
Institute for Computer Science
Department VI
Autonomous Intelligent Systems

Rheinische
Friedrich-Wilhelms-

Universität Bonn

Rheinische
Friedrich-Wilhelms-Universität Bonn

Master Thesis

Recursive Transformer based Video
Semantic Segmenation

Author:
Aysha Athar Siddiqui

First Examiner:
Prof. Dr. Sven Behnke

Second Examiner:
PD. Dr. Volker Steinhage

Supervisor:
M.Sc. Angel Villar-Corrales

Date: September 9, 2023

Declaration

I hereby declare that I am the sole author of this thesis and that none other than
the specified sources and aids have been used. Passages and figures quoted from
other works have been marked with appropriate mention of the source.

Place, Date Signature

09.09.2023

Abstract
Video Semantic Segmentation is the challenging task of predicting a class value
for each pixel in every frame of a video sequence. Existing image segmentation
models could be easily extended to obtain the semantic segmentation of a video
sequence by applying them frame-by-frame. However, this naive approach fails to
model the temporal continuity between frames, thus leading to noisy video seg-
mentations that suffer from multiple artifacts, such as flickering or ghosting. In
this thesis, inspired by existing work on image segmentation, we aim to extend
the recent transformer-based Segmenter model to perform Video Semantic Seg-
mentation in a recursive manner. Segmenter consists of a Transformer-based ViT
encoder, as well as a Fully-Connected or Transformer-based decoder, which maps
the encoded features into semantic classes. To extend this architecture for Video
Semantic Segmentation, we propose VideoSegmenter that introduces a Predictor
and Corrector module that models spatio-temporal relations between consecutive
frames. We conduct various experiments and evaluate our model on the Cityscapes
and Synpick datasets to show the effectiveness of modeling temporal continuity
by adding the two proposed modules to the model architecture.

Contents
1 Introduction 1

2 Theoretical background 3
2.1 Multi-Layer Perceptron . 3
2.2 Recurrent Neural Networks . 4
2.3 Long-Short-Term Memory Networks 4
2.4 Transformers . 5
2.5 Vision Transformer . 8

3 Related work 9
3.1 Optical Flow Methods . 9
3.2 Conditional Random Fields Models 10
3.3 Memory-Based Models . 10

4 Proposed Method 13
4.1 Segmenter . 13
4.2 VideoSegmenter . 14

4.2.1 ViT Encoder . 15
4.2.2 Predictor . 16
4.2.3 Corrector . 17
4.2.4 Decoder . 17

4.3 Training Losses . 18
4.4 Implementation details . 20

5 Experiments 23
5.1 Datasets . 23
5.2 Metrics . 24
5.3 Quantitative results . 25
5.4 Qualitative results . 27

6 Conclusion and Future Work 33

vii

1 Introduction
Understanding and interpreting scenes in a video sequence is a crucial task in fields
like autonomous driving [30, 43], robotics [31, 25] and augmented reality [35, 36]
that is solved by means of Video Semantic Segmentation. Video Semantic Segmen-
tation refers to the task of assigning each pixel in a frame extracted from a video
sequence to a semantic class value. This is a particularly difficult task to tackle
given the large amounts of raw data available and the lack of annotated samples
for the data as is the case for popular datasets like Cityscapes [10] and CamVid [4]
wherein labeled semantic maps are provided only for one out of every 30 frames.
The naive way to solve a Video Semantic Segmentation task is to simply use an
existing image segmentation model and apply it frame-by-frame to each sequence
in the video. However, the issue arises wherein there are lack of annotated frames
available for each frame which leads to noisy and flickered predictions. Moreover,
using these kind of models also ignores the temporal continuity that is present in
one video sequences as each segmentation map is computed independently.

In order to tackle this issue, researchers have come up with various ways to ac-
count for the temporal features existing in a video sequence. These could take the
form of adding another layer such as Optical Flow [42, 12] on top of an existing
image segmentation models. Another method involves integrating memory based
mechanisms like Recurrent Neural Networks [38], ConvLSTMS [24, 14] or Trans-
formers [41, 20] that learn from information extracted from past frames. This
acts like a memory and helps in learning temporal information that in turn results
in stable predictions and handles irregularities such as occlusions, ghosting and
flickering.

