compensated intensity. Fig. 2.8 shows the initial
intensity distribution and the applied precompensation.

The reflectivity channel provided by the Ouster OS0 sensor compensates the
intensity by range and then rescales this reflecivity by a linear function for low
values and a log function for higher values. Cutoff for older models was at I = 100.
Fig. 2.9 shows ρ̄

I
against r. The r compensation done, can clearly be seen starting

at 4m.
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Figure 2.9: Comparison of reflectivity to intensity measured using an Ouster OS0. Points
are ordered according to their range measurement. The distance compensa-
tion applied can clearly be seen.
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3 Related Work

Intensity Compensation

A lot of work on intensity correction, normalization and calibration has been done
for airborne LiDAR systems, as intensity can be used to classify ground areas.

Höffle and Pfeifer [Höfle and Pfeifer 2007] utilizes both a data driven and a
theoretical model to compensate intensity data. The data driven approach tries
to estimate a set of parameters by optimizing multiple models. Flat ground data
from multiple flights are combined and registered against each other to create point
pairs. The theoretical model uses Eq. 2.10.

Jutzi and Gross [Jutzi and Gross 2009] combine these approaches. A parame-
terized model based on Eq. 2.10 is combined with a Phong reflection model [Phong
1998] to account for non-lambertian surfaces. Data of rooftops and other homoge-
neous areas with varying incidence angle are recorded and registered to optimize
the model parameters.

Yan et al. [Yan et al. 2012] again use a physics based model using the Eq. 2.6.
To estimate parameters for geometric correction, overlapping scan strips are used.
To do so scan poses are compensated for airplane motion. This is combined with
a comprehensive atmospheric model. The resulting calibrated intensity is used for
surface classification.

Lehner and Briese [Lehner and Briese 2010] measure ground reflectance using
spectrometers on pre-registered objects. This is combined with airborne measure-
ments of these same areas. Atmospheric factors are again measured by control
station close to the scanning area. After compensation for athmospheric transmit-
tance, the system and geometric parameters can be estimated by comparing the
scanned data to the reference.

Levinson and Thrum [Levinson and Thrun 2010] calibrate short range LiDAR
systems for use in autonomous driving. Intensity data is collected in a map, which
is subdivided into cells. A parameterized model is computed using detector ID,
current sensor angle and range. The resulting model is a calibration matrix of size
h × w. For each cell the intensity is assumed to be the expectation over all mea-
surements the cell contains. The difference between expectation and measurement
is used to optimize the compensation matrix.

15



3 Related Work

Steder et al. [Steder et al. 2015] estimate compensation parameters for short
range LiDAR systems. A set of pre-registered point clouds is used. The resulting
map is discretized into map cells. Again the target intensity for each cell is assumed
to be the mean over all measurements in given cell. The points are combined in a
Bayes Network. The network alternately optimizes the map and the compensation
parameters.

Intensity for Localization

The calibration approach by Levison and Thrune [Levinson and Thrun 2010] is
used for the purpose of road markings detection by Hata and Wolf [Hata and
Wolf 2014]. The calibrated intensity is used to find road markings using estimate
and variance thresholding over all points inside curb curvesd. The localized road
markings are then used to localize a car driving along a road.

Barsan et al. [Barsan et al. 2020] use deep neural networks to register local
intensity maps inside prerecorded scenes. The network is trained to create intensity
embeddings of local scans and scans taken from the map. The cross correlation
between embeddings with probability estimation models for similiarity between
estimated pose in LiDAR, GPS and dynamic model is used to estimate the agents
position.

Wang et al. [H. Wang, C. Wang, and Xie 2021] propose a SLAM algorithm uti-
lizing compensated intensity. The pre-compensated intensity channel, provided by
a LiDAR sensor, is combined with further incidence angle compensation. Features
in point clouds are extracted based on combining local geometric and intensity
distribution. Map matching is done by optimizing geometric and intensity resid-
uals.
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4 LiDAR Intensity Compensation
As discussed in the previous Sec. 2.3 there are multiple different factors influencing
the measured intensity. Depending on the application, the intensity is used for,
not all of these need to be corrected for. For applications running on specific sensor
systems it is often sufficient to only compensate for non-instrumental effects. The
resulting compensated intensity will therefor not be the actual object reflectance
ρ but the relative- or pseudo-reflectance ρ̂.

4.1 Incidence Angle computation
The laser incidence angle α is a parameter, the theoretical model states is influen-
tial regarding laser intensity. As it is not provided by the sensor itself, it has to
be computed. To do so the laser incidence angle α the orientation of the surface
hit by the laser is necessary. This information is given by the plane normal n. To
compute a plane normal at least 3 non co-linear points are necessary. Quality of
the normal increases with the number of points along the same surface used.

Point-to-surface association is unknown just from the LiDAR scan. Therefore
the assumption is made that for given point, surrounding points, that are spatially
close, belong to the same surface. This assumption holds for scenes in which most
surfaces are wider than n · w and m · h. Small objects compared to scanning
resolution often only provide a handful of responses. For such objects normal
computation cannot be reliably done. The resulting estimation can be very noisy.
While this approach only generates approximation of surface normals and tends
to smooth edges between surfaces, it tends to work sufficiently well in practice.
Results using this approach can be seen in Fig. 4.1.

4.1.1 kNN Computation
When only using a single point cloud νi and wi can be used to approximate the
set of closest points. The assumption is made that, for given point most close
points are also close wrt. νi and wi. As the input cloud is assumed to be dense
and ordered Eq. 2.3 and Eq. 2.4 can be used to quickly retrieve point iterators.
Given point cloud P with height h and width w:
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4 LiDAR Intensity Compensation

a)

b)

Figure 4.1: Per point incidence angle estimation. The angles are retrieved using one
point cloud together with the KD Tree knn estimation. These angles are
shown as 2d projection in a). The smoothing effects along the edges are
the result of using only nearest-neighbors. The estimated plane normals are
shown in b).
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4.1 Incidence Angle computation

procedure computeKNNsOrdered(P , dknn, hdiff , wdiff )
sqddistknn ← d2knn
listknns ← []

for all pi ∈ P do
hmin ← max(0, νi − hdiff ), hmin − 1← min(h, νi + hdiff )

wmin ← max(0, νi,w − wdiff ), wmin − 1← min(w, νi,w + wdiff )

listpi
← []

for hk ← hmin to hmax do
for wk ← wmin to wmax do

j ← toIndex(hit, wit)

pj ← pc[j]

if sqrdNorm(pi − pj) ≤ sqddistknn then
listpi

.insert(j)
end if

end for
end for
listknns.insert(listpi

)

end for
return listknns

end procedure

This algorithm generates an unsorted list of all neighboring points which are closer
than given threshold. This is done by only searching a small frame of the point
cloud. The frame is centered around the sample point and is limited by hdiff and
wdiff . Therefor this list is only an approximation which converges towards the
correct knn solution with growing frame size. The resulting neighborhood should
generate sufficient points to run the chosen algorithm for normal computation.

When computing the k-nearest-neighbors on combined point clouds this ap-
proach does not work. For these point clouds a more robust algorithm is necessary.
KD-Trees [Bentley 1975] can be used to quickly look up the k-nearest-neighbors
for given point.

The algorithm used to compute the KD Tree for given point cloud is nanoflann
[Blanco and Rai 2014] based on the original flann [Muja and Lowe 2009] imple-
mentation. The c++ library uses static polymorphism as well as some other op-
timization to allow somewhat efficient KD Tree build and lookup time. This still
is much slower than the ordered KNN computation, but results in more accurate
normal estimations.
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4.1.2 Normal Computation
Given point p and the k-nearest neighbors {p1 = pi,p2, . . . , pk} the local normal
n can be estimated using the method described by Rusu [Rusu 2009].

A plane normal is orthogonal to the plane. This is equivalent to fitting a plane
tangent to the local surface. This can be defined as a least-square fitting problem,
with plane anchor q and error function d:

qi =
1

k

k∑
j=1

pj, (4.1)

di =
k∑

j=1

(pj − qi) · n. (4.2)

The least square problem can be solved by principal component analysis over the
point positions. This is equivalent to computing the eigenvalues and eigenvectors of
the local covariance matrix C ∈ R3×3. As C is symmetric and real the eigenvalues
can be extracted by eigenvalue-decomposition:

C =
1

k

k∑
j=1

(pj − qi), (pj − qi)
⊺ (4.3)

C = V DV ⊺. (4.4)

The eigenvector associated to the smallest eigenvector is an approximation of the
plane normal n.

The direction of the plane normal computed using PCA is ambiguous. It can
either point away from the observer or towards it. For incidence angle computation
the plane normal should always point from plane into the scene. Therefore´ for
all computed normals, should the dot product of normal and distance vector from
observer to point be negative, the sign of the normal is inverted.

4.1.3 Incidence Angle Computation
For all points for which the plane normal can be estimated the laser incidence
angle can now be computed. The incidence angle is the angle between incoming
laser and the plane normal.

A generalized function to compute the angle between two 3D vectors can be
given by following formula. Let x ∈ R3 and y ∈ R3:

α = atan2(||x× y||, x · y) (4.5)
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4.2 Intensity Compensation

This formulation is reasonably computationally efficient and numerically stable.
Reflection should not occur on angles α > π

2
as such a surface could not be hit.

The plane normals are only estimations and might result in surfaces estimates that
would be impossible to be hit. The resulting angle α ∈ [−π, π] is therefor filtered
before further computation.

4.2 Intensity Compensation

4.2.1 Compensation Stages

Kashani et al. [Kashani et al. 2015] proposes three stages of active intensity com-
pensation: correction, normalization and calibration.

Intensity Correction

The goal of intensity correction is to reduce intensity variance in single point
clouds. This can be achieved by compensation for some of the parameters such as
r and α. This can be done by just comparing values scanned by the same scanner
setup. Usually rigorous compensation for ηsys is not performed, as it is difficult to
estimate system biases just using system outputs. Accordingly intensity correction
is not employed to retrieve real reflectance ρ but pseudo-reflectance ρ̂.

Intensity Normalization

Intensity normalization is used to reduce inter scan variation in intensity. Meth-
ods usually scale contrast and brightness such that overlapping areas share simi-
lar values. This is usually necessary if external conditions between scans change
e. g. atmospheric transmittance ηatm. In short range application this step is of
lesser interest.

Intensity Calibration

Calibration is used when the real reflectance ρ should be retrieved from intensity.
This includes estimating ηsys. To do so, necessitates measuring target reflectance
using external instruments. The resulting compensation can then be used to re-
trieve ρ and allows intensity comparisons between sensors and scan setups. During
runtime this is usually augmented with the correction or normalization to com-
pensate for runtime dependent parameters such as r.
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4 LiDAR Intensity Compensation

4.3 LiDAR Intensity Compensation Models
Full intensity calibration for localization is only necessary, if comparison to pre-
registered intensity maps is of interest, or if multiple different LiDAR sensors are
employed simultaneously. For the purpose of short range LiDAR scans normaliza-
tion is not usually needed, as ηatm can be assumed to be near constant for ranges
r < 50m. Other parameters do not change contrast or global brightness between
scans in the same scan run.

Hence models for intensity correction are applied. The goal of intensity corrected
as described in section 4.2.1 is to decrese intensity variation. This is achieved
by modifiying intensity values such, that values generated from similar reflective
surfaces generate similar intensity values. The relationship between intensity and
reflectance is described in Eq. 2.6 and in its simplified form in Eq. 2.10.

