
Institute for Computer Science
Department VI
Autonomous Intelligent Systems

Rheinische
Friedrich-Wilhelms-

Universität Bonn

Rheinische
Friedrich-Wilhelms-Universität Bonn

Bachelor Thesis

Deep 3D Non-Rigid Registration for Novel
Objects from RGB Images

Author:
Florian Huber

First Examiner:
Prof. Dr. Sven Behnke

Second Examiner:
Dr. Michael Weinmann

Supervisor:
Diego Rodriguez

November 10, 2019

Declaration

I hereby declare that I am the sole author of this thesis and that none other than
the specified sources and aids have been used. Passages and figures quoted from
other works have been marked with appropriate mention of the source.

Place, Date Signature

Abstract
3D object non-rigid registration for novel objects from RGB images aims to de-
form a given textured 3D model to match the geometry of an unknown object
observed in only one RGB image. 3D object registration for given RGB-D data
is a well known research area with several applications in robotics, but it is still
an open problem when depth information is not available. The use of RGB over
RGB-D cameras presents several advantages in terms of price, frame rate and res-
olution. Additional problems with inaccurate and complex depth calibrations are
also avoided. In this thesis, we will present a novel idea to solve the 3D non-rigid
registration problem from RGB images using convolutional neural networks. We
will show how to represent non-rigid deformations to make them suitable for neu-
ral networks and how to build an appropriate dataset for learning. This approach
relies on a neural network architecture based on the FlowNet architecture. Fur-
thermore, we will address the problem of occluded parts, that occurs by using only
one image for 3D registration. This is achieved by using a lower dimensional shape
space that contains typical deformations of an object category. We will present
experiments done on unseen objects and we will compare the results with other
registration approaches.

Contents
1 Introduction 9

2 Related Work 11
2.1 Learning Optical Flow with Convolutional Networks 11
2.2 Learning 6D Pose Refinement with Convolutional Networks 14
2.3 Latent Space Non-Rigid Registration 16
2.4 General Related Work . 17

3 Background 19
3.1 Coherent Point Drift . 19
3.2 Principal Component Analysis . 21

4 Methodology 25
4.1 Deformation Representation . 25
4.2 Rendering for Deep Learning . 26
4.3 The Network Architecture . 27
4.4 Image Coding for Deformation Estimation 28
4.5 The Problem of Occluded Parts . 31
4.6 Iterative Matching . 34
4.7 Dataset generation . 35

5 Results 39
5.1 Experimental Setup . 39
5.2 Experimental Results . 40

6 Conclusion 47

7

1 Introduction
While humans are able to dexterously operate a tool, after they learned how to
use it once, robots need to overcome a challenging generalization task to be able
to achieve similar results in a dynamic environment. Non-rigid registration is a
way of transferring knowledge to novel objects. After having information about
what kind of tool should be used, non-rigid registration methods are capable of
deforming a known object into a novel one, observed in the environment. In most
cases, the observation is recorded with a RGB-D sensor to extract depth informa-
tion of the unknown object. Furthermore, in a real world application a complete
observation is often not possible, thus existing non-rigid registration approaches
are aiming on deforming the known object towards the seen parts of the unknown
object, while applying different constraints to conserve a consistent shape.
The method presented in this thesis introduces a way to perform non-rigid regis-
tration based on a single RGB image. The use of RGB over RGB-D cameras holds
several advantages such as price, frame-rate and field of view. Additionally, using
RGB cameras comes without calibrating the sensors before usage, as it has to be
done with RGB-D cameras, where it is necessary to calibrate the depth channel
to match the RGB channels. This is not only time consuming, but also a source
of errors.
In this thesis, we present an image based representation for deformation fields
similar to optical flow that can be estimated by Convolutional Neural Networks
(CNNs) in an iterative fashion. We show how to capture a synthetic dataset from
limited access to high quality textured 3D models, using the Coherent Point Drift
(CPD) method to obtain ground truth deformations. We aim to use only a single
image as input for the non-rigid registration, and overcome the problem of oc-
cluded parts. This thesis will describe how we use Principal Component Analysis
(PCA) together with a variety of training objects to capture typical deformations
of any object class, that is later used to solve the problem of occluded parts. Final
experiments will demonstrate the capabilities for the non-rigid registration of the
drill category. We compare the results of two state-of-the-art approaches for non-
rigid registration on point clouds and reach a competitive accuracy, even though
we are solving a harder problem because of the lack of depth information.
Our contributions include: (i) finding a representation for deformation fields, that

9

1 Introduction

can be presented to neural networks, (ii) proposing a network architecture, capable
of estimating a deformation from RGB images in an iterative fashion, (iii) build-
ing a synthetic dataset, consisting of images of rendered 3D meshes together with
ground truth deformations from a canonical object towards the training objects
calculated with CPD, (iv) presenting a solution to the problem of occluded parts
via Principal Component Analysis, completing a partially defined deformation
field, (iv) execution of experiments and evaluating our results against non-rigid
registration approaches relying on RGB-D data.

10

2 Related Work
There are three papers that were very influential for this thesis. The first one
to mention is the FlowNet network proposed in [1] and [2]. Dosovitskiy et al. [1]
presented a neural network architecture for estimating optical flow. This approach
was then used by Li et al. [3] to design a neural network capable of 6D pose
estimation. The presented approach follows the idea of using a rendered image
of a three dimensional model to match an observed image. By iterative pose
refinement of the three dimensional model before rendering, the images will look
more alike in each step.
The approach presented in this thesis is also influenced by [4]. Rodriguez and
Behnke [4] are using a method based on CPD and PCA to perform non-rigid
registration. The predicted information gets processed to not only register two
objects in a non-rigid fashion, but also to transfer grasping skills from a known
model to a previously unseen observed object.
Finally, we will briefly cover the state of the art on optical flow estimation, shape
completion and non-rigid registration.

2.1 Learning Optical Flow with Convolutional
Networks

The approach proposed by [1] proved for the first time in 2015 that CNNs are
capable to achieve competitive accuracy on optical flow estimation on existing
datasets like Sintel [5] and Kitti [6] at frame rates of 5 to 10 frames per second.
The results are encouraging to apply CNNs in other image processing tasks that
require precise per-pixel localization and correspondence finding between two input
images, since both are requirements for successful optical flow estimation. The
training of the FlowNet networks is done end to end. Since it is known to be
a difficult task to obtain ground truth flow estimation data on video sequences,
the training of the network relies on a synthetic dataset called ”Flying Chairs”.
This dataset consists of random background images of Flickr on which segmented
images of Chairs are overposed. Even though the dataset is synthetic and the
pictures are quite different than actual real world scenes, the network is able to

11

2 Related Work

generalize on real world data. One of the proposed and tested network structures,
namely ”FlowNetSimple” is presented in Figure 2.1. Figure 2.2 shows the optical
flow estimation of the FlowNet networks from [1] on image pairs of the Sintel
dataset. Based on [1] Ilg et al. [2] proposed FLowNet2.0 in 2017. The methods

FlowNetSimple

Figure 2.1: Network architecture of FlowNet Simple. Image taken from [1]
.

of [1] are tweaked in a way, that state of the art flow estimation is achieved by
using CNNs. The FlyingChairs dataset gets adjusted to FlyingChairs3D. Instead
of using two dimensional chair models now three dimensional chair models are used
to reflect true motion and lighting effects on the models. The work shows, that a
dataset schedule works best, starting with the old FlyingChairs dataset followed
by fine tuning on FlyingChairs3D. This modification alone improved the results
by up to 30%. A contribution introduced in [2] is the decaying schedule for the
training of the network.
Another contribution is the proposal of a new stacked network structure. Stacked
networks are used to mime the effect of an iterative flow estimating approach. After
each network, one of the input images gets warped with the previously calculated
flow to enable the next network to concentrate on improving the flow estimation.
A schematic view of the complete architecture can be seen in Figure 2.3. One last
contribution is a new CNN architecture specialized on small motions and therefore
small values for optical flow. Additionally, a network architecture is presented, that
is capable of merging the results from different optical flow estimation results. The
entire FlowNet2.0 architecture is presented in Figure 2.3.
All those changes finally lead to better results as accomplished in [1]. Figure 2.4
shows example optical flow estimations on images from the Sintel dataset.

12

2.1 Learning Optical Flow with Convolutional Networks

Images Ground Truth FlowNetS FlowNetC

Figure 2.2: The overlayed input images on the left, followed by different colored visualiza-
tions of optical flows: Ground Truth, calculated by FlowNetS and calculated
by FlowNetC. Image taken from [1].