The recently proposed Segmenter [34] model makes use of the Vision Trans-
former as the encoder (ViT encoder) [13] that was introduced to handle image
data with transformers along with a linear/mask decoder to get segmentations
from images. The goal of this thesis is to extend this model to also work well
for video sequences. To this end, we propose the VideoSegmenter model which
makes use of the ViT encoder and additionally introduce two modules namely,
the Predictor and Corrector to model temporal continuity. The Predictor takes
into account past frames in a sequence in order to predict the embeddings of the
current frame. The corrector then fuses these predicted embeddings with the em-

1

1 Introduction

beddings from the ViT encoder in order to generate embeddings that are rich with
spatio-temporal information from the sequence. Finally, the decoder takes these
embeddings and produces segmentation maps for the corresponding video frames
provided.

Our experiments show that VideoSegmenter outperforms the results obtained by
applying the Segmenter [34] model frame-by-frame. We also show that the results
obtained are consitent across the time frames and result in less noisy/flickered
predictions as compared to the frame-by-frame model. The main contributions of
this thesis are:

1. We propose the VideoSegmenter model, an extension to the Segmenter model
[34] in order to segment video sequences.

2. We show that the model performs well in its abilities to capture temporal
relations between video sequences.

3. We present the qualitative and quantitative results based on our experiments
conducted.

The thesis is structured as follows:

• Chapter 2: Theoretical Background: This chapter talks about the funda-
mental building blocks needed and discusses the concepts used throughout
the course of the thesis.

• Chapter3: Related work: This chapter discusses the various approaches that
exist in the Video Semantic Segmentation domain.

• Chapter 4: Proposed Method: Model architecture for VideoSegmenter along
with the training strategy is explained in detail.

• Chapter 5: Experiments and Results This section gives the qualitative and
quantitative results of the experiments conducted during the course of thesis.
It provides insights into how well the model performed.

• Chapter 6: Conclusion and Future Work

2

2 Theoretical background

This chapter summarizes the fundamental concepts required throughout the course
of the thesis. It starts with a simple explanation to the Multi Layer Perceptron
and goes on to explain more advanced models employed throughout this thesis.

2.1 Multi-Layer Perceptron

One of the early developments in the neural network field was the formation of
the Multi-Layer Perceptron (MLP) architecture [15]. It consists of a simple feed
forward neural network which comprises of an input layer, one/many hidden layers
in between and an output layer. To be more specific, each neuron in a specific
layer is connected to every neuron in the subsequent layer. Each of these neurons
have a weight attached to it which decides the contribution of the specific neuron
to all other neurons connected to it in the subsequent layer. The equation below
elaborates this:

Y = WX + b (2.1)

wherein W denotes the weights of each neuron in a layer, X denotes the input and
b is the bias term.

Now, in order for this MLP to be able to learn complex data problems, an
activation function is introduced to bring in non-linearity, else the MLP acts like
a linear regression problem. The weighted sum Y is passed through an activation
such as the Sigmoid [27] or ReLU [1] which then results in the output Ŷ :

Ŷ = ϕ(Y) (2.2)

wherein ϕ represents the activation function.
Since MLPs fall in the category of feed forward networks, wherein the output

of each layer is propagated to each subsequent layers, they lack the capabilities of
handling sequential data. To overcome this, Recurrent Neural Networks (RNNs)
were introduced which are briefly described below.

3

2 Theoretical background

2.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) [15] introduced the concept of temporal shar-
ing of parameters. At each time step, instead of computing the weighted sum
between the input layer and its weights directly as in the case of an MLP, the
RNN combines the input xt with the previous hidden state ht−1 to form the input,
which is then propagated forward through the activation function to result in ht

which forms the hidden state of time step t. This hidden state is used in combi-
nation with the input vector at the subsequent time steps. This way the model
retains memory of the past sequences through the hidden states ht and proves to
be of importance in problem statements related to the processing of sequential
data.

However, RNNs fail to capture long-term dependencies along large sequences of
data as it suffers from the problem of vanishing gradients due to the way in which
the gradients are backpropogated through time.