Given point position p and model g(·;ϕ) parameterized by ϕ, a correction model
should return the same pseudo-reflectance ρ̂ for point pi at p independent of range
ri and incidence angle α. Formally given points pi and pj

pi = pj =⇒ g(pi;ϕ) = g(pj;ϕ), (4.6)

holds for perfect models.
To utilize compensated LiDAR intensity for the purpose of localization, points

with similar reflectance should have similar compensated intensity compared to
points in other scans taken of the same environment. FastLIO works without the
use of prerecorded maps. Therefore full Intensity Calibration is not necessary.

4.3.1 Geometric Compensation
Given point pi with intensity Ii, the geometric distance to the sensor ri is available.
If the local plane normal can be computed, the local incidence angle αi is also
available. According to Eq. 2.10 a simple geometric compensation cgeo looks like
this:

g(p;∅) = Ii
r2i

cos(αi)
. (4.7)

This equation is not defined for cos(α) = 0. A reflection for α ≥ π
2

should not
occur, but inaccuracy in the sensor and normal computation may generate larger
α. As angles α→ π

2
1

cos α
grows fast and is more susceptible to noise. Hence points

p with α > αmax are not compensated. In practice αmax = 1.5 is used.
As can be seen in Fig. 4.2 the compensate unevenly. While wall areas are
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4.3 LiDAR Intensity Compensation Models

a)

b)

c)

Figure 4.2: a) Intensity clamped to [0, 0.3] and b) compensation intensity clamped to
[0, 5e − 5 · Imax] using the geometric model. While range seems to be com-
pensated for, small noise in the angle computation creates disproportionate
compensation in places. While the left walls are somewhat even, most ground
areas are overcompensated c) shows the geometric compensation function
plotted over range (left) and angle (right).

undercompensated, floor areas in part are overcompensated. Also the steep slope
resulting from 1

cosα leads to very noisy areas, where angle estimation is noisy. These
problems seem to be primarily due to an overestimation of the influence of cos(α).

4.3.2 Weighted Range And Angle
To improve on Eq. 4.7 the angle component has to be scaled compared to the range
component. The LiDAR Equation does not give insight into this relationship.
Eq. 2.10 suggests a multiplicative relationship. Therefor given parameter m ∈ R
the most basic model is:

g(p;m) = I
r2

1 +m · cos(α) . (4.8)

The parameter m can be optimized for using the framework described in Sec. 4.4.
As can be seen in figure 4.3 while ground areas are more even and most noise
artifacts are removed. Areas along walls are still uneven. The assumptions made
for equation 2.10 may not hold completely or the geometric parameters might
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a)

b)

c)

Figure 4.3: Intensity clamped to [0, 0.3] and b) compensation intensity clamped to
[0, 2.5e − 2 · Imax] using the multiplicative weighted range and angle model
with m = 3546.099. Noisy angle measurements are better compensated and
ground areas are more even. Walls are still uneven. c) shows the model
plotted over range (left) and angle (range).

induce further effects inside the sensor.
As proposed for example by Jutzi and Gross [Jutzi and Gross 2009] the rela-

tionship might be exponential. This assumption leads to the updated Weighted
Range and Angle model. Let wr and wα be the model parameters:

g(p; [wr, wα]
⊺) = I · rwrcoswα(α). (4.9)

Note´ that negative values are allowed for wα thereby still following Eq. 2.10.
Figure 4.4 shows the resulting compensated intensity. Again some areas like the
ground are evenly compensated, while especially walls closer to the sensor are still
not evenly compensated. The close range area below ≈ 4m is very dark compared
to points further away.

4.3.3 Sensor Specific Compensation
The aforementioned compensation approach should work independent of the uti-
lized sensor. As can be seen in Fig. 4.5 the intensity for points close to the sensor
increases from about 1 to 4 meters, before decreasing with growing distance. Sim-
ply applying model Eq. 4.9 to these points will further reduce this point intensity.
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4.3 LiDAR Intensity Compensation Models

a)

b)

c)

Figure 4.4: a) Intensity clamped to [0, 0.3] and b) compensation intensity clamped to
[0, 0.4] using the exponential model with wr = 0.947057 and wα = −0.14458.
Areas further from the sensor are show more even intensity. The close range
area is still very dark.

This behavior is unexpected with respect to Eq. (2.10). As this effect is con-
sistent between all datasets it is probably sensor related. Sensor specific com-
pensation is necessary. Eq. 2.6 suggests that the relationship between geomet-
ric compensation and sensor intrinsic compensation is multiplicative. The sensor
model used to record the Newer College Dataset [L. Zhang, Camurri, and Fallon
2021] is the Ouster OS0. Points of distance smaller 1 meter are primarily points
generated by the frame holding the sensor and the person moving the frame. As
the amount of points at this range is small it is excluded from the model and
parameter optimization.

4.3.4 Near Range Cos4

The initial assumption is made, that the reduction may be due to aperture con-
struction or similiar optical effects. Accordingly a cos4 function is tested. As can
be seen in Fig. 4.5 the intensity distribution on different datasets roughly follows
the tested function. Accordingly cos4 is applied to compensate close range points.
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4 LiDAR Intensity Compensation

Figure 4.5: Intensity of Newer-College Math-Medium (blue) and Newer-College Quad-
Easy (yellow) plotted against r compared to ccos(·, [0, 4]⊺) · 0.0069 (green)
against r.

Given point pi and parameters [rmin, rmid]
⊺:

ccos(pi; [rmin, rmid]
⊺) = cos4

(
rmid − ri
rmid − rmin

· π
2

)
, (4.10)

csys(pi; [rmin, rmid]
⊺) =

{
1

ccos
if ri < rmid

1.0 otherwise
. (4.11)

The initial assumption states that this is part of sensor intrinsics ηsys. Hence this
compensation is combined multiplicatively to the geometric compensation models:

g(p;ϕ, [rmin, rmid]
⊺) = g(p;ϕ) · csys(p; [rmin, rmid]

⊺). (4.12)

The resulting model compensates the close range area well including the area
where the csys case switches. Fig. 4.6 shows an example of this.

4.3.5 Wave Compensation

Close inspection of the data in Sec. 6.1 shows that a wavelike noise permeates
all datasets. This expresses itself in a sinusoidal function dependent on range and
intensity magnitude. This is not compensated for in the reflectivity channel either.

As the wave noise seems to scale with intensity, another multiplicative factor is
added to the compensation. The wave can be defined by the wave offset ψ, the
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4.3 LiDAR Intensity Compensation Models

a)

b)

c)

Figure 4.6: a) Intensity clamped to [0, 0.3] and b) compensation intensity clamped to
[0, 0.7] using the exponential model with wr = 0.895899 and wα = −0.153564
and csys with rmid = 5.67397 and rmin = 0.0774244. The close range areas
are now compensated for and align evenly with adjacent similar surfaces.

wave length λ and amplitude a:

cwave(pi; [ψ, λ, a]
⊺) =

(
1 + a · sin

(ri
λ
+ ψ

))−1

(4.13)

g(p;ϕ, [ψ, λ, a]⊺) = g(p;ϕ) · cwave(p; [ψ, λ, a]⊺). (4.14)

4.3.6 Vignette Compensation

The last scan system based effect observed seems to be a vignetting effect observed
towards the upper and lower scanlines. This may be in part due to geometric
effects, as areas close to the lower edge of the scan contain primarily close floor
elements. While points in upper rings are often observed from steeper angles and
larger range.

As the lower and higher rings of given scan tend to be comparatively dark even
after compensation, vignette compensation is explored. Specifically the same 6th-
order polynomial proposed by Goldman and Chen [Goldman and Chen n.d.].
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a)

b)

c)

Figure 4.7: a) Intensity clamped to [0, 0.3] and b) compensation intensity clamped to
[0, 1.0] using the exponential model and cos4 model with wr = 0.955925 and
wα = −0.222957, csys with rmid = 6.88915 and rmin = −0.0525837 and cwave

with [ψ = 2386.23, λ = 0.186251, a = 0.0463039].

Figure 4.8: Compensated intensity using the exponential model [wd = 1.18917, wα =
−0.190482], cos4 [rmid = 4.68113, rmin = 0.844142] and vignette compensa-
tion [v1 = 0.163114, v2 = −2.80794, v3 = 3.38404].

Given point pi, parameters [v1, v2, v3] and a scan with h rings:

ν̄ = 2 · νi
h
− 1, (4.15)

cvign(pi; [v1, v2, v3]) = Ii · (1 + v1ν̄
2 + v2ν̄

4 + v3ν̄
6). (4.16)

Compensation using such a model is shown in Fig. 4.8. The polynom parameters
vary more widely during optimization.
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4.4 Compensation Parameter Optimization

Figure 4.9: Fused point cloud consisting of 12 single point clouds. Also shown are the
sampled poses. The minimal distance between poses is 2m

4.4 Compensation Parameter Optimization
To train the models, points are taken from preregistered and fused point clouds.
FastLIO2 [Xu, Cai, et al. 2022] was used to estimate an initial trajectory. One
point cloud is taken every roughly 2m along the trajectory. The resulting point
clouds are fused using the estimated poses, an example of such a point cloud can
be seen in Fig. 4.9.

The fused pointcloud P̂ should contain points taken of the same scene objects
from different angles and distances. This allows to correlate intensity values taken
from different angles and distances and subsequently to estimate parameters of
given compensation models presented in chapter 4.2.1. For each point the k-
nearest-neighbors are found in P̂ using the method described in Section 4.1.1.
This is then used to find incidence angle α. In practice k = 51 worked well.

4.4.1 Point Filter
Similar to Section 5.2.1 the input point cloud is prefiltered. The filtered points
should allow for stable parameter optimization. Accordingly, step one filters points
pi based on e and αi. The second filter again filters outliers using the method
described in Section 5.2.1.

Points pi with ri < 1m include sensor frame and operator. As such points

29



4 LiDAR Intensity Compensation

are not used in localization and are usually observed from the same orientation
they are excluded from model optimization. For models without cos4 close range
compensation this minimum range is increased to ri ≥ 4.5. Points with ri > 20

are also excluded. This is due to sensor noise increasing over longer distance
combined with pose estimation inaccuracies affecting longer range points more. pi

with αi > 1.5 are also filtered. Small changes in large αi due to noise or inaccuracy
in pose estimation may result in large changes in compensation. This also filters
points with invalid estimates of αi.

The optimization is based on the principle in Eq. 4.6. This is extended to point-
pairs that belong to the same surface. As no point cloud segmentation is available
local point homogeneity is estimated by the following filter. Given point pi and
its k-nearest neighbors:

τi =
1

k

k∑
j=1

(Ii − Ij)2

(ri − rj)2
. (4.17)

For points with small differences in I this value is small. Point pairs with large
difference in I and r this value is also small, but grows rapidly with decreasing
difference in r.

This value allows for points observed from stronger diverging poses to still be
included despite large differences in I, while points observed from similar positions,
should have similar I. More research into this filter stage might be of interest.

After these filters each valid point is added to the optimization. A point is valid,
if the point itself and all its found neighbors pass all filter steps. Figure 4.10 shows
how the parameter based filter followed by the similarity filter change the points
used for parameter optimization.