Figure 2.3: Schematic view of complete FlowNet2.0 architecture. Multiple FlowNet
CNNs are combined. Curly braces means that the input gets concatenated.
At the end, there is an additional new fusion network to calculate the final
estimate. Image taken from [2].

13

2 Related Work

Images Ground Truth FlowNetS FlowNet2

Figure 2.4: Example of different flow estimation results for the two overlayed images
from the Sintel dataset on the left. The two most right images shows the
results of the FlowNet2.0 network. Image taken from [2].

2.2 Learning 6D Pose Refinement with
Convolutional Networks

Li et al. [3] used a CNN with a similar structure as FlowNetSimple from [1] to per-
form iterative matching for 6D pose estimation [3] (DeepIM). The motivation for
this paper comes from the fact that recognizing the 6D pose, i.e., 3D location and
3D orientation of objects provides useful information for grasp and motion plan-
ning. Several recent techniques attack this problem by using 3D information of the
object received by RGB-D cameras. Limitations of those cameras in comparison
with RGB sensors are prevalent, such as frame rate, depth range, resolution and
field of view.
A CNN for iterative pose refinement is introduced that automatically learns an
internal refinement mechanism. The network is displayed in Figure 2.5. An 8
channel input consisting of the observed image, a bounding box for the observed
object, a rendered image and a mask for the rendered object serves as input for
the network. The network is used in an iterative approach, i.e., there are two
alternating steps that are repeated. The first step is to render an image of a
textured 3D model of the observed object in a pose that should be refined. The

14

2.2 Learning 6D Pose Refinement with Convolutional Networks

second step is to feed the observed image together with the rendered image to the
network to receive a small refinement for the previously applied pose. Afterwards,
the first step is performed again with the refined pose estimation. The two steps
are iterated, until the rendered and the observed image are highly similar.
The network architecture used for training differs from the one that is used for
testing. For training, estimation of optical flow and mask prediction were added
after deconvolutional layers of the network. This improves the stability of training
process , but since deconvolutional layers are time consuming and the output is of
no benefit for the pose estimation task, the network used for testing has no output
of optical flow or mask images. The paper also covers an untangled representa-

Figure 2.5: DeepIM network using the FlowNetSimple as backbone architecture. A pose
estimation is predicted based on an observed and a rendered image. Image
taken from [3].

tion of the SE(3) transformation between object poses. This representation is key
to achieve accurate pose estimates. Experiments on several datasets, such that
the LINEMOD [7] and the Occlusion dataset proved, that the DeepIM network
improves over state of the art of RGB-only pose estimation in terms of accuracy.

15

2 Related Work

2.3 Latent Space Non-Rigid Registration
Since objects within a category are often similar in shape and usage the approach
from [8] and later on [4] uses CPD and PCA to define a search space for possible
deformations from a known canonical model towards a novel observed object. The
generated search space is called latent space. In this space a deformation from the
canonical towards a novel object is found, which best matches the observed 3D
points.
The method is divided in a learning and an inferring phase. In the learning phase,
several three dimensional models of objects from the same category are used, where
a category is defined as a class of objects with similar topology and extrinsic shape,
like for example the category of drills. A canonical object is chosen heuristically
and CPD is used, to generate a deformation from the canonical instance towards all
the other instances. The deformation gets captured in a single matrix per training
instance. By rewriting the matrices into vectors in a high dimensional vector space,
it is possible to perform dimensionality reduction on the deformations vie PCA.
This produces a low dimensional latent space. Because the dimensionality is low,
it is possible to find a vector in the latent space that translates into a deformation
that minimizes the difference between the deformed canonical and the observed
3D points, in a reasonable time. A schematic view of the learning process can
be observed in Figure 2.6. The approach is proven to outperform CPD on shape

First Principal Component

S
ec

on
d

P
ri

nc
ip

al
 C

om
po

ne
nt

Training
Samples Latent (shape) Space

Canonical
Model

Design Matrix

PCA-EM

Calculate
Defromations

Figure 2.6: Latent space learning process. The deformations between the canonical
model and the training instances are represented by Wi. These are writ-
ten into vectors and compressed by PCA to obtain the latent space. Image
taken from [8].

completion tasks on partially observed objects. This comes from the fact, that
deformations for similar shapes are already learned. This enables the approach to
predict a possible shape even on parts where no information is available.

16

2.4 General Related Work

2.4 General Related Work
This section will cover over a wide field of related topics to this thesis. Starting
by several approaches to perform optical flow estimation and motion extraction.
The next part presents methods to complete 3D shapes. Finally, we introduce
state-of-the-art approaches for non-rigid registration.

Optical Flow Estimation

Optical flow estimation using end-to-end training methods with CNNs was first
presented in [1]. Following this approach Ranjan and Black [9] used a classical
spatial-pyramid formulation for a deep learning concept to compute optical flow.
The pyramid scheme takes care of the historically difficult problem of estimating
large displacements within the optical flow. Another way to deal with large dis-
placements in optical flow estimation via deep learning comes from [10]. A deep
descriptor matching algorithm is blended with a variational approach for optical
flow. Inspired from signal processing principles, Teney and Hebert [11] proposed a
network architecture capable of end-to-end learning on motion extraction with a
small number of training examples. Other approaches for estimating optical flow
with CNNs are using patch matching together with Siamese networks [12] [13].
Two networks are used independently and in parallel to compute the descriptors
of both images. To overcome the need of extensive training datasets, learning
of optical flow estimation can be done in an unsupervised way. Unsupervised
learning is applied by Ahmadi and Patras [14] for motion estimation. Another
interpretation of learning optical flow unsupervised is given in [15].
Using neural networks for precise pixelwise estimation tasks often results in blurry
estimations. Image denoising and image restoration in general can be applied in a
post processing step to the network output. Chen and Pock [16] proposed a non-
linear reaction diffusion model for image refinement with all parameters learned
simultaneously through a loss based approach. In [2] the issue of blurry network
output is solved by using a stacked network structure, to remove inaccuracy and
refine the output in an incremental way.

3D Shape Completion

3D shape completion aims to infer unseen parts of an original shape given sparse or
partial input observations. Radial basis functions are used to reconstruct smooth
surfaces from point cloud data and to repair incomplete meshes [17]. Other ap-
proaches cast the reconstruction from oriented point clouds as a Poisson problem
[18]. More recent methods use data-driven approaches for 3D completion tasks.

17

2 Related Work

Choy et al. [19] use a recurrent neural network structure that learns mapping from
images of objects to their underlying 3D shapes from a large collection of syn-
thetic data. Volumetric deep neural networks and 3D shape synthesis are used in
[20]. For a given partially observed shape, the network first infers a low-resolution
output shape, that then gets passed through a 3D-encoder predictor network com-
posed of 3D convolutional layers to infer the final shape. In [21], a singular depth
image served as input to recover a complete 3D model. Objects from an exemplary
database are used to transfer symmetries and surfaces. Furthermore, single view
shape completion and reconstruction is approached by integrating deep generative
models with adversarially learned shape priors [22] or by representing shapes as
probability distributions of binary variables on a 3D voxel grid using a convolu-
tional deep belief network [23]. Another way of representing a class of shapes are
signed distance functions, that can be learned by neural networks [24].
Comparing our approach with the work presented in [22] and [19] is interesting,
since both papers cover the topic of shape reconstruction from RGB images. While
both approaches achieve good results when estimating shapes, they have no pos-
sibility to transfer knowledge over the estimated shape. Our approach meanwhile
achieves a shape estimation by deforming a known object, such that it is possible
to transfer knowledge.

Non-Rigid Registration

The variety of non-rigid registration methods differs mostly through the prior
restrictions or through the regularization of the deformation that the points can
undergo. The non-rigid registration surface matching problem can be formulated
as a high order graph matching problem [25]. In a different approach, nearly
isometric maps are blended together to obtain blended intrinsic maps between
two surfaces [26]. Several methods for non-rigid registration rely on an isometry-
invariant comparison of smooth surfaces [27] [28] [29]. Thin plate spines are used
for for fitting high detailed meshes from human body scans [30] and the classical
iterative closest points approach gets adjusted to work on non-rigid objects [31].
Additionally, to make use of expectation maximization algorithms the points of
one point set can be understand as centroids of a gaussian mixture model [32].

18

3 Background

To explain our approach on solving the problem of non-rigid registration for novel
objects from RGB images we need to explain two necessary methods. First we in-
troduce the CPD method for point set registration. Afterwards we introduce PCA
as a method to lower the dimension of data, while conserving as much information
as possible.