In order to mitigate this issue, Long-Short-Term Memory networks were intro-
duced in the field which have the capability of modeling long-range dependencies
well.

2.3 Long-Short-Term Memory Networks

Long-Short-Term Memory Networks (LSTM) [17] are a variation of RNNs that
introduced memory cells and gating mechanisms which decide on what information
to remember and forget. This leads to the network having a better capacity to
retain memory of longer sequences of data.

In order to summarize it briefly, there are three gating mechanisms in the LSTM
as depicted in figure 2.1 that determine how the inputs flow through the model, the
input gate which decides how much information from the current input x(t) should
be added to the memory cell state, the forget gate that decides on the information
that needs to be forgotten from the previous cell state, and output gate that gives
the results y(t) based on the cell state. The Sigmoid [27] activation function is
used for the input, forget and output gates while the hyperbolic tangent is used
to generate the cell state and final outputs.

While LSTMs prove to be a strong architecture for modeling data sequentially,
they still have their limitations like slower training times and limited parallelism
properties.

In order to solve some of these issues, Transformers were introduced.

4

2.4 Transformers

Figure 2.1: Long-Short-Term Memory network Architecture, figure from [39]. The three
gates, input, forget and output gate as seen in the figure are the backbone
of the LSTM structure and maintain the flow of information within a cell.

2.4 Transformers

Transformers [40] have gained widespread attention in the sequence-to-sequence
domain particularly due to their capabilities to learn long range dependencies in
the input data. The architecture uses self attention mechanisms which proves to
be of importance as it has the abilities to parallelise input sequences which helps
in dealing with longer sequences and capturing long range dependencies between
the sequences. Due to their capabilities they have been widely used in language
modeling tasks [11, 26] to perform various tasks like question answering systems
and sentiment analysis.

The transformer architecture [40] consists of a transformer encoder-decoder
structure consisting of multiple layers. Each layer consists of two sublayers, the
multi-head self-attention layer and a feed forward layer. Residual connections [16]
are added in between the multi-head self-attention and feed forward layers whereas
layernorm [2] is applied after the two layers as shown in figure 2.3. The multi-head
self-attention mechanism allows the modeling of long range dependencies and si-
multaneously attends to information from multiple representations subspaces and
different positions.

5

2 Theoretical background

Figure 2.2: Transformer Model Architecture, figure from [40]

Self Attention

Self attention is the core operation used in transformers. An input sequence X is
transformed to Query (Q), Key (K) and Value (V) vectors each of dimension dk by
using learned linear transformations. Self Attention captures how important each
token is with respect to all other tokens in a sequence. These are calculated by
means of attention scores that are determined by taking the dot product between
the query vector of token i with key vector of token j. This dot product is then
scaled by a dimension dk. A softmax is applied to get the attention weights as
follows:

S = softmax(QKT

√
dk

) (2.3)

Finally, the attention weights S are multiplied by V to generate the output of the
attention module:

Attention(Q,K, V) = SV

Attention(Q,K, V) = softmax(QKT

√
dk

)V
(2.4)

6

2.4 Transformers

(a) Self attention (b) Multi-head attention

Figure 2.3: Attention mechanisms in the transformer model, figures taken from [40]

Multi head self attention

This is an extension to the self-attention mechanism that allows the model to
capture different types of patterns that exist in the data as it contains multiple
heads as shown in figure 2.3b. Specifically, the input embedding is split into
multiple heads wherein each of them is transformed to Query, Key and Value
matrices. In the end, the output is obtained by concatenating the outputs of each
head and linearly projecting them to result in the final output.

Positional encoding

Transformers process the input sequence at once in parallel and do not have infor-
mation of the sequential order of elements like RNNs. Tasks like Natural Language
Processing where the order of the word matters or Video processing fields where
the position of the frame in the sequence matters, positional encoding is needed.
These are added to input of the transformer encoder so as to make use of the
order of the sequence, which can be done via sinusoidal positional embedding or
learnable embeddings. The sinusoidal positional encoding method models embed-
dings using sine and cosine functions. Learnable encodings on the other hand
learn throughout the training process and are optimised via backpropogation. [40]
claims that both types of embeddings produce similar results. In this thesis, we
make use of learnable positional encodings.