For each pi and its neighbor pj a point pair is added to the optimization, if:

|ri − rj| > ∆r (4.18)

or

|αi − αj| > ∆α. (4.19)

This removes point pairs with no difference in parameters, as such points either
have no difference in intensity or introduce scanning noise which may lead to
parameter overestimation. Earlier tests applied both simultaneously.
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a)

b)

Figure 4.10: a) shows the initial fused point cloud colored by intensity. b) shows the
points after the point fiters are applied. Poses are drawn in white. Of the
initial 1008092 points 611265 remain. Close range points around the poses
are removed as well as points along the outer walls. The point set remaining
is the corner inside the trajectory.
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4.4.2 Model Parameter Optimization

The criterion in Eq. 4.6 is used to define the loss function L. Two types of loss
function are tested. For given point pair pi,pj and compensation model g(·;ϕ),
the pairwise loss can be defined as:

Lij(ϕ) =
1

c(pi)
L(pi,pj;ϕ)). (4.20)

Two specific loss functions are tested, see Eqs. 4.24 and 4.25.

I magnitude and accordingly L magnitude is directly proportional to range.
Resulting scans have areas of consistently higher I which may skew optimization.
The factor 1

c(pi)
is introduced to reweigh loss elements and increase the effect of low

I areas and point pairs. Without this factor model parameters are consistently
vastly overestimated and results in non-funtional models.

This loss function is minimized if a point and all its neighbors have the same
I after compensation. As this chains trough every point and their neighbors, this
should lead to non-neighboring points along the same surface to be compensated
for the same intensity target.

As this error function depends on pair-wise compensated intensity, a zero func-
tion would be an optimal solution. This is addressed by adding a normalization
term:

Ln(i;ϕ) =
1

c(pi)
(c(pi)− Ii). (4.21)

The used value for wn = 0.1.

The resulting minimization problem is described by:

eij =

(
Lij(ϕ)

wnLn(i;ϕ)

)
, (4.22)

min
ϕ

=
∑
i

k∑
j=1

e⊺
ijeij. (4.23)

The resulting problem is solved using the ceres solver [Agarwal, Mierle, and
Team 2022]. Specifically the Levenberg-Marquadt [Levenberg 1944 or Marquardt
1963] algorithm for solving non-linear-least-square problems is employed.
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Loss Functions

The first loss function used compares the current point pi against the precomputed
compensation ρ̂j for the neighboring points pj:

L1,ij(ϕ) = (g(pi;ϕ)− ρ̂j). (4.24)

This function is optimized by running the optimizer for 4 iterations. Then the
compensation ρ̂ for all points is computed. This process is redone multiple times.
Optimizing using this function proved to be difficult. Convergence happened very
slowly.

The second loss function directly compares compensation values:

L2,ij(ϕ) = (g(pi;ϕ)− g(pj;ϕ)). (4.25)

As the compensation results are compared directly, the optimizer is run 30 itera-
tions. 6 restarts are used to reset the optimizer.
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5 Localization using FastLIO With
Compensated LiDAR Data

5.1 FastLIO2
The localization algorithm used is FastLIO2 [Xu, Cai, et al. 2022] as it is a fast,
state of the art localization algorithm that uses only IMU and LiDAR data. It
can therefor be adjusted to also take LiDAR intensity or reflectivity data. The
following chapter will give an overview over FastLIO2. The formulas in this section
are taken from Xu, Cai, et al. 2022, unless otherwise specified. Sec. 5.2 describes
the changes added in this work to accommodate further LiDAR data into the
FastLIO framework.

FastLIO [Xu and F. Zhang 2021] seeks to create a 3D map of the agents environ-
ment while simultaneously moving within this environment and localizing itself.
Compared to SLAM algorithms no loop-closure is done. The framework is also
capable of estimating the system extrinsic between IMU and LiDAR scanner. This
feature is not used in this work as the used dataset provides the extrinsic.

FastLIO2 uses an iterated Kalman-Filter for agent localization. This is done
using the positional information given by IMU, combined with correction steps
using the LiDAR scans. The IMU generates odometry information at a much
faster rate than the LiDAR generates full point clouds. FastLIO accumulates
IMU data during the filters forward step. Once a LiDAR scan is accumulated the
backward step is initiated. Fig. 5.1 shows the major components of the FastLIO2
localization algorithm.

5.1.1 FastLIO State Estimation
The FastLIO Kalman filter state consists of RI , pI and vI the IMU rotation
and position compared to the global frame and velocity. ba and bω are the IMU
measurement noises. g is the current gravity vector. The last two elements RL

and pL are extrinsic estimations. The resulting state stems from the manifold
M = SO(3)× R15 × SO(3)× R3.
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Figure 5.1: Figure taken from Xu, Cai, et al. 2022 Fig. 1. Overview over the FastLIO2
algorithm. The algorithm consists of two major elements. First the iterated
Kalman Filter used for state estimation and second the ikd-Tree used for
quickly adding and looking up map points.

The forward input u consists of the IMU rotation measurement ω and position a
with noise bω and ba. The noise is modeled as a random walk governed by variables
nω and na. The noise of the extrinsic parameters is controlled by parameters nbω

and nba. This creates the noise vector w

The resulting state transition function f is defined as:

x = [R⊺
I ,p

⊺
I ,v

⊺
I , b

⊺
ω, b

⊺
a, g

⊺,R⊺
L,p

⊺
L] ∈M, (5.1)

u = [ω⊺,a⊺], (5.2)
w = [b⊺ω, b

⊺
a,n

⊺
bω,n

⊺
ba], (5.3)

f(x, u, w) =



ω − bω − nω

vI +
1

2
(RI(a− ba − na) + g)∆t

RI(am − ba − na) + g

nbω

nba

0 ∈ R9


∈ R24.

The state propagation can now be defined using the ⊞ and ⊟ operators intro-
duced by Hertzberg et al. [Hertzberg et al. 2013]. These operators ensure that the
results of the operations stay on the manifold, thereby eliminating the need for
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renormalizing the results. Specifically let M be a manifold on Rn:

⊞ :M× Rn →M (5.4)
X ⊞ a = X exp(a) if X ∈ SO(3),a ∈ R3, (5.5)
a⊞ b = a+ b if a, b ∈ R3, (5.6)
⊟ :M×M→ Rn , (5.7)

X1 ⊟X2 = X1 log(X2) if X1,X2 ∈ SO(3), (5.8)
a⊟ b = a− b if a, b ∈ R3. (5.9)

These operators use the specialized exp and log functions described in by Hertzberg
et al. [Hertzberg et al. 2013]. Given input vector a and X ∈ SO3:

h =
1− cos |a|
|a|2

, (5.10)

s = sinc |a|, (5.11)

exp(a) = exp

xy
z

 =

cos|a|+ hx2 −sz + hxy sy + hxz

sz + hxy cos|a|+ hy2 −sx+ hyz

−sy + hxz sx+ hyz cos|a|+ hz2

 , (5.12)

ac(X) = acos tr(X)− 1

2
, (5.13)

log X =
ac(X)

2 sin ac(X)

X32 −X23

X13 −X31

X21 −X12

 . (5.14)

The uncertainty at timestep i is comuted using the covariance Qi of the noise
vector w combined with the matrices Fxi

and Fwi
defined in FastLIO [Xu and

F. Zhang 2021] and derived by Hertzenberg et al. [Hertzberg et al. 2013]. Putting
these operations together with the current state and update functions results in
the state and covariance update function at timestep i:

xi+1 = xi ⊞∆t · f(xi,wi,ui), (5.15)
x̃i = xi ⊟ xk (5.16)

Fx̃i
=
δ(xi+1 ⊟ x̂i+1)

δx̃

∣∣∣∣
x̃i=0,wi=0

, (5.17)

Fwi
=
δ(xi+1 ⊟ x̂i+1)

δw

∣∣∣∣
x̃i=0,wi=0

. (5.18)

Assuming that Pk is the last point cloud optimized for. Let x̂k be the state
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and P̂k the covariance matrix directly after this point cloud was incorporated into
the state. Forward propagation is done whenever new IMU measurements are
received:

x0 = x̂k, (5.19)
P0 = P̂k, (5.20)

xi+1 = xi ⊞∆t · f(xi,wi,ui), (5.21)
Pi+1 = Fx̃i

PiF
⊺
x̃i
+ Fw̃i

QiF
⊺
w̃i
. (5.22)

These operations are repeated until a new LiDAR scan is received or accumulated.

Residual Computation

To integrate the LiDAR information into the state estimate, a subset of the re-
ceived point cloud is used. Sec. 5.2 describes the selection criteria for both the
original algorithm and the updated version used to include intensity data into
FastLIO. Let P = {p0, . . . , pm} be the set of selected points translated to the
global frame using the current position estimate pI and rotation estimate RI .

For each of point pj the k nearest points in the current map are found. The
assumption is made that each input point should lie on a plane generated by their
nearest neighbors. Specifically let no be the normal and po be the origin of the
plane generated, TIk the current pose estimate, TLk

the current extrinsic estimate
and nj the estimated measurement noise:

do(p) = n⊺
o(p− po), (5.23)

p̂i,j = TIkTLk
pi,j, (5.24)

zi = do(p̂i,j). (5.25)

For each point for which sufficient neighbors can be found this residual can be
computed. This error is than approximated by its first order approximation. Let
Hj be the Jacobian matrix:

hj(x) ≈ hj(x̂) +Hjx̃+ δj, (5.26)

Hj =
∂hj (x̂⊞ x̃)

∂x̃

∣∣∣
x̃=0

, (5.27)

zj = hj(x̂). (5.28)

As the residual zj is now independent of measurement noise, it can be computed
directly.
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Given the state estimate x̂κ after the κ-th iteration of the iterated Kalman filter,
the error between the current propagated state x̂ and the unknown optimal state
x is defined as:

x̃κ = x⊟ x̂κ, (5.29)
x⊟ x̂ = (x̂κ ⊞ x̃κ) (5.30)

= x̂κ ⊟ x̂+ Jκx̃κ ∼ N (0, P̂ ), (5.31)

Jκ =


A(R̂I,κ ⊟ R̂Ik)

−⊺ 03×15 03×3 03×3

015×3 I15×15 03×3 03×3

03×3 03×15 A(R̂Lk,κ ⊟ R̂L)
−⊺ 03×3

03×3 03×15 03×3I3×3

 . (5.32)

The A()−1 is again introduced by Hertzberg et al. [Hertzberg et al. 2013].

Combining this state estimation problem with the residuals estimated in (5.26),
constitutes the following maximum a-posteriori estimation problem:

min
x̃κ

(
||x⊟ x̂||2

P̂
+

m∑
j=1

||zj,κ +Hjx̃||2Rj

)
. (5.33)

The problem (5.33) can be solved by the following iterated Kalman filter intro-
duced in FastLIO [Xu and F. Zhang 2021]:

H = (H1,κ, . . . ,Hm,κ)
⊺, (5.34)

R = diag(R1, . . . ,Rm), (5.35)
P = (Jκ)

−1P̂k(Jκ)
−⊺, (5.36)

zk,κ = (z⊺
1,κ, . . . , z

⊺
m,κ)

⊺, (5.37)
K = (H⊺R−1H + P−1)−1H⊺R−1, (5.38)

x̂κ+1 = x̂κ ⊞ (−Kzκ − (I −KH)(Jκ)
−1(x̂κ ⊟ x̂). (5.39)

This method only needs to invert the state matrix instead of the measurement
matrix. The equations (5.38) and (5.39) are repeated until convergence: ||x̂κ+1 ⊟
x̂κ|| < ϵ.

The resulting state and covariance estimates are:

xk = x̂k,κ+1, (5.40)
Pk = (I −KH)P . (5.41)
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5.1.2 Mapping using incremental kd-Tree
The main improvement of FastLIO2 over FastLIO is the use of a map based of an
incremental kd-Tree. The underlying structure is a binary search tree. Point data
is located at both leaf nodes and internal nodes.