3.1 Coherent Point Drift

In this section, the main concepts of the CPD [32] method will be introduced. Our
approach of estimating a non-rigid registration is based on the non-rigid version
of CPD. Since the rigid version of CPD is not used throughout this thesis, it will
not be covered in this chapter. CPD is a method to perform point set registration
for two given sets of points. Its goal is to assign a deformation field to one of two
sets of points, such that the deformed set of points is similar to the other set of
points.
For two sets of D-dimensional points X = (x1, ..., xN)

T and Y = (y1, ..., yM)T

CPD outputs a deformation field mapping Y towards X. For this purpose the
points of Y are considered as the centroids of a Gaussian Mixture Model (GMM)
and the points of X are considered as samples drawn from the GMM Y . Equal
isotropic covariances σ2 and equal membership probabilities P (m) = 1

M
are used

for all GMM components. The desired deformation field maximizes the probability
of the points from X being drawn from the GMM Y , by moving the centroids.
Therefore the point set registration problem is broken down to an expectation
maximization (EM) problem.
At the same time, there are limitations on the possible movement of the centroids.
Under the assumption, that centroids near each other move in a similar way, the
calculated deformation field should be smooth. To achieve this CPD imposes a
smoothness constraint in the form of motion coherence. This idea is based on
Motion Coherence Theory [33].
For the non-rigid approach, a deformation field T (Y, v) is described by the initial

19

3 Background

position of the points Y together with a displacement function v:

T (Y, v) = Y + v(Y). (3.1)

For any D-dimensional set of points Z ∈ RN×D the displacement function v is
defined as:

v(Z) = G(Y, Z) ∗ W. (3.2)

Where W ∈ RM×D is a weight matrix for the movement of the centroids. This
can be interpreted as an offset or D-dimensional deformation vector that should be
applied to the points of Y . The coherent movement is controlled by the Gaussian
kernel matrix G(Y, Z). Given β, a free parameter, that controls the strength of
interaction among different points, the matrix G(Y, Z) is defined element-wise as:

gij = G(yi, zj) = exp(− 1

2β2 ∥yi − zi∥2). (3.3)

For our convenience in the notion, G(Y, Y) will be denoted as G. The in Equation
(3.1) stated definition of a deformation field allows us to formulate an objective
function E(Y, ϕ). Minimizing E(Y, ϕ) will maximize the likelihood that the points
of X are drawn from the GMM Y . It is defined as:

E(Y, v) = −
N∑

n=1

log

M∑
m=1

exp(− 1

2σ2 ∥xi − T (Y, v)∥2) + λ

2
ψ(v(Y)). (3.4)

Whereas λ represents the trade-off between the precision of the maximum like-
lihood fit and a regularization term. The regularization is expressed with ψ(v)

and briefly summarized it is described by a norm in the Hilbert space Hm that
decreases with the smoothness of v(Y). The first part of Equation (3.4) penalizes
the distance between the deformed points from Y and the points from X and the
second part motivates coherent movement from the points of Y .
CPD uses an EM algorithm derived from [34] to minimize the energy function from
Equation (3.4). The EM-algorithm is split in an estimation and a maximization
step. Both steps build one iteration of the algorithm. Within the estimation-step
a posterior probabilities matrix P ∈ RM×N is calculated. It is defined element
wise as:

pmn =
exp(− 1

2σ2 ∥yn − T (ym, v)∥2)∑M
k=1 exp(− 1

2σ2 ∥yn − T (yk, v)∥2) + ω
1−ω

(2πσ2)0.5D

N

. (3.5)

20

3.2 Principal Component Analysis

The entry pmn describes the a posteriori probability that the point with index n

from X is drawn from the GMM with index m. The free parameter ω works as a
weight in front of a regularization term, that takes care of noise in the input point
set. The maximization-step of the EM-algorithm is used to estimate the matrix
W from Equation (3.2). It is done by solving the following equation:

(G + λσ2d(P1)−1)W = d(P1)−1PX − Y. (3.6)

We will refer with 1 to a column vector of ones and with d(.) to the function that
maps a column vector to a quadratic diagonal matrix in the natural way.
Note that a deformation can be applied to a point set with knowledge about G
and W. While the G matrix only depends on the point set that is deformed, the
W matrix depends on the target point set as well. This can be used to develop
a method to learn deformation fields from a source point set to a target point
set. As long as the source point set is well known, learning a deformation field
is broken down to the task of estimating a fitting W. We will use this idea later
on for developing our non-rigid registration approach. An example for successful
non-rigid registration via CPD can be observed in Figure 3.1

Point Set Y Point Set X Before CPD After CPD

Figure 3.1: Example of a CPD execution on two point sets Y and X.

3.2 Principal Component Analysis
Principal Component Analysis (PCA) is a statistical procedure to map a set of
high dimensional points to a set of points with a lower dimensionality. The goal is
to reduce the complexity of the data without loosing too much information. This
means that it should be possible to restore the original data points precisely. The
main idea is, that the individual dimensions of the pre-PCA data are correlated to
each other. PCA then calculates a change of basis to a lower dimensional vector

21

3 Background

space, that is applied to the data, yielding in a post-PCA representation with less
correlation between the decimated dimensions.
Let the pre-PCA data be represented by a vector of data points X = (xT1 , ..., x

T
n)

T

with xi ∈ Rm. Each of them dimensions will be denoted as di with i ∈ (0, ...,m−1).
For two given dimensions di, dj we denote the sample covariance on X between
them as cov(di, dj).
The first step for performing PCA is to normalize the data by subtracting the
mean x̄ from all points of the data set. x̄ is a vector holding the mean value over
X from each individual dimension. The next step is to calculate the covariance
matrix C. It is defined element-wise as:

cij = cov(di, dj). (3.7)

Afterwards the unit eigenvectors of C are calculated and sorted by the size of their
according eigenvalues. Picking the first l of them leaves us with l eigenvectors
e1, ..., el with l << m and ei ∈ Rm. These vectors will serve as basis for a vector
space. We will denote to this space as latent space throughout this thesis. All
together the l eigenvectors build the matrix L ∈ Rm×l with one vector in each of
the columns.

L =
(
e1...el

)
. (3.8)

L can be used to map data points between the original- and the latent space. By
multiplying either a point in original coordinates with L from the right side, or by
multiplying a point in latent coordinates with LT from the right side. The mean
x̄ has to be either subtracted or added accordingly. Multiple data points can be
converted simultaneously by putting them together in a matrix. For example, we
can convert our original (pre-PCA) data points by rewriting the vector of vectors
X as the matrix X ∈ Rn×m. We then obtain the latent space coordinates for all n
points. They are stored in the according rows of the matrix Y ∈ Rn×l calculated
as:

Y = X ∗ L + x̄. (3.9)

To go from points Y in the latent space to points X in the original space, we can
perform the inverse operation:

X = (Y − x̄) ∗ LT . (3.10)

22

3.2 Principal Component Analysis

Note, that we can transpose the Equations (3.9) and (3.10) if we multiply from
the left with L or LT . Furthermore we note, that L is an orthogonal matrix and
therefore LT = L−1.
Since the computation of the principle components is very costly, when it is done
in an analytical way, we use the PCA Expectation Maximization (PCA - EM)
algorithm [35]. This method is not only faster than the analytical approach, but it
is also very stable in a numerical way. As usual for every expectation maximization
algorithm the matrix L is found by alternating between an expectation and a
maximization step. The expectation step is given by:

Y = XLT (LLT)−1. (3.11)

And the maximization step by:

L = (YYT)−1YTX. (3.12)

In these equations, X ∈ Rn×m denotes the original data vector in its matrix form
and Y ∈ Rn×l is the matrix of the previously unknown conversion from X into
latent coordinates, as it will be calculated by Equation (3.9). The columns of L
will span the vector space of the first l principal components. By standard EM
convergence proofs, it is shown that PCA - EM converges to a local maximum [34].
It can be shown additionally, that the only stable extrema is the global maximum
[36] [37]. Therefore the algorithm will be optimal for a large enough number of
iterations.
As a general insight from this section note, that the matrix L together with x̄

stores a lot of information about the input dataset. Since the transfer from orig-
inal into latent coordinates happens by a matrix multiplication, we can assume
that points that are similar in the higher dimensional space are also similar in the
lower dimensional one.

23

4 Methodology

This chapter describes how we solved the task of non-rigid registration from RGB
data using deep learning. It describes how we use CPD to obtain ground truth
deformations for our network to learn. The way these deformations are presented
to a neural network will be described as well. Afterwards, the architecture of the
neural network that is used to infer three dimensional deformations from a RGB
image is described. The problem of occluded points that appears when an object
is observed from a single view is addressed. We use PCA to generate a latent space
for valid deformations of the object category and extend the deformations on the
visible points by a least squares method. The last section is devoted to building
a training dataset to learn object deformations. It is described how we used CPD
to obtain additional training objects, and thus to augment the training dataset.