7

2 Theoretical background

Figure 2.4: Vision transformer Model, figure extracted from [13]. The images are divided
into patches of fixed size and are then processed by the Transformer Encoder
whose architecture is depicted on the right.

2.5 Vision Transformer
Since the above transformer model has gained widespread attention particularly
in the Natural Language Processing (NLP) field, computer vision researchers have
come up with a modification to the original transformer [40] in order to apply it to
images introduced by Dosovitskiy et al. [13] They propose the Vision Transformer
(ViT) model which splits an image x ∈ RH×W×C , where H, W and C represent
the height, width and channels of the image respectively, into patches of a fixed
size (P, P) resulting in N = HW/P 2 patches. These patches are flattened into
a sequence of patches namely xp ∈ RN×(P 2C). Since the transformer uses a fixed
latent vector of size d, these patches are flattened using a trainable linear projection
to map them to a d-dimensional embedding. Similar to the vanilla transformer
[40], positional encodings are added to the patch embeddings to augment them
with information of their position in an image which are then processed by the
encoder which consists of L layers with Multi-head attention, LayerNorm, MLP
and residual connections as shown in figure 2.4. The ViT architecture [13] makes
use of learnable 1D positional embeddings.

8

3 Related work

This chapter will elaborate on the ongoing research and success found in the Video
Semantic Segmentation fields. We divide them into three categories namely, Opti-
cal Flow methods, Conditional Random Field models and Memory-based models.

3.1 Optical Flow Methods

Optical Flow is widely used in the computer vision field in tasks relating to visual
data. It aims at estimating how pixels in a frame from a video sequence will
change/transform in the next consecutive frame. In simpler words, it gives us
an estimate abut the flow of objects during the course of a video sequence. This
helps in enhancing the segmentations as it also accounts for flow information. It
can particularly be made useful in scenarios where the dataset is dynamic and the
scenes are constantly changing. Ding et al. [12] make use of optical flow estimation
together with semantic information gathered via a shared encoder across the input
data. They claim that using a shared encoder is more beneficial when used with
flow information exchange as it increases the capabilities of the representations
gathered as opposed to the paper by Wang et al. [42]. Further, a smoothness loss
function is applied to the flow prediction results in order to achieve better flow
quality. Ding et al. only makes use of the flow guided module during training
phase to reduce the time taken at inference.

Nilsson et al. [21] combines the use of optical flow together with a Gated Re-
current Unit. They warp the semantic segmentation map along the optical flow.
This warped embedding is fed to the gated recurrent units (GRU) hidden state.
The input to the GRU is an estimate of the segmentation map that they compute
using a single frame Convolutional NeuraL Network (CNN). Combining these two
predicted segmentation maps is proved to estimate an accurate semantic segmen-
tation wherein frames in which significant motion occurs are segmented well.

A drawback of using Optical Flow methods for the task of Video Segmentation
is that they work together with the Segmentation model and often prove to be
computationally expensive.

9

3 Related work

3.2 Conditional Random Fields Models
Conditional Random Fields (CRF) approach introduced by [6, 7] are utilized by
Chandra et al. [5] to be compatible with video sequences. They introduce temporal
connections to account for video sequences in addition to spatial connections.
Spatial connections in a CRF based model are captured via pairwise potentials
which penalize inconsistent/dissimilar labellings between neighboring pixels. This
helps the model to assign similar labellings between neighboring frames of a video
sequence thereby including spatial relationships present in an image. In order to
also account for temporal data, pairwise potentials between patches in different
frames are taken into consideration. These pairwise potentials are generated via a
CNN network.

Although these models prove to be effective in solving the task of Video Seman-
tic Segmentation, they are computationally expensive since calculating pairwise
potentials for video data requires large training and inference times that makes
them unsuitable for real time prediction of semantic segmentation maps.