Point Insertion

The input point filter partitions the input field into evenly sized cubes. For given
input point p the containing cube C is found. Now all points pi ∈ C in the ikd-
Tree are found. Let pC be the center of C. Given the set V = {pi, . . . } ∪ p of all
points contained within C:

pc = {pj ∈ V | ̸ ∃(pi ̸= pj : ||pC − pj|| < ||pC − pi||)}. (5.42)

This nearest point is the only one kept. If it is not part of Map it is added. All
other points are deleted using the BoxwiseDelete operations.

Boxwise Deletion

The ikd-Tree utilizes lazy-deletion. If a point is set to be deleted, only an internal
flag is set. Deletion of nodes and branches is only done during tree rebalacing.

To delete elements in given cuboid area, the cube is compared to the border
information in each passing node. If the cube is partly within the borders of given
node, the search is continued with the child nodes. If the node borders are fully
within the search cube, the node is set to be deleted.

Tree Balancing

If after an incremental operation, a subtree is not α-balanced [Truemper 1982]
this subtree is rebuild. As the tree may contain nodes set to be deleted, a second
criterion is added. A node conformes to the α-deletion criterion, if sufficient child
nodes are set to be deleted. If any of these criteria is violated the subtree rooted
at the node is rebuild.

First the tree structure is flattened and all points not set for deletion are added
to a flat storage array. This array is then used to rebuild a balanced kd-tree. The
new root node is then added to the original parent.

As this operation can be time intensive, FastLIO2 uses a parrallelized framework
that allows rebuilding during runtime as well as lookup during the rebuilding
process. This is achieved by building the rebalanced tree, while keeping the original
input tree operational. All changes added to the original tree during rebuilding are
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Figure 5.2: The updated FastLIO pipeline preprocesses the input LiDAR point cloud
by first estimating point normals and filtering outlier points. All remaining
points are intensity compensated. Geometric information of all remaining
points in P are processed like before. The intensity information is used to
compute an extra residual term which are then fed to state estimation.

also added to the new tree. Once the new tree is completely build and updated,
it is added in place of the original tree.

5.2 Used Additional LiDAR Data
The original FastLIO2 framework only uses geometric information presented by
the LiDAR scans. The assumption is made that intensity or further information
channels can improve the localization performance of the framework. The proposed
addition consists of two parts: First providing FastLIO2 with valid, compensated
intensity information and second adding intensity information to the residual com-
putation. In the following section intensity will be used as shorthand for intensity
or other LiDAR provided channels.

5.2.1 Point Cloud Preprocessing
To use intensity for localization, intensity should allow to correlate points. Accord-
ingly intensity of a given point should be stable, when observed from a multitude of
poses. Neither intensity nor reflectivity of the Newer College datasets sufficiently
satisfy this criterion. To further sanitize the input a set of filters are applied.

Given an input point cloud the raw intensity is usually provided as integers.
The first stage is to scale the input intensity to unit range floating point.

Point Filter

High gloss surfaces in the scene may create disproportionately large intensity val-
ues if hit under small incidence angles. As high gloss areas violate the initial
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5 Localization using FastLIO With Compensated LiDAR Data

assumption, regarding point intensity, these points are filtered.
To address this issue the assumption is made that intensity values are sampled

from a limited distribution X, that can be approximated by the current in scene
intensity values. Given intermediate point cloud P∗

n intensity mean and variance
are computed

Given the filter parameter mout the following filter is applied to all p∗ ∈ P∗
n:

Ii =

{
Ii if |Ii − E[X]| < mout · var[X]

0 otherwise
. (5.43)

The parameter mout has to be chosen, such that as many points as possible are
kept throughout the whole scene observed by the agent, while robustly filtering
all outlier points. In practice this cutoff is relatively generous as the intensity
difference between outliers and normal points tend to be large. Points without
valid r or large α are also filtered. Usually 1 < ri < 20 and |αi| < 1.5 is chosen.

Incidence Angle Computation

The current point cloud only contains positional, range and intensity information.
The first step towards intensity compensation is the incidence angle computation.
Hence the per-point, local plane normal has to be estimated.

The point cloud output generated by the Ouster OS0 sensor is ordered in row-
major order. Due to sensor construction each row is slightly offset towards the
next. Approximations of these offsets are known, although these might change
slightly depending on range. To utilize the ordered list for knn-search, first all
rows are shifted by their known offset.

Now the order property is used to run the knn-approximation introduced in
Sec. 4.1.1, followed by the normal and incidence angle computation. To guarantee
approximation accuracy for the normal computation, a minimum of five close
neighbors must be found. Otherwise no normal is computed and the corresponding
point intensity is set to zero. The resulting output point clouds loose between 40%
to 70% of the initial points.

Intensity Compensation

Intensity for any point still valid is compensated using one of the schemes pro-
posed in Chapter 4.3. The resulting point cloud only consists of points with valid
compensated intensity.
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Implementation

FastLIO2 is implemented to utilize the ROS framework [Quigley et al. 2009]. Ac-
cordingly the point cloud preprocessing necessary is implemented in a separate
ROS-Node. Given a raw input cloud, first input scaling and outlier filters are
applied. Then knn-search is done for all valid points in a multi-thread manner.
Followed by the normal and incidence angle computation again using multiple
threads. The remaining valid points are then assembled into a new PointCloud
message and send to the FastLIO2 node.

5.2.2 Intensity Residuals

To utilize LiDAR intensity data in FastLIO2 the update step has to be augmented
by adding intensity residuals for all points.

Given a point p, with intensity I, and its k nearest neighbors p1, . . . ,pk in the
current map. The plane (no,po) is already estimated in the original algorithm.
Given rotation Rn such that Rnno = (0, 0, 1)⊺:

π(p) = [Rn]2×3(p− do(p)no). (5.44)

This operation projects the point and its neighbors onto the plane and then
rotates them such that the plane spans fully along the x- and y-axis. The last row
of π(p) can be dropped as pz = −n⊺

opo.

Using these points a smooth local intensity function f(p̄) parameterized by λ

is approximated using:

c(x, y) = (x2, y2, xy, x, y, 1)⊺ ∈ R6, (5.45)
f(p̄) = λ · c(p̄). (5.46)

where x and y are the query point coordinates. The parameter vector λ is esti-
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mated by solving the following closed form problem (5.50):

A =

c(p̄1)

. . .

c(p̄k)

 ∈ Rk×6, (5.47)

B =

I3×3 03×3

03×3 03×3
A⊺

A 06×6

 ∈ R(6+k)×(6+k), (5.48)

z =


06×1

I1
...
Ik

 ∈ R6+k (5.49)

Bλ = z (5.50)

This problem is solved using a rank-revealing QR decomposition. The QR decom-
position is sufficiently fast and numerically stable to be used in real-time applica-
tions.

Using f the local error component is defined as:

zI(p) = f(π(p))− I. (5.51)

The necessary Jacobian∇zI(p) can be found using the chain rule and the jacobians
of Eq. 5.44 and Eq. 5.46:

∇π = [Rn]2×3(I3×3 − nn⊺) ∈ R2×3, (5.52)

∇f(p̄) =
[(

2λ1 λ3 λ4
λ3 λ2 λ5

)(
p̄

1

)]⊺
∈ R1×2 (5.53)

∇zI = ∇f(π(p)) · ∇π(p) ∈ R1×3 (5.54)

The gradient scaling factor ||∇f ||−1 was found to increase stability independent of
input magnitude. This specifically allows easier parameterization independent of
input channel. It also has a stabilizing effect on the FastLIO update. This factor
might not be ideal and further research to determine better solution is warranted.

As the intensity residuals tend to be large compared to the geometric residuals
a weight parameter wI is introduced. The resulting residuals are then added to
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the residual set in Eqn. (5.37). Eqn. (5.39) also has to be adjusted.

zi =

(
n⊺(pi − po)

wIf(π(pi))− Ii

)
. (5.55)
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6.1 Newer College Dataset
The extension to the Newer College dataset [L. Zhang, Camurri, and Fallon 2021]
is a set of combined LiDAR scans, IMU measurement and camera images. The
device used to record the data is a handheld device containing an Ouster OS0-128
LiDAR scanner with an ICM-20948 IMU system and 4 Alphasense cameras with a
Bosch BM1085 IMU. The extrinsic transformations between the sensors is known
and part of the dataset. Of primary interest for this work is the LiDAR scanner
and the attached IMU.

Quad

The quad area consists of three sequences recorded in a courtyard consisting of
two smaller walls and two longer walls. The yard is surrounded on all sides by
3-story or comparable height brick walls. The ground is paved with an oval spot
of grass in the center. Fig. 6.1 shows the intensity and reflectivity values over the
quad-easy recording plotted against different measurements.

There are a total of three dataset recorded inside this environment: Quad−Easy
consists of two loops around the grass oval at walking pace, Quad − Medium

consists again of two loops around the inner court with rotating and swinging
motions of the sensor and Quad−Hard consists of one loop of fast walking with
fast changes in distance to the walls. This is combined with rapid sensor motion
independent of agent movement. The agent enters one of the side buildings.

Overall the localization scenario is constraint primarily by the surrounding walls,
the single tree and the central grass oval.

Park

The Park dataset is a long recording of 1567 seconds. The recording starts in the
same courtyard as the quad datasets. From there the agent moves into another
yard surrounded on three sides by walls. The last area is the actual park. This is
a large open areas constrained by small brick walls. The area also contains a lot
of trees and smaller vegetation.
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Figure 6.1: Intensity values scaled to [0,0.35] (top) and reflectivity values (bottom) of
the quad-easy dataset
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Figure 6.2: Map of the quad-easy dataset colored by intensity

The resulting illumination negatively affects LiDAR intensity measurements.
Branches tend to be thin compared to the actual area illuminated by the laser
flash. The resulting range measurement tends to be accurate, but the measured
intensity consists also of background illumination filling the reflected area not filled
by the branch.

Cloister

The cloister dataset contains two rounds around the cloister corridor and the inner
cloister yard. The corridor consists of the brick wall to one side, a covered paved
corridor, that opens to one side into the central yard. Most points recorded are at
short range. Later the operator moves into the yard.

Math Institute

This dataset is recorded outside the mathematics institute. It consists of narrow
alleys between building combined with a lot reflecting surfaces. It starts and ends
on an open square including longer ranges. Buildings in scenes consists of old stone
building like a chapel and modern glass-clad buildings. Accordingly this dataset
contains a significant amount of non-lambertian surfaces.

Again three sequences are provided. Math-Easy consists of walking pace explo-
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Figure 6.3: Intensity values to [0,0.35] (top) and reflectivity values (bottom) of the math-
medium dataset

ration of the scene. Math-Medium increases speed and adds independent sensor
rotation. Math-Hard increases both walking and rotational speed and adds rapid
shaking.

Mine

The Mine dataset is not mentioned in the Newer College paper [L. Zhang, Ca-
murri, and Fallon 2021] but is available from the same source. It contains LiDAR
measurement of an underground mine. It consists of enclosed spaces and very
close ranges. Most of the path follows straight tunnels which are interrupted by
intersections.
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Figure 6.4: Map of the Math-Medium dataset colored by intensity

Sensor: Ouster OS0-128

The Ouster OS0-128 is a MOSFET-based LiDAR scanner operating using the
combined beam-steering, flash LiDAR principle. The vertical opening angle is 90°
with 360° rotation and 128 vertical rings. The sensor consists of 128 receiver units
that sit offset in sets of 4. This means that during a flash each point recorded is
slightly horizontally offset.