4.1 Deformation Representation

The task we aim to solve in this thesis is to calculate a deformation, that will
deform a known 3D model into a novel object, observed on a RGB image. We
refer to the model that is known and should be deformed as the canonical model.
The canonical model consists of a textured and structured three dimensional mesh
and an underlying point cloud. The mesh consists of m points or vertices. The
vertices are connected by triangular cells. We infer the underlying point cloud
for a given mesh by ray-casting from several viewpoints on a tessellated sphere.
Afterwards, we apply a voxel grid filter that leaves us with n points given a defined
resolution. An example of this process is shown in Figure 4.1. The underlying point
cloud is described through a matrix where we assign each row to a 3D point. The
matrix belonging to the underlying point cloud of the canonical model is referred
as C ∈ Rn×3. By exchanging the coordinates of the point cloud points with the 3D
coordinates of the vertices of the mesh, we define a matrix to represent the mesh,
Cm ∈ Rm×3. The underlying point cloud is used to define a deformation on the
whole mesh structure. To deform the mesh structure we have to move the vertices
of the mesh without changing the topology of the cells. The matrix belonging to

25

4 Methodology

the deformed mesh vertices is defined as C′
m ∈ Rm×3 and calculated as follows:

C′
m = Cm + G(C,Cm) ∗ W(C,O). (4.1)

In this equation, W(C,O) ∈ Rn×3 describes the offsets that should be applied
to the points of the canonical point cloud C to deform it towards a point cloud,
underlying an observed instance represented by O ∈ Rk×3. In this manner, each
line of W(C,O) can be assigned to a point of the canonical point cloud. The
offsets W(C,O) get multiplied by G(C,Cm) ∈ Rm×n to convert offsets given on
the underlying point cloud into offsets on the vertices of the mesh. G(C,Cm) is
calculated as described in Equation (3.3) and serves to ensure coherent movement
of the vertices. Since the movement is smooth we use the old topology together
with the new mesh vertices C′

m. Note that W(C,O) is the only part of the
equation that depends on the observed instance. Therefore learning a deformation
to apply to the canonical model is reduced to learning W(C,O).

Unmorphed Deformed
3D Mesh 3D Mesh

Ray-casted
Cloud

Downsampled
Cloud

Ray-casted
Cloud

Downsampled
Cloud

Figure 4.1: 3D mesh to low resolution point cloud. The mesh gets ray-casted and the
resulting point cloud gets downsampled to a lower resolution. On the left
side we see the canonical model in its original shape and on the right side we
see the canonical model after it was deformed with an arbitrary deformation.

4.2 Rendering for Deep Learning
In this section, we briefly overview the definition of rendering or image synthesis.
Since it is a major sub-topic of computer graphics, it is out of the scope of this
thesis to give a depth analysis on rendering, but we can refer to further literature
[38] [39] [40]. Rendering refers to the process of generating a photo-realistic image
from a given 3D-model. The model contains information about the geometry and
the texture of itself. The program to perform the rendering, called a renderer,
then gets further information from the user. This includes a point of view and a
source of light. The point of view determines the parts of the model that are seen
on the picture and the source of light defines the lighting and the shadows.

26

4.3 The Network Architecture

The renderer outputs an image of the object on a black background. For most
purposes it is useful to choose a real life image to substitute the background. Ex-
emplary rendered images can be observed in Figure 5.2.
Todays rendering techniques are capable of producing convincing and photo-realistic
rendering of highly complicated themes. In the concept of deep learning, rendering
is used to make three dimensional data accessible to CNNs. Furthermore, render-
ing is used to generate synthetic datasets, that are on a high qualitative standard
and are highly customizable for different applications. In this thesis we use ren-
dering to render a frame of a canonical mesh to provide a RGB image as input for
our neural network. Additionally, we train the network with a synthetic dataset,
consisting of rendered views from several meshes from several viewpoints.

4.3 The Network Architecture

We approach the task of learning a deformation from two RGB images by applying
a deep neural network based on the architecture introduced in [2]. For a given
observed image, we assume to know the type of object we want to register. For
this purpose, we define an object category as a set of objects with the same topology
and a similar extrinsic shape. In other words, we assume that the category of the
object of interest on the observed image is known. Furthermore, we assume that
the position and rotation from the object of interest is known. These assumptions
can be met by, e.g., commonly used methods for semantic segmentation [41] and
pose estimation approaches [3]. With the given information we render a frame
of a canonical three dimensional model from the known category in the known
pose. At the same time, we produce a matching mask for the rendered image.
We additionally compute a bounding box for the observed image. This leaves us
with four images to serve as input for our network —the observed RGB image and
mask, together with the rendered RGB image and mask. Depending on the larger
mask, we zoom into the images to cut out unnecessary information. The zoomed
images are then upsampled to a fixed size of 256 × 192 pixels. An example for the
zooming process is shown in Figure 4.2. Note that both images are handled the
same way for all operations to ensure that the aspect ratio between both objects
does not change. We used bilinear upsampling to obtain the final images. The
low resolution is necessary to compensate for the size of the network. We can use
a low resolution representation without losing important information, since the
deformation is defined on the low resolution point cloud of the canonical model.
We decided to use a network architecture based on [2] since we assume a connection
between the optical flow among two objects and the offset that should be applied

27

4 Methodology

Original RGB Original Mask Zoomed RGB
Low Resolution

Zoomed Mask
Low Resolution

Observed

Rendered

Figure 4.2: An observed image and the according rendered image are cropped and
zoomed according to the biggest bounding box.

for a matching deformation. The mask can bee seen as a fourth channel additional
to the RGB channels of the two input images. For our approach, the FlowNet2
architecture is changed in two major ways. First, we substitute every use of the
original three channel input images with four channel images including the mask.
Second, we change the network to stop estimating a two dimensional flow, but
rather estimates a three dimensional offset. The final network architecture can be
seen in Figure 4.3.

4.4 Image Coding for Deformation Estimation
To define a target for the network to learn, we use the deformation representation
described in Equation (4.1) and keep a deformation in a three channel image. Each
channel will represent one of the coordinate axis. We will use the term x-, y-, and
z-channel throughout this thesis.
There are two ways of representing targets we tried within our work. The first
way is to store the values from W(C,O) directly. As stated above, each line in
W(C,O) belongs to exactly one point of the canonical point cloud. Given the
zoomed rendered image of the canonical model we determine a closest point image
of the same size (256 × 192 pixel). This image tells whether a pixel is part of the
3D model and its corresponding closest point of the canonical point cloud. The
closest point image can now be used to create the target image for training. We
search for the row in W(C,O) that belongs to each pixel where the model is seen
on. We then fill the first, the second and the third value of this row into the x-,
y-, and z-channel of the target image on the same pixel. Pixels, where no model is

28

4.4 Image Coding for Deformation Estimation

Img 1

Fusion

Input Images
Rendered

Observed

Output Image

Offsets

Brightness
Error

Offset

Warped

Img 2

Img 1

Brightness
Error

Offset

Warped

Img 2

FN-C

Brightness
Error

Flow
Magnitude

FN-S FN-S Offset

Network

Img 2

Img 1
FN-S

Flow
Magnitude

Brightness
Error

Offset

Img 1

Figure 4.3: Starting from an 8 channel input, architectures derived from FlowNetSim-
ple (FN-S) and FlowNetCorrelation (FN-C) are stacked, until receiving a
three channel output, encoding an offset in x-, y- and z-direction. Img1 and
Img2 refer to the concatenation of the rendered image and mask such as the
observed image and mask. The Brightness error is the difference between
the observed image and the rendered image warped with the previously esti-
mated offsets (Warped). The output image is represented through heatmaps
for each channel.

29

4 Methodology

seen in the rendered and zoomed image are filled with zeros in the target image.
This method holds the theoretical advantage that only necessary information gets
stored, since W(C,O) is the only part of Equation (4.1) that depends on the
observed instance. However, the resulting pictures are not smooth and initial
experiments showed, that the network had difficulties learning this representation
in a sense of unstable behavior during training and bad generalization.
As a solution to this problem, we can use a coherence matrix G(C,C) as calculated
in Equation (2.3) to get a target picture that satisfies the condition of smoothness.
We calculate the target offset matrix δ(C,O) depending on the canonical point
cloud and the underlying point cloud of the observed model as follows:

δ(C,O) = G(C,C) ∗ W(C,O). (4.2)

We can now use δ(C,O) instead of W(C,O) in the first method described above
to obtain smoother images. A comparison between both representations can be
seen in Figure 4.4.