3.3 Memory-Based Models
In order to model temporal continuity between frames, memory based mechanisms
are used in order to retain information from the previous frames in a sequence
to account for temporal consistency between frames in a video sequence. These
can be done by leveraging memory-based architectures like Recurrent Neural Net-
works (RNNs) [38], Convolutional Long-Short-Term memory networks (ConvL-
STMs) [28], Gated Recurrent Unites (GRUs) [8], Attention based networks and
transformers [40] that model sequential relations well.

LSTM-SegNet

Since Recurrent Neural Networks (RNNs) are used to model sequence data, it is
worthwhile to mention LSTM-SegNet [24]. that solves the task of video semantic
segmentation by incorporating ConvLSTM [28] layers. They extend the classical
encoder-decoder style SegNet architecture [3] wherein the encoder is a VGG16
[32] network and the decoder is a reversed version of the encoder. Pfeuffer et
al. go on to insert ConvLSTM layers in three positions as show in figure 3.1: in
between the encoder and decoder, after the decoder before the softmax layer and
finally a combination of both(in between and after the softmax layer), in order to
determine which combination works well. They claim that adding a ConvLSTM
layer after the decoder just before the softmax layer might prove to be useful as

10

3.3 Memory-Based Models

Figure 3.1: LSTM-SegNet architecture from [24]. The three positions to insert a convL-
STM layer are highlighted here and color coded schemes are represented on
the right.

Figure 3.2: TMANet Model Architecture. The current frame along with the memory
sequence are fed to the shared backbone which are then passed to the encod-
ing layers to embed the features extracted. They are processed by the TMA
block that models temporal relations.

each sequence is then processed independently and the backpropogation of error
is prevented. Finally, a recurrent method combines the results from the previous
frames and the current frame to obtain the results. Their results show that adding
a convLSTM layer just before the softmax layer provides best results.

Recurrent Fully Convolutional Networks for Video Segmentation (RFCN)

Valipour et al. [37] leverage the properties of Recurrent Neural Networks (RNNs)
for the task of video segmentation. They build upon the concept of Fully Con-
volutional Networks (FCNs) that model spatial relations well by making use of
convolutional layers that enable the model to understand the context of each im-
age in a video sequence. To account for temporal relations between consecutive
frames, they incorporate recurrent connections to the FCN structure so that the
model makes use of previously seem frames to account for the segmentation map
of the current frame. The recurrent unit takes the form either an LSTM, GRU or
Conv-GRU.

11

3 Related work

Temporal Memory Attention Network (TMANet)

In order to include temporal information, Wang et al. [41] use a memory network
to predict a frame in a sequence where the memory network represents frames
from the previous time steps. In particular, it feeds the current frame along with
the memory frames to a shared ResNet [16] backbone to extract features. In order
to encode the features extracted, these are processed onto the encoder to extract
memory features and the current frame features separately. The vectors obtained
are further fed to the temporal memory attention module (TMA) as illustrated in
figure 3.2 to build temporal relations. To calculate the temporal memory attention,
memory vectors and current frame features are combined. Finally, a segmentation
head gives the desired results.

12

4 Proposed Method

This chapter first describes in detail the Segmenter [34] model in section 4.1 since
our VideoSegmenter model heavily relies on it. Section 4.2 defines the flow of
the proposed VideoSegmenter model and its components (ViT encoder, Predictor,
Corrector and Decoder) in the sub sections. Further, Section 4.3 mentions the loss
functions used during training of the model and finally, Section 4.4 mentions the
hyper-parameters used and training strategy implemented.

4.1 Segmenter
Directly inspired by [34], the work on this thesis aims at extending the Segmenter
model to also work well for video sequences. The Segmenter model, as depicted
in figure 4.1, is based on the transformer architecture inspired by the ViT [13]. It
takes the input image x ∈ RH×W×C and splits it into N patches of fixed size. These
patches are flattened and linearly projected to d-dimensional patch embeddings.
In order to account for positional information, learnable positional encodings are
added which result in a sequence of tokens Zo = [Zo,1, ..., Zo,N] which is processed
by the transformer encoder that contains multi-head self-attention blocks followed
by MLP blocks with residual connections and layer normalization layers resulting
in embedding from the encoder as ZL = [ZL,1, ZL,2, ..., ZL,N]. These encodings are
then processed by means of a linear decoder or a mask transformer in order to
predict the semantic segmentation maps for the corresponding input frame.