The sensor provides not only range and intensity information, but also reflec-
tivity. This channel information uses the recorded range and intensity to pre-
compensate intensity by range. In a second step the lower value intensity is scaled
lineary, but higher values are scaled with log2. This allows for reflectivity to more
accurately depict most points as intensity tends to clump towards the lower values.
Fig. 6.7 shows the intensity distribution against range for each scene of the Newer
College dataset.

6.2 Compensation Models
The models shown in Tab. 6.1 where trained on the Quad-Easy dataset fusing
12 point clouds with minimum pose difference of 1m. They show some initial
problems with parameter optimization. Point pairs where filtered aggressively
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Figure 6.5: Intensity values to [0,0.35] (top) and reflectivity values (bottom) of the Mine
dataset

wr wα rmid rmin ϕwave ϕvign

1.336 -0.0889 - - - -
1.341 -0.0912 6.06982 0.353138 - -
1.666 -0.0770 6.12945 0.523435 - −4.57, 9.267,−3.678
1.341 -0.0913 6.07069 0.352381 1.3, 0.20,−0.012 -
1.4 -0.1123 4.95 0.5025 2.54, 0.2,−0.026 3.88,−5.45, 4.63

Table 6.1: Initial model parameters optimized using the Quad-Easy dataset. High
wr and low wα can be seen. Models with just vignette but no wave
compensation show higher absolue values in ϕvign
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Figure 6.6: Map of the Mine-Medium dataset colored by intensity

demanding Eq. 4.18 and Eq. 4.19 hold simultaneously. What can be seen is that
wr is estimated relatively high, while wα is comparatively small when compared to
Tab. 6.5. Compensation generated by these models can be seen in Fig. 6.8. Objects
further away are noticeable brighter and closer areas show non-even intensity. For
models including cvign difference in intensity get overcompensated, resulting in
nearly equal intensity for all surfaces. Also the compensated intensity distribution
shows the overestimation of wr. This indicates that the estimated parameters do
not compensate well.

Better results for wr could be achieved using ∆r = ∆α = 0.05 and only enforcing
one of them must hold. A large number of points is taken inside the initial tunnel
area. Testing in enclosed areas show that such areas estimate lower wα. Enlarging
the trajectory by using minimum pose distance of 2m increases the estimated wα.
This results in more even intensity.

Another problem for optimization is foliage and comparable areas with large
localized angle variance. Fig. 6.10 shows the intensity and angle of a tree inside
the fused point cloud. The resulting parameters are very different compared to
other scenes. Tab. 6.2 shows how parameters change. The tree is a major part of
scans 100 and 200. For scans 300 and 400 part of the tree and other bushes are
part of the pointcloud. Scan 500 still has some bushes in the dataset resulting in
values very different from other models.
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Figure 6.7: Intensity measurements plotted against range for Quad, Math and Mine of
the Newer College dataset. For all scans intensity decreses for r < 4. Also
a very visible wave-like noise can be seen on all datasets. Some dataset
characteristics can be distinguished e. g. Mine shows higher intensity over
all range steps.
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a)

b)

c)

d)

Figure 6.8: Compensated intensity images for the models shown in Tab. 6.1 row 1 (a),
row 2 (b), row 3 (c) and row 5 d). Without vignette compensation close walls
are not evenly compensated. c) shows the artifacts introduced by to large
ϕvign. c) and d) also show the combination of large wr. Different surfaces
cannot be distinguished by intensity anymore.

Scan wr wα rmid rmin

0 0.8896 -0.2188 3.9945 0.9201
100 2.8438 -0.0016 34.121 0.8229
200 2.8369 0.0303 2× 1010 0.7546
300 0.9683 -0.1257 3.957 0.9809
400 0.7791 -0.2964 3.4851 1.1346
500 1.1801 -0.3514 7.1438 0.5519
600 1.2029 -0.166, 4.0915 1.2904
700 1.1506 -0.1715 4.9701 0.941
800 1.1616 -0.276 4.179 1.1537
900 0.8422 -0.1341 4.1452 0.926

Table 6.2: Model values for exponential weight and angle with cos4 optimized along
multiple positions on the Quad-Easy dataset. Start scans 100 and 200
include a tree and other plants which results in large differences in
parameters
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Fig. 6.9 shows the quad area. The operator starts at a pose e. g. 200 and moves
clockwise. A trajectory using 12 poses with minimum pose dist 2m, as used for
the models in Tab. 6.2, spans around 200 poses. As can be seen starting at 0
starts in the entry tunnel and stops right before pose 200. While some foliage
information is part of the fused point cloud their is a lot of other information that
constrains the optimization. Starting from pose 600 no more bushes or trees are
part of the sampled fused point cloud. This results in a noticeable drop in wα.
Most differences in angle are only observed along the flat walls and the ground.

In general wide open areas e. g. the lower side of quad in Fig. 6.9 result in
larger estimations of wr. This might also be because without a sufficient amount
of variance in α the effect of α is usually underestimated. For good parameter
optimization a difference in r e. g. moving towards a wall, combined with observing
closer objects, for which a usable α estimation can be done from different angles,
such as moving in a semi circle along a wall. This keeps r somewhat constant and
improves estimating wα.

Optimizing reflectivity models is more difficult. The non-linear scaling can lead
to bad parameters, see e. g. model rwpC Tab. 6.4. While most remarks regarding
intensity models tend to transfer to reflectivity optimization, high intensity points
like windows and other reflecting surfaces should be avoided.

Optimizing cvign without wave compensation is difficult. As can be seen in
Fig. 6.8 c) larger estimation of ϕvign show visible artifacts in an area along the
upper and lower area of the images. Optimization of cvign can be fragile with
respect to input point cloud. No changes to optimization parameterization tried,
solved this issue consistently over all valid input point clouds. It is therefore
advised to not use cvign without also using cwave.

Comparing compensation models in Fig. 6.11 shows how different parameters
change intensity. High wr > 1.0 results in visible overcompensation of far away
objects. This is especially visible for ground patches. The compensation found for
models a) and c) create more even intensity values of far walls compared to close
walls. Also ground areas look more even. Models a) and c) show visible overcom-
pensation of very close objects. As they are trained on Quad-Easy comparatively
few points at r < 2m were involved in model optimization.

All models do not compensate α sufficiently. As wr seems to be well estimated
in a) and c) but walls still contain a visible horizontal gradient. To improve this
point clouds used for optimization might need to be better aligned and movement
compensated. Some last minute tests suggest that a better value for wα might be
around −0.4.
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a)

b)

c)

Figure 6.9: Fused point cloud generated from Quad-Easy, using 40 point clouds starting
at scan 0, with minimum pose distance of 3m. a) shows intensity as well as
the start positions for some of the models in Tab. 6.2. The number references
the n-th pose. b) shows the estimated angles and c) the measured distance
of the dataset. 57
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Figure 6.10: Points sampled from Quad-Easy for optimization when starting at pose 120.
Shown is intensity (left) and estimated angles (right). As can be seen while
intensity is even, angles vary widely. This prevents the optimization from
generating usable parameters.

6.3 Localization Performance

Evaluation Setup

Experiments were conducted on an Intel NUC Bean Canyon 8i7BEH with a Core
i7-8559U processor and 32Gb of RAM. The data set used is the Newer College
dataset described in Sec. 6.1.

The metrics used to compare the localization performance of updated FastLIO2
are Average-Trajectory-Error (ATE) and Relative-Pose-Error (RPE). These are
computed using the evo package [Grupp 2017] for python, which also computes
the trajectory alignment.

As trajectories may have arbitrary initial poses, they have to be aligned be-
fore comparison. Given trajectory {T1, . . . ,Tn} and corresponding ground-truth
trajectory {T̂1, . . . , T̂n}, the is computed using the Umeyama alignment method
[Umeyama 1991]. This results in rotation R̂ and translation t̂. The ATE can now
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a)

b)

c)

a)

b)

c)

a)

b)

c)

Figure 6.11: Multiple projected point clouds taken from Math-Medium. In each triplet
a) is created using model in Tab. 6.2 0, b) uses 600 and is rescaled by factor
0.83 to reduce saturation and c) uses model c42 in Tab. 6.3 and is rescaled
by factor 2.

59



6 Evaluation

be defined as:

Ea
i = T̂−1

i

(
R̂ t̂

0 1

)
Ti =

(
R̂a

i t̂ai
0 1

)
, (6.1)

ATE =

√√√√ 1

n

n∑
i=1

||t̂ai ||2. (6.2)

This is the root-mean-squared error (rmse) of the ATE.
Given a fixed time interval ∆t RPE is defined as:

Er
i =

(
T̂−1
i T̂i+∆t

)−1 (
T−1
i Ti+∆t

)
=

(
R̂r

i t̂ri
0 1

)
, (6.3)

RPE =

√√√√ 1

n

n∑
i=1

||t̂ri ||2. (6.4)

This error measures the difference between pose differences. Poses are matched by
timestamp. Evo allows to set a manual time offset, if the estimated trajectory is
offset, due to e. g. computation time.

Tested Models

The tested baselines are: FastLIO2, FastLIO2 with point filter and Raw Reflec-
tivity. An overview of tested models can be found in Tab. 6.3 for intensity models
and Tab. 6.4 for reflectivity models. The models except rwpC where optimized
using the same fused point cloud using 12 poses with minimum pose difference of
2m but with different parameters for ∆r and ∆α. The fused point cloud can be
seen in Fig. 6.12. The different training parameters are referenced as set 1 and 2.

Set 1 contains wra1 which only used wr and wα, c41 which also uses close range
cos4, p1 which uses c4 and adds cvign,w1 which instead adds cwave and wp1 which
uses all these. Further reflectivity models rwra1 which again only uses wr and
wα and rwp1 which again uses all compensation parts. Set 2 uses the same keys
as set 1 w2 e. g. stands for wr, walpha with cos4 and cwave. Another reflectivity
model rwpC is added. This model did not converge during optimization and the
parameters are very different to any comparable model. This was kept as control.

This results in 9 intensity models and 4 reflectivity models as not all model types
are present in each set. Each model was tested on all Newer College sequences,
except Stairs, using different values for wI .
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6.3 Localization Performance

a)

b)

c)

Figure 6.12: The fused point cloud used to train most models used to test localization
perfomance. The used point clouds contains high variance in intensity a), a
good variation in estimated α b) and a combination of near and far ranges.
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Key wr wa rmid rmin ϕwave ϕv

wra1 0.761 -0.131 - - - -
c41 0.770 -0.128 6.12 -1.27 - -
c42 0.896 -0.152 5.699 0.078 - -
p1 0.909 -0.132 5.48 -0.52 - −3.99, 7.484,−3.947
p2 0.949 -0.161 5.89 -0.069 - 3.13,−7.45, 6.08
w1 0.787 -0.124 6.512 -1.493 5.0, 0.20,−0.079 -
w2 0.884 -0.166 5.635 0.077 −153.8, 0.18, 0.091 -
wp1 1.189 -0.190 4.681 0.844 9.96, 0.2,−0.111 0.163,−2.81, 3.38
wp2 0.968 -0.141 5.717 0.026 −150.9, 0.185,−0.092 3.14,−7.33, 5.96

Table 6.3: Intensity models used for evaluating localization performance. All mod-
els were trained on Math Medium using the same starting position.