Deformation

Deformation
in x-direction

Deformation
in y-direction

Deformation
in z-direction

Figure 4.4: An observed and rendered image is the left, followed by the two different im-
age codings for deformation estimation presented as heatmaps. The red cir-
cles highlight an area, that is irregular and difficult to learn using W(C,O),
but smooth when using δ(C,O).

30

4.5 The Problem of Occluded Parts

4.5 The Problem of Occluded Parts

One problem to overcome when performing a three dimensional registration based
on a two dimensional image is, that we are not able to fully observe the object.
Because we use exactly one image as starting point for our deformation estimation,
we need to find first an optimal deformation on the observable parts of the picture
and then extend it to a deformation of all parts of the canonical model. Estimating
optimal deformations on the observable parts, is handled by the network. Addi-
tionally we use multiple objects of an object category and calculate a latent space
for inferring deformations of the occluded parts of the canonical model. We then
calculate a deformation in the latent space, that is similar to the already estimated
deformation on the observed parts but with additional information for the hidden
parts as well. A similar procedure has proven to work well with partially observed
three dimensional data [8] [4].
We start generating a latent space, by choosing k different objects from the same
object category, that capture the geometric variability of the category. The point
cloud of each object is denoted by Ti with i ∈ (0, ..., k − 1). The point cloud
could be either directly given or could be generated with ray-casting from a three
dimensional mesh, similar as in Section 4.1. To control that the deformations will
only capture the different shape of the objects, we align all objects to the same
coordinate frame. So for the drills category, for example, the middle of the base
point is located at the origin of the coordinate system, the handle is aligned with
the z-axis and the tip points in the direction of the y-axis.
We now use CPD to calculate k deformations, deforming the canonical point cloud
towards each of the k category objects. The transformation of the canonical point
cloud towards object i will be denoted as Ti:

Ti(C,Wi) = C + G(C,C) ∗ Wi. (4.3)

Section 2.1 explains how we obtain G(C,C) and Wi. Note, that the only part
of the representation, that is not relying on the canonical model and therefore
capturing the uniqueness of the deformation is Wi. In addition, we observe that
the dimensionality of each Wi is the same. This allows us to define a feature vector
wi for each of the k objects. wi is obtained by converting the matrix Wi ∈ Rn×3

into a row vector wi ∈ R1×3n. Using each wi as a data point we perform PCA
as described in Section 2.2. This gives us the matrix L ∈ Rl×3n of principle
components. We can now transform any point given by a vector x ∈ Rl in the

31

4 Methodology

latent space into a feature vector wx ∈ R3n. This is given by the Equation:

wx = L ∗ x+ w̄. (4.4)

Where w̄ is the mean of all feature vectors. This equation shows that the canonical
matrix C together with the principle components L represents the deformation
model for an object category. We observe, that since PCA normalizes the data
points, the feature vectors wi are corresponding to points in the latent space near
the origin.
The latent space can now be used to obtain a deformation feature vector from
network output. As described the network output stores information about the
offsets, that should be applied to the canonical point cloud. We need to assign for
every pixel of the zoomed rendered image the point in the underlying canonical
point cloud, that is closest to the part of the 3D model that is seen in the pixel.
Since the resolution of the images is higher than the resolution of the point cloud,
multiple pixel are assigned to the same point. For every of the three channels of
the network output, we take the mean of all pixels that are assigned to the same
point of the point cloud. This results in a pointwise offset, that describes how the
canonical points have to be moved, to match the shape of the observed object.
Since we used only a single view image for this operation, there are points left,
we do not have offset information about. These are the occluded points, while
we denote to the points we have offset information on as visible points. For the
occluded points we assume an initial offset of zero. Using all offset values, we
build the matrix δvis ∈ Rn×3 by filling row i with the x, y and z coordinate of the
calculated offset of point i. This matrix contains a lot of zeros. We will use δvis

as starting point to obtain a full deformation of the canonical model.
The task of obtaining a full deformation is equal to the task of calculating a point
x in the latent space. This holds, since a point in the latent space can be translated
into a feature vector from a deformation and therefore in an inferred offset matrix
δinf . This can be written as:

δinf = G̃(C,C) ∗ (L ∗ x+ w̄). (4.5)

Where G̃(C,C) ∈ R3n×3n is a rearranged form of G(C,C) ∈ Rn×n with additional
zeros. G̃(C,C) is build in a way, that the offset obtained by rearranging vector
G̃(C,C) ∗ wx to an offset matrix has the same result as rearranging the feature
vector wx to a matrix Wx and multiplying G(C,C) ∗ Wx to directly obtain the
offset in matrix form. The goal is to minimize the loss on indices belonging to the

32

4.5 The Problem of Occluded Parts

visible points between δvis and δinf defined as:

L(δvis, δinf) =
∑
v∈ivis

∥δvis(v, .)− δinf (v, .)∥2 . (4.6)

Where ivis describes the set of indices belonging to visible points and δ(v, .) de-
scribes the v-th line of the matrix δ. We can rewrite this minimization problem
as a simple least squares problem. Let nv denote the amount of visible points. We
then define δvis ∈ R1×3nv as δvis after we removed every row containing zeros and
rearranged it to a row vector. This means we removed every row with an index
belonging to an occluded point. To overcome the problem of different dimensions
from δvis and δinf we introduce a matrix D ∈ Rnv×n. The matrix D is filled with
zeros and ones in a way, that multiplication with D will remove exactly the same
indices from δinf as the ones that were removed from δvis. Putting all informa-
tion together, minimizing Equation (4.6) results in the same as minimizing the
following:

L(δvis, x) =
∥∥∥δvis − D(G̃(C,C) ∗ (L ∗ x+ w̄))

∥∥∥2

, (4.7)

which can be rewritten as:

L(δvis, x) =
∥∥∥δvis − DG̃(C,C) ∗ w̄ − DG̃(C,C) ∗ L ∗ x

∥∥∥2

. (4.8)

Defining:

A := (DG̃(C,C) ∗ L), (4.9)

and

B := (δvis − DG̃(C,C) ∗ w̄), (4.10)

we write the minimization of Equation (4.8) as a linear least squares problem:

arg min
x

L(δvis, x) = arg min
x

∥Ax− B ∥2 . (4.11)

Solving Equation (4.11) with an off-the-shelf linear solver gives us a point x∗ in
the latent space. We deform x∗ into the feature vector wx∗ by Equation (4.4).
By rearranging wx∗ we obtain a matrix Wx∗ . Finally by using Equation (4.1) we
receive a deformation of the whole canonical model and the non-rigid registration
process is finished. A schematic overview of the process can be seen in Figure 4.5.

33

4 Methodology

x1 y1 z1
0 0 0
0 0 0
x4 y4 z4
0 0 0

x1 y1 z1
x2 y2 z2
x3 y3 z3
x4 y4 z4
x5 y5 z5

Closest Point
Image

Offset Image
X

Y

Z

Offsets on the
visible Points

Offsets on all
Points

Deformation
Field

Deformation
Field

Search in Latent Space

Figure 4.5: The network output is used to infer offsets for the visible points. The re-
sulting deformation field gets expanded to all points with help of the latent
space of the object category

4.6 Iterative Matching
Estimating a deformation that will match two objects from a single view RGB
image is a challenging task for neural networks to learn. One idea to to improve
the accuracy is to split the work, that has to be done by the network in smaller
sections. To achieve this, we decided to try an iterative approach for non-rigid
registration from RGB images. We already observed, that the deformation that
should be applied to the canonical instance is described by the matrix W(C,O)

of Equation (4.1). We aim now on improving the estimation of W(C,O) in a
stepwise approach. We initialize the deformation field to be zero and therefore
W0(C,O) = 0, additionally we will track δ̃vis as the accumulated offset of the

34

4.7 Dataset generation

observed points within the registration process.
We define one iteration i for a given observed image and a previously computed
Wi−1(C,O). The first step is to render a frame of the canonical model in the
position of the observed object. The canonical model is deformed before rendering
using Wi−1(C,O) and Equation (4.1). Now both images are zoomed together with
their corresponding masks and presented to the network. The network computes
an offset on the visible points δvis,i that is used to update δ̃vis in the following
way:

δ̃vis =
1

i
∗ δvis,i + δ̃vis. (4.12)

We use the fraction of δvis,i at the beginning of this equation considering, that the
approximation task gets harder for the network. Later, the update δ̃vis is used
to infer Wi(C,O) as described in Section 4.5 and we finished the iteration. A
schematic overview of one iteration can be observed in Figure 4.6.
This approach follows the idea, that if the network predicts a deformation that will
lead to an erroneous match of the deformed canonical and the observed model, this
will be reflected by the images that will serve as network input in the next iteration.
This means, that our method has a chance to detect this errors and adjust the
deformation accordingly. We assume that the network is able to generalize on
estimating deformations for the deformed canonical model, since the size of the
canonical model in the rendered frame is always relative to the observed model,
because of the way we handle the zooming process. So the training dataset will
include different versions of the canonical model.