The linear decoder maps the patch embeddings from the encoder to patch-level
class logits by applying a point-wise linear layer. These are then reshaped and
bilinearly upsampled to the original image size to which a softmax layer is applied
to get the segmentation maps.

The Mask transformer decoder on the other hand makes use of K learnable class
embeddings cls, wherein K is the number of classes, which are utilised to generate
class masks. The embeddings from the encoder ZL are processed together with the
class embeddings cls via the decoder which is a transformer encoder consisting of
M layers. The output from the transformer decoder results in L2-normalised patch
embeddings Z ′

M ∈ RN×D along with class embeddings cT . The scalar product of

13

4 Proposed Method

Figure 4.1: The architecture of the Segmenter Model taken from [34]

these two values is taken to produce a patch sequence which is then reshaped
and bilinearly upsampled. Finally, as with the linear decoder, a softmax layer is
applied to generate the segmentation maps.

4.2 VideoSegmenter
The Segmenter [34] model introduced above can be used as a Video Semantic Seg-
mentation model when applied frame-by-frame. However, this leads to predicted
segmentation maps wherein the model fails to learn temporal relations as it treats
each frame separately and uses no information from the past frames in a sequence
to predict the next segmentation maps. To mitigate this problem, we introduce
the VideoSegmenter model which introduces a method to learn the temporal re-
lations contained between frames in a sequence by introducing two modules, the
Predictor and the Corrector.

Given a sequence of frames x1, x2, x3, ...xN extracted from a video sequence,
we aim to predict the segmentation maps s1, s2, s3,sN for each frame in the
video sequence. The VideoSegmenter model consists of four main blocks, the
ViT encoder (section 4.2.1), predictor (section 4.2.2), corrector 4.2.3 and decoder
4.2.4 explained in detail in the mentioned sub-sections. Similar to the Segmenter
model, each frame extracted from a video sequence is broken down into patches
of a fixed size. These patches are then flattened and linearly projected. Learnable
positional encoding is added to each patch to retain spatial information. Patch
embeddings along with the positional encodings from each frame in the sequence
is fed to the ViT encoder which is transformer consisting of L layers. In order
to incorporate temporal relations between frames, we make use of the Predictor
module. This transformer module predicts the patch embeddings of the current

14

4.2 VideoSegmenter

time step by considering information from the previous time steps. Essentially, if
we have a sequence of four frames, in order to predict the segmentation map of
the fourth frame, ViT embeddings of the previous three frames in the sequence
are fed to the predictor along with a learnable temporal encoding that is added
to it to retain temporal relations. The prediction from the predictor is fused with
the output of the ViT encoder (ViT embeddings) via the corrector transformer
block which models both the embeddings resulting in embeddings that are rich in
spatial as well as temporal features. The embeddings generated by the corrector
module are passed through the decoder, which is either a linear decoder or a mask
transformer decoder, in order to produce patch-level logits that are then reshaped
and upsampled to the original image size. Lastly, a softmax layer is applied to get
the segmentation maps of the sequence. The model architecture of Segmenter is
depicted in figure 4.1

4.2.1 ViT Encoder
Each frame x ∈ RH×W×C extracted from a video sequence where H, W and C

represent the height, width and channels respectively, is divided into N patches
each of size (P, P) generating a sequence of patches xp ∈ RN×P 2×C . Each patch
of size (P, P) is flattened to a 1D vector and linearly projected with a learnable
trasnform to get patch embeddings xo ∈ RN×D. In order to retain positional
information, learnable positional encodings p ∈ RN×D are added to the sequence
of patch embeddings to generate the input sequence to the ViT encoder as in
equation 4.1

yo = xo + p ∈ RN×D (4.1)

The encoder consists of L transformer encoder layers and generates a sequence of
encodings yL ∈ RN×D. Each layer consists of a multi-headed self attention block
(MSA) followed by a simple MLP block. A residual connection is added after every
block and a layernorm layer is applied before every block as shown in equations
4.2 and 4.3

y′l = MSA (LN (yl−1)) + yl−1 (4.2)

yl = MLP (LN (y′l)) + y′l (4.3)

Finally a layernorm is applied in the end to generate the final output from the
transformer encoder as in equation 4.4

yL = LN(yl) (4.4)

15

4 Proposed Method

Figure 4.2: VideoSegmenter Model Architecture which has four learnable modules, the
ViT encoder, Predictor, Corrector and Decoder blocks in order to predict
semantic segmentation maps of the input sequence provided.