Key wr wa rmid rmin ϕwave ϕv

rwra1 -0.339 -0.141 - - - -
rw2 -0.286 -0.237 5.636 0.077 −153.8, 0.18, 0.09 -
rwp1 9e-4 -0.199 2.245 1.272 0.8, 0.2,−0.1 6.54,−9.97, 5.87
rwpC 2.362 -0.04 25.54 0.991 −4.14, 0.23,−2.39 −14.1,−55.4,−55.4

Table 6.4: Reflectivity models used for evaluating localization performance. All
models were trained on math medium using the same starting position.
Model rwpC was trained on a different dataset and did not optimize
correctly. It was kept as control.
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6.3 Localization Performance

time offset 0.0 time offset 0.1
Model Easy Medium Hard Easy Medium Hard
FastLIO2 0.1170 0.1460 0.1688 0.0793 0.1080 0.0680
Filtered Points 0.1083 0.1387 0.1343 0.1488 0.1582 0.0929
Raw Ref 0.1054 0.132 0.1265 0.1341 0.1562 0.0920
wra1 0.1042 0.1291 0.1522 0.0834 0.1131 0.0662
c41 0.1035 0.1297 0.1373 0.0831 0.1167 0.0664
c42 0.1000 0.1285 0.1514 0.0834 0.1137 0.0665
p1 0.1038 0.1297 0.1522 0.0836 0.1131 0.0673
p2 0.1002 0.1288 0.1373 0.0831 0.1123 0.0664
w1 0.1044 0.1297 0.1521 0.0824 0.1129 0.0664
w2 0.0998 0.1289 0.1026 0.0832 0.1124 0.0658
wp1 0.1047 0.1297 0.1525 0.0835 0.1141 0.0651
wp2 0.1006 0.1288 0.1512 0.0836 0.1131 0.0718
rwra1 0.0990 0.1310 0.1509 0.1351 0.1624 0.1018
rw2 0.0994 0.1315 0.1320 0.1346 0.1627 0.1012
rwp1 X X X X X X
rwpC 0.0921 0.1238 0.14 0.1289 0.1588 0.0965

Table 6.5: ATE for the three sequences of the Math-Institute dataset of Newer Col-
lege. X marks non-convergence. Bold numbers are the best on sequence.
Time offset refers to the time offset used to compare trajectories. An
offset of 0.1 means that an estimated pose at time t is compared to pose
t+ 1 in the reference trajectory.

6.3.1 Performance on Newer College

Math Institute

Tab. 6.5 shows the ATE for all models on the Math-Institute dataset. For all
intensity models wI ∈ {1× 10−2, 1× 10−3, 1× 10−4} where tested and the best
results are displayed. wI = 1× 10−4 seemed to work best. Small tests with
wI < 1× 10−4 suggest that the best weight for intensity on the math set seems
to be around 1× 10−4. This transfers for all other datasets. While using slightly
smaller or larger weights tended to increase performance slightly. finding the right
wI for each model and datasets is very time consuming.

Noticeable is that rwp1 diverged while rwpC generates the best results for Math-
Easy and Math-Medium. Differences between set 1 and 2 seem consistent on
Math-Easy and medium, with set 2 models being slightly better in all comparisons.
Performance on Math-Hard seems to be very sensitive to chosen wI dependent on
model. Models c41, p2 and especially w2 seem to work better with chosen wI .
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Figure 6.13: Model rwpC creates a wave pattern from given reflectivity input cloud.
Also visible are cvign artifacts. As the pattern is not stable with position
but instead moves depending on range, it should not serve as usable features
for localization.

Figure 6.14: Figure taken from Z. Zhang and Scaramuzza 2018 Fig. 5. Despite simi-
lar trajectories comparing estimated pose Xa or Xb to given Xgt can lead
to large differences in APE. Although the trajectories do not change, just
adding a pose offset, switching Xa for Xb can drastically change the result-
ing score.

The model rwpC generates no usable reflectivity compensation, an example is
shown in Fig. 6.13. It is therefore surprising to find it doing so well for time offset
0. For time offset 0.1 the model is much more in line with expectations. According
to Zhang et al. [L. Zhang, Camurri, and Fallon 2021] the ground truth poses are
generated by matching the undistorted point clouds, as are used by FastLIO to
high quality pre registered maps. Hence time offset 0.1 should be incorrect. Also
looking at the RPE suggests that time offset 0 is correct, as RPE on average is
lower for time offset 0, see Tab. 6.6. Fig. 6.14 shows a possible reason for this odd
behavior.

A comparison of a generated map of Math-Medium without and with intensity
compensation can be seen in Fig. 6.15. The compensated maps look more even
and different surfaces can be more easily distinguished. The horizontal gradient
present also in the 2d projections can be seen in the map also.

Quad

Tab. 6.7 shows the ATE for the Quad datasets. Again model set 2 performs slightly
better than set 1. Differences for Quad-easy and Quad-medium are minimal.
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6.3 Localization Performance

Dataset time offset 0.0 time offset 0.1
Math-Easy 0.0609 0.05927
Math-Medium 0.12623 0.12526
Math-Hard 0.05242 0.0543
Quad-Easy 0.03738 0.03857
Quad-Medium 0.12541 0.126
Quad-Hard 0.09547 0.0967
Mine-Easy 0.03701 0.03796
Mine-Medium 0.06765 0.06847
Mine-Hard 0.10781 0.10978
Park 0.05644 0.05948
Cloister 0.04516 0.04764

Table 6.6: RPE for the w2 model for time offset 0.0 and 0.1. As can be seen the
RPE for most datasets is lower for offset 0.0. This holds also for most
models.

time offset 0.0 time offset 0.1
Model Easy Medium Hard Easy Medium Hard
FastLIO2 0.0924 0.0996 0.1471 0.0693 0.0611 0.0566
Filtered Points 0.0894 0.0952 0.1564 0.0889 0.0859 0.1139
Raw Ref 0.0892 0.0950 0.1372 0.0887 0.0855 0.0646
wra1 0.0883 0.0899 0.1438 0.0691 0.0618 0.05778
c41 0.0887 0.0895 0.1474 0.0706 0.0638 0.0589
c42 0.0883 0.0891 0.146 0.0703 0.0635 0.0605
p1 0.0887 0.0894 0.1490 0.070 0.0626 0.0575
p2 0.0882 0.0886 0.1474 0.0706 0.0638 0.0589
w1 0.0885 0.0891 0.1501 0.0702 0.0619 0.0583
w2 0.0722 0.0889 0.1481 0.0699 0.628 0.577
wp1 0.0884 0.0883 0.1463 0.0707 0.0624 0.0557
wp2 0.0884 0.0889 0.1467 0.0702 0.0627 0.0575
rwra1 0.0964 0.1019 0.1392 0.0988 0.0974 0.0641
rw2 0.0961 0.1023 0.1458 0.0984 0.0971 0.0689
rwp1 X X X X X X
rwpC 0.0903 0.0991 0.1543 0.0833 0.0951 0.0789

Table 6.7: ATE for the three sequences of the Quad dataset of Newer College. X
marks non-convergence. Bold numbers are the best on sequence.
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a)

b)

Figure 6.15: The map of Math-Medium generated by FastLIO without using intensity
compensation a) and with compensated intensity b). Ground areas show
more even intensity in the compensated map. Elements like walls, curbs
and plants can be discerned.
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6.3 Localization Performance

time offset 0.0 time offset 0.1
Model Easy Medium Hard Easy Medium Hard
FastLIO2 0.1558 0.1533 0.1417 0.0496 0.0462 0.0525
Filtered Points 0.1188 0.1343 0.1318 0.0474 0.0434 0.0656
Raw Ref 0.1152 0.1265 0.1244 0.0416 0.0371 0.0544
wra1 0.1317 0.1343 0.1261 0.0357 0.0377 0.0561
c41 0.1317 0.1347 0.1266 0.0364 0.0376 0.0567
c42 0.1290 0.1365 0.1305 0.0358 0.0375 0.0563
p1 0.1342 0.1374 0.1304 0.0359 0.0372 0.0560
p2 0.1290 0.1366 0.1304 0.0357 0.0377 0.0568
w1 0.1322 0.1368 0.1303 0.0379 0.0376 0.0550
w2 0.1292 0.1364 0.1299 0.0377 0.0379 0.0568
wp1 0.1336 0.1371 0.1305 0.0355 0.0376 0.0576
wp2 0.1292 0.1366 0.1303 0.0359 0.0377 0.0562
rwra1 0.1147 0.1273 0.1244 0.0413 0.0375 0.0547
rw2 0.1292 0.1267 0.1244 0.0357 0.0376 0.0550
rwp1 X X X X X X
rwpC 0.1125 0.1282 0.1238 0.0419 0.0416 0.0578

Table 6.8: ATE for the three sequences of the Mine dataset of Newer College. X
marks non-convergence. Bold numbers are the best on sequence.

Reflectivity models again perform worse than baseline uncompensated reflectivity.
A map generated with compensated intensity can be seen in Fig. 6.16 (top). The
inner grass area can be easily discerned from surrounding pavement. Differences
between walls and pavement are less obvious.

Mine

Tab. 6.8 shows the results from the Mine dataset. The Mine dataset contains
exclusively enclosed spaces. It is also the dataset with the greatest difference be-
tween time offset 0.0 and 0.1. Reflectivity is competitive compared to intensity.
Fig. 6.16 (bottom) shows a map with compensated intensity. There is little dif-
ference between that map and the uncompensated map in Fig. 6.6. Especially
compared to the difference seen between other maps.

Park and Cloister

The results for the park and cloister datasets can be seen in Tab. 6.9. Again
reflectivity performs well on the enclosed spaces of cloister, while compensated
intensity performs worse than baseline.
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a)

b)

Figure 6.16: The map of Quad-Easy a) and Mine-Medium b) with compensated inten-
sity. Quad-Easy shows a noticeable difference to the inital uncompensated
intensity. The center oval has even intensity and can be clearly differenti-
ated from surrounding areas. The compensated intensity does not change
the Mine-Medium map much, as the initial map already contained a large
amount of high intensity points.
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time offset 0.0 time offset 0.1
Model Park Cloister Park Cloister
FastLIO2 0.3667 0.1426 0.3181 0.0667
Filtered Points X 0.1765 X 0.1094
Raw Ref 0.6958 0.1282 0.3102 0.0708
wra1 1.2706 0.1904 1.2449 0.1925
c41 0.3479 0.2045 0.3212 0.2005
c42 0.3486 0.2027 0.3234 0.2105
p1 0.3693 0.2029 0.3421 0.2102
p2 0.3492 0.1961 0.3198 0.2005
w1 0.3489 0.1888 0.3278 0.1849
w2 0.3414 0.1854 0.3090 0.1963
wp1 0.3443 0.1862 0.3172 0.1887
wp2 0.3466 0.2029 0.3166 0.2102
rwra1 0.5460 0.1272 0.5499 0.0642
rw2 0.6530 0.1284 0.6534 0.0666
rwp1 X X X X
rwpC 0.6171 0.1436 0.6172 0.0826

Table 6.9: ATE for the cloister and park sequences of Newer College. X marks
non-convergence. Bold numbers are the best on sequence.

Convergence on park tends to be more difficult. While using good values for
wI , usually 1× 10−4 or 1× 10−5 will improve results over baseline, some models
do not converge at all. This is probably due to the large amount of trees in the
second half of the dataset. While most datasets loose on average 50% of the input
points due to filtering, park looses on average over 60% with areas loosing over
70%.