4.7 Dataset generation
Since we have very detailed requirements for a dataset that will be used to train
our network and there is no dataset available to meet the requirements, we had to
build our own. The requirements for a given object category include:

• A 3D model of a canonical object from the category

• A large set of images including varying objects from the category with dif-
ferent textures

• 3D data for each object seen on the images to generate a ground truth non-
rigid registration and rendered images

• Different points of view to render the 3D objects

35

4 Methodology

Observed Image
(and Mask)

Deformation
Estimation

Renderer

Canonical 3D
Model

Zoom
Operation

Rendered Image
(and Mask)

Network

New Deformation
Estimation

Deformation on
Observed Points

Observed
Pose

Search in
Latent Space

Figure 4.6: A deformation estimation (zeros in the first step) is used to render the canon-
ical model in the observed position. The result gets zoomed in, together with
the observed image and the regarding masks. The network processes the im-
ages to a deformation on the observed parts and the latent space is used to
determine a new deformation estimation.

36

4.7 Dataset generation

To build the dataset we collect textured 3D data with different objects from the
same object category. First, we choose a canonical model heuristically and sepa-
rate the objects into the canonical model and k testing models. The collection of
3D data can be the same as the one that is used to solve the problem of occluded
points and build a latent space for the object category (Section 4.4). The main
idea is to calculate ground truth deformations from the canonical model towards
all the other models. Then, we change the viewpoint on each model according to
a tessellated sphere and render an image. We then use the method described in
Section 4.3. to generate a ground truth target pictures for the network to learn.
To calculate all the deformations we rely on CPD and underlying point clouds
generated by ray-casting. Since good quality 3D textured models are sparse, we in-
terpolate models that are in between the canonical and the other observed models.
To achieve this, T (C,Wi) is calculated for all the testing models, as described in
Equation (4.3). By using Equation (4.1), a deformation from the canonical model
towards the observed model is found. Note that we can not use this deformation
for interpolating between both instances directly. Doing this means, that all drills
seen on the training images would share the texture of the canonical model. This
is problematic since the network would would not be able to generalize to unseen
models. To overcome this problem, we define an inverse deformation based on the
underlying point cloud of the observed training instance Ti and the previously
calculated matrix Wi:

T −1(Ti,Wi) = Ti + G(Ti,C) ∗ (−Wi). (4.13)

Equation (4.13) is capable of deforming the observed training point cloud Ti to-
wards the canonical point cloud C. To deform the vertices Tm,i of the observed
training model into T′

m,i we do the following:

T′
m,i = Tm,i + G(Tm,i,C) ∗ (−Wi). (4.14)

Finally, by adding an interpolation factor ρ we obtain:

T′
m,i(ρ) = Tm,i + G(Tm,i,C) ∗ (−ρ ∗ Wi). (4.15)

Equation (4.15) enables us to interpolate between every observed testing model and
the canonical model, to generate images of the interpolated model with the texture
from the observed testing models. We therefore encourage that the network is able
to learn a lot of different shapes and textures. An example for the interpolation
process is visualized in Figure 4.7. To generate a training dataset we produce
all four images needed as network input directly. For a fixed observed testing

37

4 Methodology

Observed
Training
Drill

Canonical
Drill

 = 0.9 = 0.675 = 0.45 = 0.225 = 0

Figure 4.7: Interpolation process from the observed instance on the right towards the
canonical instance on the left.

model i and a fixed interpolation constant ρ, we morph the observed testing three
dimensional data according to Equation (4.15). We now select a point of view and
render an image of this deformed observed testing model. At the same time, we
render an image of the canonical model from the same point of view. This step
can be done in real time but pre-rendering saves time for the training process. We
generate a bounding box for the image of the observed model and a mask for the
rendered canonical image. This four images are now cropped to the same size,
such that the bigger one of both models will just fit in the cropped image. All four
image are then resized to the targeted input size of 256 times 192 pixel by using
a bilinear upsampling algorithm. Together with the canonical image we obtain a
three channel position image from the renderer. This image holds in each pixel
the information about the x-, y-, and z-coordinate of the part of the model, that is
observed in the according pixel of the regular rendered image. The position image
is cropped and upsampled in the same way as the other four images and it is the
basis for calculating the closest point image that is needed in Section 4.4.
The ground truth target data for the network is generated by using the procedure
presented in Section 4.4. However, since we interpolated between models we need
to modify Equation 4.2:

δ(C,Ti) = G(C,C) ∗ (1− ρ) ∗ Wi (4.16)

We executed the described steps for a collection of three dimensional models of
drills. Iterating through 16 training instances, 5 interpolation constants (as seen
in Figure 4.7) and 74 points of view we obtain a dataset with 5920 entries.

38

5 Results

5.1 Experimental Setup
We conducted experiments on a synthetic dataset consisting of rendered images
from drills build as described in Section 4.7. The complete collection of 3D mesh
models is shown in Figure 5.2. We choose the drill in the top left corner of Figure
5.2 as the canonical drill, as it showed good results, when being deformed to match
the shape of the other drills. Drill 04 and drill 12 are chosen as testing instances.
The two drills represent two different difficulties for non-rigid registration: a case
where the registration needs to focus on small and precise alignments (04) and a
case, where the offsets that need to be applied to the canonical model are big (12).
Both models are not used during training to be able to check the performance of
the network on novel objects. Additionally we decide to use only the interpolated
versions of drill 03, that are received from interpolating with ρ = 0.9, ρ = 0.675 and
ρ = 0.45 for training. This means that the original shape of drill 03 is unknown to
the network, but it had the chance to learn the texture of the drill. The remaining
entries of the dataset are split up randomly. 90% are used for actual training and
10% are used to evaluate and monitor the error between desired ground truth and
actual network output. We used the standard L2 loss for evaluating the state of
the network. The drills seen in Figure 5.2 are also used to build the latent space
as described in Section 4.5. We performed this operation without drill 03, 04 and
12, since this objects should be used for testing. To build our latent space, we
choose parameter l from Equation (3.8) from experience to l = 5.
To obtain ground truth deformations we used CPD and chose the parameters λ
from Equation (3.4) and β from Equation (3.3) to be 2.0. Since we have input
data without noise, the parameter ω from Equation (3.5) is chosen to be zero. We
trained on three graphic cards with a batch size of 64 each, so in total we have an
effective batch size of 192. The learning rate is decreased stepwise, starting from
5.e−5 it is divided by two every 660 epochs, until we reach a final learning rate
of 1.e−6. A visualization of the learning rate together with the L2 loss between
ground truth and network output are shown in Figure 5.1. The training is done
for approximately 8200 epochs, since the network stopped learning, i.e., the loss
did not decrease further. Initial tests on training the network showed us, that it

39

5 Results

4000

1

2

3

4
Tr

ai
ni

ng
 L

os
s

0 2000 4000 6000 8000

10
20
30
40
50

Epoch

Le
ar

ni
ng

 R
at

e

Epoch
2000 6000 80000

Figure 5.1: Monitoring of loss and learning rate during training.

was necessary to scale the ground truth deformation representation by the factor
100, to have a more clear boundary between foreground and background.

5.2 Experimental Results
To have a measure how good an observed shape is fitted by the deformation of the
canonical model, we define an error function on two point clouds C ∈ Rn×3 and
T ∈ Rm×3:

E(T,C) =
1

m
∗

m−1∑
i=0

min
j

∥T(i, .)− C(j, .)∥2 (5.1)

The error can be described as the mean distance between the points of the ob-
served model to the respective closest point of the deformed canonical point cloud.
So the error will increase for every part of the observed model, that is not matched
properly.
We compare our results to the latent space approach from [4], CPD [32] and the
canonical model when no deformation is applied. For the approach from [4], CPD
is parameterized in the same manner as for computing our ground truth defor-
mations. For the latent space, we also choose the dimensionality to be five. The
CPD to compare our results is computed with the same parameters, as well. To
generate testing images, we rendered the testing drills from 74 points of view on
a tessellated sphere and produced a point cloud to represent the observed parts of
the drills. We produced point clouds comparable to what a RGB-D sensor would
observe from the same point of view, our RGB image is taken from.
To evaluate how good the deformation representation is working and how reliable
we are able to solve the problem of occluded parts, we calculate the deformation

40

5.2 Experimental Results

Mesh
Side-view

Mesh
Top-view

Sampled
Point Cloud

Mesh
Side-view

Mesh
Top-view

Sampled
Point Cloud

Canonical

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

Figure 5.2: Two rendered images from a side and a top view, followed by a visualization
of the underlying point cloud for all meshes used to produce the synthetic
dataset.