4.2.2 Predictor

The predictor is the most significant change to our model as opposed to any image
segmentation model that is applied to a video segmentation task. This module
predicts the patch embedding of a current frame given a sequence of past patch
embeddings from the ViT encoder as inputs by modeling the information contained
within nearby frames in a video sequence as illustrated in figure 4.3.

The embeddings yL from the encoder are fed to the predictor in an auto-
regressive manner to predict future patch embeddings, ŷL as in equation 4.5. In
order to predict segmentation maps of an image at time step t + 2, i.e ˆyL3, the
ViT encoder embeddings of the previous two time steps, i.e. yL2 and yL1 are used.
To account for temporal continuity, a set of learnable positional embeddings are
added to the ViT embeddinfs prior to the predictor module. The output from the
predictor module gives a representation of the embedding of a future frame being

16

4.2 VideoSegmenter

predicted by looking at the frames until the current time step.

ˆyLT = Predictor(yL1, yL1, ..., yLT−1) (4.5)

4.2.3 Corrector
The corrector module acts like a fusion block. It takes in the predicted patch
embeddings from the predictor, ˆyLT and fuses it with the patch embeddings gen-
erated by the ViT encoder, yLT for the current frame being processed. It is the
only module in the model that has access to its current ViT encoder patch em-
beddings. The motivation behind adding this module is that since most datasets
lack annotated frames, the patch embeddings from the ViT encoder of the current
frame being processed can act as the “ground truth” and the embeddings from
the predictor module can act as the “predicted embeddings” as depicted in figure
4.3. This way the corrector module fuses the features extracted from both the ViT
encoder and the preditor to result in spatio-temporal rich embeddings by taking
into account the previous frames features. The input to the corrector module is
as follows -

yL
f = Corrector([(ŷL, yL)]) (4.6)

4.2.4 Decoder
This module decodes the patch level embeddings from the corrector module to
obtain segmentation maps. We implement two kinds of decoder architectures
following the works of [34], the linear decoder and the mask transformer decoder.

Linear Decoder

A simple and effective way of obtaining segmentation maps is to pass each em-
bedding from the sequence through a linear layer that produces patch-level logits
which are then reshaped into 2-D feature maps and bilinearly upsampled to the
original image size. A softmax layer is applied to obtain the segmentation maps
of each image in the sequence.

Mask Transformer

A more advanced approach is to design the decoder as a transformer block following
the works of [34] as depicted in figure 4.4. The mask transformer takes the patch
embeddings from the corrector module and additionally a set of K learnable class

17

4 Proposed Method

Figure 4.3: The Predictor-Corrector Architecture. Predictor takes in the patch embed-
dings from the ViT encoder to predict the embeddings at the subsequent
time step. Out of the predicted patch embeddings, only the last one is used,
which is fed to the corrector module that fuses predicted embeddings with
the ViT patch embeddnfs and produces a spatio-temporal rich embeddings
to be used by the decoder to produce segmentation maps.

embeddings, cls that are randomly initialized. The transformer block consists of
M layers. The scalar product between the class embedding output cls′ and the
L2 normalized embeddings yL1M are taken to generate K class masks as shown in
equation 4.7. These class masks are then reshaped and bilinearly upsampled to
generate the feature map. A softmax layer is then applied as in the case of the
linear decoder to obtain the segmentation maps.

ClassMasks = yL1
M · cls′T (4.7)

4.3 Training Losses

To learn to assign pixels to the correct semantic class, we employ the Cross Entropy
Loss function as shown in equation 4.8. For Cityscapes, since annotations are
available only for the 19th frame, cross entropy loss is calculated only on one

18

4.3 Training Losses

Figure 4.4: The Mask Transformer decoder. cls represent the class embeddings and yL1
f

represent the output embeddings from the corrector module.

frame.