General Remarks

As can be seen compensated intensity can improve localization performance, but
this depends on data context. In general reflectivity performs better in enclosed
spaces and shorter range scenarios. This might be due to the difficulty during
optimization leading to under performing reflectivity models.

Differences between intensity models tend to be limited. While parameterization
may lead to some improvement in performance, see e. g. Tab. 6.5, differences
between model types is limited.

Models using near range cos4 compensation and cwave tend to have a slight edge
on average. As these models are relatively easy to optimize, as the wave component
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can reliably be found. The remaining parameters are usually similar to the same
model without cwave.

Finding the perfect wI currently means, searching for each model and each
dataset a separate parameter. This is due to insufficient model normalization.

Performance

Given input point clouds with 131072 points, the proposed algorithm is capable
of real-time compensation and localization. On the test system the compensation
node on average needed 80-89ms per point cloud, while FastLIO2 needed 42-75ms
depending on the amount of points passing the filter stage. This allows to process
point clouds at a rate of 10Hz without issue.
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7 Conclusion
This works presents a novel approach for compensating short range LiDAR sen-
sors. The approach combines known physical concepts with observation based
compensation for sensor effects.

The models can generate good parameter estimation using a small number of
scans, that are sufficiently far apart to generate some variation in distance and an-
gle. While the input scans greatly affect the model parameters some guidelines for
good input scans could be presented. While the approach works well for intensity.
Some more work regarding reflectivity is needed.

Applying these models to real world data shows that intensity can be visibly
improved. Walls and comparable areas show more even intensity. Especially sen-
sor specific problems like low intensity close range areas show improvements. The
presented model for weighted range and angle with close range cos4 works well.
While cwave shows good results, cvign introduces some problems regarding opti-
mizing other parameters e. g. wα. Problems cvign tried to address are probably
due to underestimation of wα. Some more research into using rigid point cloud
undistortion before fusing has offered some preliminary improvements.

In the second step of this work intensity was added to FastLIO2 to improve
localization. The chosen approach takes the input point clouds, estimates local
normals to retrieve α and uses this to compensate point clouds during FastLIOs
runtime. The approach is real time capable.

First points are filtered by excluding outlier points and points, for which no
normals can be estimated. This reduces the point cloud by a significant amount.
As this mostly filters lone and outlier points this step alone improves FastLIO
performance on a variety of datasets.

Intensity residuals are generated by estimating a local intensity gradient between
map points. This is done by using the plane estimated by FastLIO2 for geometric
residuals. The gradient on the plane is estimated and combine with the error
between local intensity estimate and actual input intensity. This residual is added
to the state estimation.

Tests on the Newer College dataset show improved localization performance
using compensated intensity. Model type showed little changes in performance,
parameter changes while also not large, influenced localization performance more.
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7 Conclusion

Using compensated reflectivity is more difficult. While simple models without cvign
performed comparable to intensity model, models using vignette compensation
diverged even for low values for wI . Despite very small reflectivity gradients the
trajectory tended to diverge fast.

The resulting frameworks proved to increase localization performance and gen-
erated maps showing more consistent pseudo-reflectance values.

As mentioned before to improve model optimization, applying rigorous point
cloud undistortion to the used point clouds can be explored. Also looking more
into point cloud statistics to better understand the relationship between optimized
parameters and used points can be of interest.

To further improve localization performance, improving models might help, as
better parameter estimation showed to improve performance. Also a more rigorous
scheme for estimating local normals during intensity compensation for FastLIO can
be explored.
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1.1 a) Raw intensity Ip, e. g. measured by an Ouster OS0 LiDAR,
strongly depends on b) range r and c) incidence angle cos (α). d)
The ”reflectivity” channel ρ̄ reduces these effects, but remains in-
consistent over larger surfaces. e) We estimate a consistent pseudo
reflectance ρ̂ and extend FAST-LIO2 with pseudo reflectance resid-
uals to improve its accuracy. . . . . . . . . . . . . . . . . . . . . . . 1

2.1 Beam-steering flash LiDAR principle. A single laser source is used
to illuminate an area in front of the sensor. A set of stacked detec-
tors each generate a single range and intensity measurement, which
combine to a single vertical scan line. Horizontal angle θ and ver-
ical angle φ are also provided. Note that while θ is the same for
a vertical scan, in practice tightly stacked detectors will result in
slight deviations in θ for each detector. . . . . . . . . . . . . . . . . 4

2.2 The returning laser is recorded at horizontal angle θ and vertical
angle φ. The angles are measured in sensor frame. In the ide-
alized model the returning laser hits the sensor directly without
redirection. As can be seen in Fig. 2.1 the incoming rays are often
redirected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Single scan point clouds taken from the Newer College Dataset [L.
Zhang, Camurri, and Fallon 2021]. Three point clouds taken from
the Quad-Easy dataset. The clouds are colored according to point
distance to the sensor with blue being close. Points with invalid
range measure are not shown. Note that the blind spot at the
sensors back is due to the cable mount. . . . . . . . . . . . . . . . . 6

2.4 Multiple 2d projections taken from the Newer College Quad-Easy
dataset. Images are colored by the recorded intensity value clamped
to range [0, 0.35·Imax]. The scans are taken 40 LiDAR frames apart.
The image center is the forward direction for sensor movement. . . 8

73



List of Figures

2.5 Measured intensity depends on four distinguishable parameters:
ηsys the sensor intrinsic parameters such as laser energy or aper-
ture construction, ηatm atmospheric effect e. g. temperature or air
pressure, surface reflectance ρ and gloss η and acquisition geometry
range r and incidence angle α. . . . . . . . . . . . . . . . . . . . . . 9

2.6 Cropped 2d projections of point clouds taken from Newer College
Math-Medium. Left: Point intensity clamped to [0, 0.35 ∗ Imax].
Right: Measured range per point from colored red/yellow for short
range to blue for far ranges. Scanning non-lambertian surfaces like
glass results in very different results depending on incidence angle
α. For small α the glass returns high energy reflections. Points
surrounding these areas are often lost. . . . . . . . . . . . . . . . . 10

2.7 2d projections of a single point cloud taken from Newer College
Quad-Easy. a) Point intensity I clamped to [0, 0.35 ∗ Imax]. b)
Measured range r per point from colored red/yellow for short range
to blue for far ranges. c) cos α per point. α is estimated using
local normal estimations. As can be seen I quickly decreases with
increasing r. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.8 Further information channels recorded with an Ouster OS0. Top
shows the intensity and Bottom the sensor provided reflectivity.
Measurements where taken from form the Newer College Quad-
Easy dataset [L. Zhang, Camurri, and Fallon 2021]. . . . . . . . . . 13

2.9 Comparison of reflectivity to intensity measured using an Ouster
OS0. Points are ordered according to their range measurement.
The distance compensation applied can clearly be seen. . . . . . . . 14

4.1 Per point incidence angle estimation. The angles are retrieved using
one point cloud together with the KD Tree knn estimation. These
angles are shown as 2d projection in a). The smoothing effects
along the edges are the result of using only nearest-neighbors. The
estimated plane normals are shown in b). . . . . . . . . . . . . . . . 18

4.2 a) Intensity clamped to [0, 0.3] and b) compensation intensity clamped
to [0, 5e−5 ·Imax] using the geometric model. While range seems to
be compensated for, small noise in the angle computation creates
disproportionate compensation in places. While the left walls are
somewhat even, most ground areas are overcompensated c) shows
the geometric compensation function plotted over range (left) and
angle (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

74



List of Figures

4.3 Intensity clamped to [0, 0.3] and b) compensation intensity clamped
to [0, 2.5e − 2 · Imax] using the multiplicative weighted range and
angle model with m = 3546.099. Noisy angle measurements are
better compensated and ground areas are more even. Walls are
still uneven. c) shows the model plotted over range (left) and angle
(range). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.4 a) Intensity clamped to [0, 0.3] and b) compensation intensity clamped
to [0, 0.4] using the exponential model with wr = 0.947057 and
wα = −0.14458. Areas further from the sensor are show more even
intensity. The close range area is still very dark. . . . . . . . . . . . 25

4.5 Intensity of Newer-College Math-Medium (blue) and Newer-College
Quad-Easy (yellow) plotted against r compared to ccos(·, [0, 4]⊺) ·
0.0069 (green) against r. . . . . . . . . . . . . . . . . . . . . . . . . 26

4.6 a) Intensity clamped to [0, 0.3] and b) compensation intensity clamped
to [0, 0.7] using the exponential model with wr = 0.895899 and
wα = −0.153564 and csys with rmid = 5.67397 and rmin = 0.0774244.
The close range areas are now compensated for and align evenly
with adjacent similar surfaces. . . . . . . . . . . . . . . . . . . . . . 27

4.7 a) Intensity clamped to [0, 0.3] and b) compensation intensity clamped
to [0, 1.0] using the exponential model and cos4 model with wr =

0.955925 and wα = −0.222957, csys with rmid = 6.88915 and rmin =

−0.0525837 and cwave with [ψ = 2386.23, λ = 0.186251, a = 0.0463039].
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.8 Compensated intensity using the exponential model [wd = 1.18917, wα =

−0.190482], cos4 [rmid = 4.68113, rmin = 0.844142] and vignette
compensation [v1 = 0.163114, v2 = −2.80794, v3 = 3.38404]. . . . . . 28

4.9 Fused point cloud consisting of 12 single point clouds. Also shown
are the sampled poses. The minimal distance between poses is 2m . 29

4.10 a) shows the initial fused point cloud colored by intensity. b) shows
the points after the point fiters are applied. Poses are drawn in
white. Of the initial 1008092 points 611265 remain. Close range
points around the poses are removed as well as points along the
outer walls. The point set remaining is the corner inside the trajectory. 31

5.1 Figure taken from Xu, Cai, et al. 2022 Fig. 1. Overview over the
FastLIO2 algorithm. The algorithm consists of two major elements.
First the iterated Kalman Filter used for state estimation and sec-
ond the ikd-Tree used for quickly adding and looking up map points. 36

75



List of Figures

5.2 The updated FastLIO pipeline preprocesses the input LiDAR point
cloud by first estimating point normals and filtering outlier points.
All remaining points are intensity compensated. Geometric infor-
mation of all remaining points in P are processed like before. The
intensity information is used to compute an extra residual term
which are then fed to state estimation. . . . . . . . . . . . . . . . . 41

6.1 Intensity values scaled to [0,0.35] (top) and reflectivity values (bot-
tom) of the quad-easy dataset . . . . . . . . . . . . . . . . . . . . . 48

6.2 Map of the quad-easy dataset colored by intensity . . . . . . . . . . 49

6.3 Intensity values to [0,0.35] (top) and reflectivity values (bottom) of
the math-medium dataset . . . . . . . . . . . . . . . . . . . . . . . 50

6.4 Map of the Math-Medium dataset colored by intensity . . . . . . . 51

6.5 Intensity values to [0,0.35] (top) and reflectivity values (bottom) of
the Mine dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.6 Map of the Mine-Medium dataset colored by intensity . . . . . . . . 53

6.7 Intensity measurements plotted against range for Quad, Math and
Mine of the Newer College dataset. For all scans intensity de-
creses for r < 4. Also a very visible wave-like noise can be seen
on all datasets. Some dataset characteristics can be distinguished
e. g. Mine shows higher intensity over all range steps. . . . . . . . 54