41

5 Results

that results from the ground truth deformation estimation that represents the de-
sired output of the network. This enables us to investigate a upper bound for the
results of our approach and to evaluate how good our network is performing, since
we have a side by side comparison between the results achieved with our network
and results that are theoretically possible. We generated boxplots to compare the
results for all 74 points of view, which are shown in Figure 5.3, but we had to
remove one point of view for visualization purposes, since the error from the result
of CPD was too high. An example for a testing image taken from this point of view
is number 5 from Figure 5.4. It is the top down view on a drill, that has to few
information for CPD to calculate a good deformation, since CPD does not have
any knowledge of the object category. For drills whose texture is known (example
1 from Figure 5.4) and the drill that needs small but precise adjustments (example
2-4 from Figure 5.4) our approach is in general more precise than CPD and is not
as susceptible against missing information, as the mean and the variance are lower
for our approach than for CPD in this cases. For the bigger novel drill (example
5-6 from Figure 5.4) we see that our network had difficulties to estimate the de-
formation that should be applied to the top part of the drill. This has an impact
on the results seen in Figure 5.4, as the mean and the variance is higher for our
approach in this case. We also see for all three graphs from Figure 5.3, that the
latent space approach from [4] performs best overall from the three approaches.
This is the expected behavior, since the approach from [4] is proven to outperform
CPD on partial observations and had in comparison to our approach access to
three dimensional data.
The experiments showed our approach to be slower than the comparable ap-
proaches with a time consumption of circa 20 seconds per iteration. This comes
due to the size of the network such as the rendering and zooming process that
needs time. The time per iteration can be optimized in the future, for example
with reducing the size of the network and using a faster renderer.
Figure 5.5 shows a comparison between the desired ground truth network output
and the actual network output for three randomly chosen examples. The network
estimation is not good enough for some instances, mostly when the offsets that
should be estimated are rather big. This implies, that the network is the current
bottleneck of our approach. The second boxplot of all three graphs in Figure 5.3,
shows what is the upper bound for our approach, when actual network output and
ground truth targets are the same. To compensate for errors in the estimation
from the network, we used the iterative matching approach, which is visualized in
Figure 5.6. The iterative approach improved the registration, especially for high
ground truth offsets.

42

5.2 Experimental Results

Drill 03 - Texture known to the Network

100µ

300µ

500µ

700µ

Network output after 1st iteration
Network output after 2nd iteration
Network output after 3rd iteration
Network output after 4th iteration
Network output after 5th iteration
Latent space approach from [4]
CPD [32]

Boxplots showing the error between observed and deformed canonical models.

Ground-truth (network target)
Original canonial model

Drill 4 - Novel instance

Drill 12 - Novel instance

40µ

80µ

120µ

160µ

200µ

0.0002

0.0006

0.0010

0.0014

Figure 5.3: Boxplots showing the error described in Equation (5.1) between the point
cloud of the observed drill and the canonical point cloud after it was deformed
according to different approaches. For each boxplot the same 73 views on
the observed object where used.

43

5 Results

Canonical
Canonical
Morphed

Observed
Image

Observed
Point Cloud

Ground-truth observed cloud (red) vs. Deformed canonical cloud (blue)
a) Network b)Latent

 Space [4]
c) CPD [32]

1

2

3

4

6

Unmorphed Canonical (blue)
vs

Ground Truth Observed (red:):

Example 1: Example 2-4: Example 5-6:

5

Figure 5.4: The rendered canonical image on the left, together with the observed RGB
image are base for the rendered image of the deformed canonical model,
placed second from the left, and for the deformation of the canonical point
cloud placed fifth from the left. The observed point cloud seen in the image
fourth from the left is the base for the deformations seen in the last two
images (results from the latent space approach [4] and CPD [32])

44

5.2 Experimental Results

Estimation by Network

Offset x Offset y Offset z
Ground Truth

Offset x Offset y Offset z
Ground Truth

Estimation by Network

Offset x Offset y Offset z
Ground Truth

Estimation by Network

Figure 5.5: Three randomly chosen examples to compare the desired ground-truth to the
actual network output on novel drills. The rendered canonical and observed
input images are on the left, followed by heatmaps to represent the ground-
truth at the top and the estimation from the network at the bottom.

45

5 Results

Canonical ObservedIterative Matching

Figure 5.6: Stepwise evolution from the unmorphed canonical model on the left to match
the observed model on the right. The examples are chosen randomly and
five iterations where made.

46

6 Conclusion
We solved the problem of non-rigid registration from a single RGB image for the
category of drills by finding an image based representation for deformation fields
based on CPD. Building on this representation we proposed a network architecture
that is inspired by optical flow estimation to compute a deformation field based
on the observed image and a rendered frame of the canonical image in the same
pose. We made a synthetic dataset for the category of drills to train and test our
network and solved the problem of occluded parts by using PCA to generate a
latent space of possible deformations within the category. We made experiments
with the new dataset and calculated deformations in an iterative fashion, showing
that our results are comparable to state of the art methods.
The approach excelled on the experiments with models where small and precise
alignments had to be made and through the fact, that the variance of the results
between different points of view was low. Our approach solved a much harder
problem of non-rigid registration, than our competitors who had access to three
dimensional data.
As a general insight from this thesis we noted that the bottleneck of our approach
is the estimation done by the network and that future work should concentrate
on minimizing this issue. The first idea is to adjust the training process to enable
the network to generalize on the deformed canonical model and increase the per-
formance of the network within the iterative registration process. Additionally we
aim to simplify the network architecture to improve the estimation time and to
decrease the consumption of memory. Finally, it is planned to apply our approach
to different categories, to prove the approach to be working for other objects.

47

List of Figures
2.1 Network architecture of FlowNet Simple. 12
2.2 Example of optical Flow estimations 1. 13
2.3 Schematic view of FlowNet2 architechture. 13
2.4 Example of optical Flow estimations 1. 14
2.5 Overview of the DeepIM architecture. 15
2.6 Latent space learning process. 16

3.1 Example of a CPD execution on two point sets Y and X. 21

4.1 3D mesh to low resolution point cloud. 26
4.2 Zoom process for network input. 28
4.3 Schematic overview of the deformation estimation network. 29
4.4 Comparison between two different deformation representations. . . 30
4.5 The problem of occluded parts. 34
4.6 Schematic overview of the registration process 36
4.7 Interpolating process for dataset generation. 38

5.1 Loss and learning rate during training. 40
5.2 Collection of meshes used to build training data. 41
5.3 Results of non-rigid registration presented as boxplots. 43
5.4 Results of non-rigid registration shown on point clouds 44
5.5 Comparison between desired ground-truth and actual network output. 45
5.6 Iterative matching examples. 46

49

Bibliography
[1] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip Hausser, Caner Hazir-

bas, Vladimir Golkov, Patrick Van Der Smagt, Daniel Cremers, and Thomas
Brox. “Flownet: Learning optical flow with convolutional networks”. In: Pro-
ceedings of the IEEE International Conference on Computer Vision (ICCV).
2015, pp. 2758–2766.

[2] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper, Alexey Dosovit-
skiy, and Thomas Brox. “Flownet 2.0: Evolution of optical flow estimation
with deep networks”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 2017, pp. 2462–2470.

[3] Yi Li, Gu Wang, Xiangyang Ji, Yu Xiang, and Dieter Fox. “DeepIm: Deep
iterative matching for 6D pose estimation”. In: Proceedings of the European
Conference on Computer Vision (ECCV). 2018, pp. 683–698.

[4] Diego Rodriguez and Sven Behnke. “Transferring category-based functional
grasping skills by latent space non-rigid registration”. In: IEEE Robotics and
Automation Letters (RA-L) 3.3 (2018), pp. 2662–2669.

[5] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. “A naturalistic open
source movie for optical flow evaluation”. In: European Conf. on Computer
Vision (ECCV). Part IV, LNCS 7577. Springer-Verlag, 2012, pp. 611–625.