6.8 Compensated intensity images for the models shown in Tab. 6.1
row 1 (a), row 2 (b), row 3 (c) and row 5 d). Without vignette
compensation close walls are not evenly compensated. c) shows
the artifacts introduced by to large ϕvign. c) and d) also show the
combination of large wr. Different surfaces cannot be distinguished
by intensity anymore. . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.9 Fused point cloud generated from Quad-Easy, using 40 point clouds
starting at scan 0, with minimum pose distance of 3m. a) shows
intensity as well as the start positions for some of the models in
Tab. 6.2. The number references the n-th pose. b) shows the esti-
mated angles and c) the measured distance of the dataset. . . . . . 57

6.10 Points sampled from Quad-Easy for optimization when starting at
pose 120. Shown is intensity (left) and estimated angles (right).
As can be seen while intensity is even, angles vary widely. This
prevents the optimization from generating usable parameters. . . . 58

76



List of Figures

6.11 Multiple projected point clouds taken from Math-Medium. In each
triplet a) is created using model in Tab. 6.2 0, b) uses 600 and is
rescaled by factor 0.83 to reduce saturation and c) uses model c42
in Tab. 6.3 and is rescaled by factor 2. . . . . . . . . . . . . . . . . 59

6.12 The fused point cloud used to train most models used to test local-
ization perfomance. The used point clouds contains high variance in
intensity a), a good variation in estimated α b) and a combination
of near and far ranges. . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.13 Model rwpC creates a wave pattern from given reflectivity input
cloud. Also visible are cvign artifacts. As the pattern is not stable
with position but instead moves depending on range, it should not
serve as usable features for localization. . . . . . . . . . . . . . . . . 64

6.14 Figure taken from Z. Zhang and Scaramuzza 2018 Fig. 5. Despite
similar trajectories comparing estimated pose Xa or Xb to given
Xgt can lead to large differences in APE. Although the trajectories
do not change, just adding a pose offset, switching Xa for Xb can
drastically change the resulting score. . . . . . . . . . . . . . . . . . 64

6.15 The map of Math-Medium generated by FastLIO without using in-
tensity compensation a) and with compensated intensity b). Ground
areas show more even intensity in the compensated map. Elements
like walls, curbs and plants can be discerned. . . . . . . . . . . . . . 66

6.16 The map of Quad-Easy a) and Mine-Medium b) with compensated
intensity. Quad-Easy shows a noticeable difference to the inital
uncompensated intensity. The center oval has even intensity and
can be clearly differentiated from surrounding areas. The compen-
sated intensity does not change the Mine-Medium map much, as
the initial map already contained a large amount of high intensity
points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

77





List of Tables
6.1 Initial model parameters optimized using the Quad-Easy dataset.

High wr and low wα can be seen. Models with just vignette but no
wave compensation show higher absolue values in ϕvign . . . . . . . 52

6.2 Model values for exponential weight and angle with cos4 optimized
along multiple positions on the Quad-Easy dataset. Start scans
100 and 200 include a tree and other plants which results in large
differences in parameters . . . . . . . . . . . . . . . . . . . . . . . . 55

6.3 Intensity models used for evaluating localization performance. All
models were trained on Math Medium using the same starting po-
sition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.4 Reflectivity models used for evaluating localization performance.
All models were trained on math medium using the same starting
position. Model rwpC was trained on a different dataset and did
not optimize correctly. It was kept as control. . . . . . . . . . . . . 62

6.5 ATE for the three sequences of the Math-Institute dataset of Newer
College. X marks non-convergence. Bold numbers are the best on
sequence. Time offset refers to the time offset used to compare
trajectories. An offset of 0.1 means that an estimated pose at time
t is compared to pose t+ 1 in the reference trajectory. . . . . . . . 63

6.6 RPE for the w2 model for time offset 0.0 and 0.1. As can be seen
the RPE for most datasets is lower for offset 0.0. This holds also
for most models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.7 ATE for the three sequences of the Quad dataset of Newer College.
X marks non-convergence. Bold numbers are the best on sequence. 65

6.8 ATE for the three sequences of the Mine dataset of Newer College.
X marks non-convergence. Bold numbers are the best on sequence. 67

6.9 ATE for the cloister and park sequences of Newer College. X marks
non-convergence. Bold numbers are the best on sequence. . . . . . . 69

79





Bibliography
Agarwal, Sameer, Keir Mierle, and The Ceres Solver Team (Mar. 2022). Ceres

Solver. Version 2.1. url: https://github.com/ceres-solver/ceres-solver.
Barsan, Ioan Andrei, Shenlong Wang, Andrei Pokrovsky, and Raquel Urtasun

(2020). “Learning to localize using a lidar intensity map.” In: Arxiv preprint
arxiv:2012.10902.

Bentley, Jon Louis (1975). “Multidimensional binary search trees used for associa-
tive searching.” In: Communications of the acm 18.9, pp. 509–517.

Blanco, Jose Luis and Pranjal Kumar Rai (2014). Nanoflann: a C++ header-
only fork of FLANN, a library for nearest neighbor (NN) with kd-trees. https:
//github.com/jlblancoc/nanoflann.

Goldman, D. and J. Chen (n.d.). In: Ieee international conference on computer
vision (iccv).

Grupp, Michael (2017). Evo: python package for the evaluation of odometry and
slam. https://github.com/MichaelGrupp/evo.

Hata, Alberto and Denis Wolf (2014). “Road marking detection using lidar re-
flective intensity data and its application to vehicle localization.” In: 17th in-
ternational ieee conference on intelligent transportation systems (itsc). IEEE,
pp. 584–589.

Hertzberg, Christoph, René Wagner, Udo Frese, and Lutz Schröder (2013). “Inte-
grating generic sensor fusion algorithms with sound state representations through
encapsulation of manifolds.” In: Information fusion 14.1, pp. 57–77.

Höfle, Bernhard and Norbert Pfeifer (2007). “Correction of laser scanning intensity
data: data and model-driven approaches.” In: Isprs journal of photogrammetry
and remote sensing 62.6, pp. 415–433.

Jelalian, Albert V (1992). Laser radar systems. Artech House on Demand.
Jutzi, Boris and H Gross (2009). “Normalization of lidar intensity data based on

range and surface incidence angle.” In: Int. arch. photogramm. remote sens. spat.
inf. sci 38, pp. 213–218.

Jutzi, Boris and Uwe Stilla (2006). “Range determination with waveform recording
laser systems using a wiener filter.” In: Isprs journal of photogrammetry and
remote sensing 61.2, pp. 95–107.

Kashani, Alireza G, Michael J Olsen, Christopher E Parrish, and Nicholas Wilson
(2015). “A review of lidar radiometric processing: from ad hoc intensity correc-
tion to rigorous radiometric calibration.” In: Sensors 15.11, pp. 28099–28128.

Lehner, Hubert and Christian Briese (2010). “Radiometric calibration of full-
waveform airborne laser scanning data based on natural surfaces.” In:

81

https://github.com/ceres-solver/ceres-solver
https://github.com/jlblancoc/nanoflann
https://github.com/jlblancoc/nanoflann
https://github.com/MichaelGrupp/evo


Bibliography

Levenberg, K (1944). “Method for the solution of certain problems in least squares
siam.” In: J numer anal 16, 588–A604.

Levinson, Jesse and Sebastian Thrun (2010). “Robust vehicle localization in urban
environments using probabilistic maps.” In: 2010 ieee international conference
on robotics and automation. IEEE, pp. 4372–4378.

Marquardt, Donald W (1963). “An algorithm for least-squares estimation of non-
linear parameters.” In: Journal of the society for industrial and applied mathe-
matics 11.2, pp. 431–441.

Muja, Marius and David G Lowe (2009). “Fast approximate nearest neighbors
with automatic algorithm configuration.” In: Visapp (1) 2.331-340, p. 2.

Phong, Bui Tuong (1998). “Illumination for computer generated pictures.” In: Sem-
inal graphics: pioneering efforts that shaped the field, pp. 95–101.

Quigley, “Morgan, Brian Gerkey, Ken Conley, Josh Faust, Tully Foote, Jeremy
Leibs, Eric Berger, Rob Wheeler, and Andrew Ng” (2009). ““ros: an open-source
robot operating system”.” In: “proc. of the ieee intl. conf. on robotics and au-
tomation (icra) workshop on open source robotics”.

Rusu, Radu Bogdan (Oct. 2009). “Semantic 3d object maps for everyday manipula-
tion in human living environments.” PhD thesis. Computer Science department,
Technische Universitaet Muenchen, Germany.

Steder, Bastian, Michael Ruhnke, Rainer Kümmerle, and Wolfram Burgard (2015).
“Maximum likelihood remission calibration for groups of heterogeneous laser
scanners.” In: 2015 ieee international conference on robotics and automation
(icra). IEEE, pp. 2078–2083.

Truemper, Klaus (1982). “Alpha-balanced graphs and matrices and gf (3)-representability
of matroids.” In: Journal of combinatorial theory, series b 32.2, pp. 112–139.

Umeyama, Shinji (1991). “Least-squares estimation of transformation parameters
between two point patterns.” In: Ieee transactions on pattern analysis & machine
intelligence 13.04, pp. 376–380.

Wang, Han, Chen Wang, and Lihua Xie (2021). “Intensity-slam: intensity assisted
localization and mapping for large scale environment.” In: Ieee robotics and
automation letters 6.2, pp. 1715–1721.

Xu, Wei, Yixi Cai, Dongjiao He, Jiarong Lin, and Fu Zhang (2022). “Fast-lio2:
fast direct lidar-inertial odometry.” In: Ieee transactions on robotics.

Xu, Wei and Fu Zhang (2021). “Fast-lio: a fast, robust lidar-inertial odometry
package by tightly-coupled iterated kalman filter.” In: Ieee robotics and automa-
tion letters 6.2, pp. 3317–3324.

Yan, Wai Yeung, Ahmed Shaker, Ayman Habib, and Ana Paula Kersting (2012).
“Improving classification accuracy of airborne lidar intensity data by geometric
calibration and radiometric correction.” In: Isprs journal of photogrammetry and
remote sensing 67, pp. 35–44.

Zhang, Lintong, Marco Camurri, and Maurice Fallon (2021). Multi-camera lidar
inertial extension to the newer college dataset. arXiv: 2112.08854 [cs.RO].

82

https://arxiv.org/abs/2112.08854


Bibliography

Zhang, Zichao and Davide Scaramuzza (2018). “A tutorial on quantitative trajec-
tory evaluation for visual (-inertial) odometry.” In: 2018 ieee/rsj international
conference on intelligent robots and systems (iros). IEEE, pp. 7244–7251.

83


	Introduction
	LiDAR Fundamentals
	LiDAR
	Point Clouds
	LiDAR Intensity
	Measurements Parameters
	LiDAR Range Equation
	Reflectivity


	Related Work
	LiDAR Intensity Compensation
	Incidence Angle computation
	kNN Computation
	Normal Computation
	Incidence Angle Computation

	Intensity Compensation
	Compensation Stages

	LiDAR Intensity Compensation Models
	Geometric Compensation
	Weighted Range And Angle
	Sensor Specific Compensation
	Near Range Cos4
	Wave Compensation
	Vignette Compensation

	Compensation Parameter Optimization
	Point Filter
	Model Parameter Optimization


	Localization using FastLIO With Compensated LiDAR Data
	FastLIO2
	FastLIO State Estimation
	Mapping using incremental kd-Tree

	Used Additional LiDAR Data
	Point Cloud Preprocessing
	Intensity Residuals


	Evaluation
	Newer College Dataset
	Compensation Models
	Localization Performance
	Performance on Newer College


	Conclusion
	Appendices