[6] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. “Vision
meets robotics: the KITTI dataset”. In: The International Journal of Robotics
Research (IJRR) 32.11 (2013), pp. 1231–1237.

[7] Colin Rennie, Rahul Shome, Kostas E Bekris, and Alberto F De Souza. “A
dataset for improved RGBD-based object detection and pose estimation for
warehouse pick-and-place”. In: IEEE Robotics and Automation Letters (RA-
L) 1.2 (2016), pp. 1179–1185.

[8] Diego Rodriguez, Corbin Cogswell, Seongyong Koo, and Sven Behnke. “Trans-
ferring grasping skills to novel instances by latent space non-rigid registra-
tion”. In: 2018 IEEE International Conference on Robotics and Automation
(ICRA). 2018, pp. 1–8.

[9] Anurag Ranjan and Michael J Black. “Optical flow estimation using a spatial
pyramid network”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 2017, pp. 4161–4170.

51

Bibliography

[10] Philippe Weinzaepfel, Jerome Revaud, Zaid Harchaoui, and Cordelia Schmid.
“Deepflow: large displacement optical flow with deep matching”. In: Proceed-
ings of the IEEE International Conference on Computer Vision (ICCV).
2013, pp. 1385–1392.

[11] Damien Teney and Martial Hebert. “Learning to extract motion from videos
in convolutional neural networks”. In: Asian Conference on Computer Vision
(ACCV). Springer. 2016, pp. 412–428.

[12] Christian Bailer, Kiran Varanasi, and Didier Stricker. “CNN-based patch
matching for optical flow with thresholded hinge embedding loss”. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR). 2017, pp. 3250–3259.

[13] David Gadot and Lior Wolf. “Patchbatch: A batch augmented loss for opti-
cal flow”. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 2016, pp. 4236–4245.

[14] Aria Ahmadi and Ioannis Patras. “Unsupervised convolutional neural net-
works for motion estimation”. In: IEEE International Conference on Image
Processing (ICIP). 2016, pp. 1629–1633.

[15] J Yu Jason, Adam W Harley, and Konstantinos G Derpanis. “Back to ba-
sics: unsupervised learning of optical flow via brightness constancy and mo-
tion smoothness”. In: European Conference on Computer Vision (ECCV).
Springer. 2016, pp. 3–10.

[16] Yunjin Chen and Thomas Pock. “Trainable nonlinear reaction diffusion: A
flexible framework for fast and effective image restoration”. In: IEEE Trans-
actions on Pattern Analysis and Machine Intelligence (TPAMI) 39.6 (2016),
pp. 1256–1272.

[17] Jonathan C Carr, Richard K Beatson, Jon B Cherrie, Tim J Mitchell, W
Richard Fright, Bruce C McCallum, and Tim R Evans. “Reconstruction and
representation of 3D objects with radial basis functions”. In: Proceedings of
the 28th annual Conference on Computer Graphics and Interactive Tech-
niques. ACM. 2001, pp. 67–76.

[18] Michael Kazhdan and Hugues Hoppe. “Screened poisson surface reconstruc-
tion”. In: ACM transactions on graphics (ToG) 32.3 (2013), p. 29.

[19] Christopher B Choy, Danfei Xu, JunYoung Gwak, Kevin Chen, and Sil-
vio Savarese. “3d-r2n2: a unified approach for single and multi-view 3D ob-
ject reconstruction”. In: European Conference on Computer Vision (ECCV).
Springer. 2016, pp. 628–644.

[20] Angela Dai, Charles Ruizhongtai Qi, and Matthias Nießner. “Shape com-
pletion using 3D-encoder-predictor CNNs and shape synthesis”. In: Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 2017, pp. 5868–5877.

52

Bibliography

[21] Jason Rock, Tanmay Gupta, Justin Thorsen, JunYoung Gwak, Daeyun Shin,
and Derek Hoiem. “Completing 3D object shape from one depth image”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 2015, pp. 2484–2493.

[22] Jiajun Wu, Chengkai Zhang, Xiuming Zhang, Zhoutong Zhang, William T
Freeman, and Joshua B Tenenbaum. “Learning shape priors for single-view
3D completion and reconstruction”. In: Proceedings of the European Confer-
ence on Computer Vision (ECCV). 2018, pp. 646–662.

[23] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xi-
aoou Tang, and Jianxiong Xiao. “3D shapenets: A deep representation for
volumetric shapes”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 2015, pp. 1912–1920.

[24] Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and
Steven Lovegrove. “DeepSDF: Learning continuous signed distance functions
for shape representation”. In: Arxiv preprint arxiv:1901.05103 (2019).

[25] Yun Zeng, Chaohui Wang, Yang Wang, Xianfeng Gu, Dimitris Samaras, and
Nikos Paragios. “Dense non-rigid surface registration using high-order graph
matching”. In: IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR). 2010, pp. 382–389.

[26] Vladimir G Kim, Yaron Lipman, and Thomas Funkhouser. “Blended intrin-
sic maps”. In: ACM transactions on graphics (TOG). Vol. 30. 4. 2011, p. 79.

[27] Alexander M Bronstein, Michael M Bronstein, and Ron Kimmel. “Efficient
computation of isometry-invariant distances between surfaces”. In: SIAM
journal on scientific computing 28.5 (2006), pp. 1812–1836.

[28] Art Tevs, Martin Bokeloh, Michael Wand, Andreas Schilling, and Hans-
Peter Seidel. “Isometric registration of ambiguous and partial data”. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 2009,
pp. 1185–1192.

[29] Maks Ovsjanikov, Quentin Mérigot, Facundo Mémoli, and Leonidas Guibas.
“One point isometric matching with the heat kernel”. In: Computer Graphics
Forum. Vol. 29. 5. Wiley Online Library. 2010, pp. 1555–1564.

[30] Brett Allen, Brian Curless, and Zoran Popović. “The space of human body
shapes: reconstruction and parameterization from range scans”. In: ACM
transactions on graphics (TOG). Vol. 22. 3. 2003, pp. 587–594.

[31] Dirk Haehnel, Sebastian Thrun, and Wolfram Burgard. “An extension of the
ICP algorithm for modeling nonrigid objects with mobile robots”. In: IJCAI.
Vol. 3. 2003, pp. 915–920.

53

Bibliography

[32] Andriy Myronenko and Xubo Song. “Point set registration: Coherent point
drift”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI) 32.12 (2010), pp. 2262–2275.

[33] A Yuille. “The motion coherence theory”. In: Proceedings of the International
Conference on Computer Vision (ICCV). IEEF. Computer Society Press.
1998, pp. 344–354.

[34] Arthur P Dempster, Nan M Laird, and Donald B Rubin. “Maximum likeli-
hood from incomplete data via the EM algorithm”. In: Journal of the royal
statistical society: series b (methodological) 39.1 (1977), pp. 1–22.

[35] Sam T Roweis. “EM algorithms for PCA and SPCA”. In: Advances in neural
information processing systems. 1998, pp. 626–632.

[36] Michael E Tipping and Christopher M Bishop. “Mixtures of probabilistic
principal component analysers”. In: (1998).

[37] Michael E Tipping and Christopher M Bishop. “Probabilistic principal com-
ponent analysis”. In: Journal of the royal statistical society: series b (statis-
tical methodology) 61.3 (1999), pp. 611–622.

[38] Andrew S Glassner. Principles of digital image synthesis: Vol. 1. Vol. 1.
Elsevier, 1995.

[39] Shenchang Eric Chen and Lance Williams. “View interpolation for image
synthesis”. In: Proceedings of the 20th Annual Conference on Computer
Graphics and Interactive Techniques (CG). ACM. 1993, pp. 279–288.

[40] Arul Selvam Periyasamy, Max Schwarz, and Sven Behnke. “Refining 6D ob-
ject pose predictions using abstract render-and-compare”. In: Arxiv:1910.03412
(2019).

[41] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. “Pointnet: Deep
learning on point sets for 3d classification and segmentation”. In: Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 2017, pp. 652–660.

54

	Introduction
	Related Work
	Learning Optical Flow with Convolutional Networks
	Learning 6D Pose Refinement with Convolutional Networks
	Latent Space Non-Rigid Registration
	General Related Work

	Background
	Coherent Point Drift
	Principal Component Analysis

	Methodology
	Deformation Representation
	Rendering for Deep Learning
	The Network Architecture
	Image Coding for Deformation Estimation
	The Problem of Occluded Parts
	Iterative Matching
	Dataset generation

	Results
	Experimental Setup
	Experimental Results

	Conclusion