Li = −
C∑

j=1

yijlog(pij)

Ltotal =
1

N

N∑
i=1

Li

(4.8)

where,

• Li is the loss for pixel i.

• yij denotes the true label vector (one hot encoded) of pixel i for class j.

• pij denotes the predicted probability of pixel i for class j.

• C denotes the total number of classes.

Additionally, we add a temporal regulariser that calculates the Mean Squared
Error (MSE) between the predicted patch embeddings from the predictor and the
ViT embeddings from the ViT encoder. The ViT embeddings kind of act like the
“ground truths” for the frames for which there are no segmenations provided and
enforces temporal regularization. This is calculated as in equation 4.9.

19

4 Proposed Method

L =
N∑
i=1

(yLi − ŷLi)
2 (4.9)

where,

• ŷLi denotes the predicted embeddings obtained from the predictor module

• yLi denotes the ViT encoder embeddings obtained from the ViT encoder

4.4 Implementation details
This section describes the implementation details along with hyper parameter
settings used in this thesis. All models are implemented using Pytorch [22].

Table 4.2 summarizes the hyper parameter settings used for both datasets during
training of VideSegmenter model.

We trained Segmenter [34] using the SGD [15] optimizer to get results for frame-
by-frame segmentations, wherein each frame in a video snippet is considered indi-
vidually without considering any previous frames (history) of the video sequence.
This serves as the baseline model for the course of this thesis.

Segmenter [34] uses the Vision Transformer (ViT) [13] to train the encoder. The
ViT has various variants like ”tiny”, ”base” and ”large”. They differ in the number
of layers, heads and the dimension size used in the transformer blocks. Details are
mentioned in Table 4.1.

Table 4.1: Variants in the Vision Transformer as described in [13].
Model #layers #heads dim
tiny 12 3 192
base 12 12 768
large 24 16 1024

For the most part, we make use of the ”tiny” variant due to computation limi-
tations. We also use the ”base” version to train a model on Synpick to experiment
with patch size as a small ablation study.

The ViT encoder is initialised using pretrained weights obtained from training
the frame-by-frame model. These were kept frozen throughout all experiments.

The predictor and corrector modules are regular transformers as explained in
section 2.4 and consist of six and three layers for the Cityscapes[10] and eight and
two layers for the Synpick[23] dataset, respectively.

20

4.4 Implementation details

The decoder takes the form of a linear decoder or a mask transformer that
consists of two layers.

We use patch sizes of 16 × 16 to train all models. Additionally we also train a
model on Synpick that uses a patch size of 8 × 8.

Training is done following the MM-Segmentation [9] library. All images are
randomly cropped to a fixed size of 768 × 768 for Cityscapes and 128 × 128
for Synpick. They are randomly flipped with a probability of 0.5. Photometric
distortion [29] is also applied as means of data augmentation.

Dropout [33] and Stochastic Depth [18] with values 0.1 are used as regularizers
for the experiments conducted. Stochastic depth randomly drops blocks of the
transformer with a probability of 0.1 while dropout randomly drops the neurons
given as input to the transformer block. All models use the scheduling process
similar to the one used by Strudel et al. [34] that employs the poly learning rate
decay as lr0 = lr(1 − Niter

Ntotal
)0.9 wherein Niter represents the current iteration and

Ntotal represent the total number of iterations.
Cityscapes [10] is trained using an Adam optimizer [19] with a learning rate of

0.0005 while Synpick [23] is trained using the SGD [15] optimizer with a learning
rate of 0.005.

A sequence size of four frames is used to train all models. Since Cityscapes
[10] consists of only one annotated frame per video sequence, we keep the anno-
tated frame as the last frame in the sequence while training. We also experiment
with keeping the annotated frame as the second frame in the sequence but see no
significant improvement/decline in performance.

Table 4.2: Summarized hyper-parameters used during training on VideoSeg-
menter.
Hyper-param Cityscapes Synpick
ViT variant tiny tiny/base
Layers_pred 6 8
Layers_corr 3 2
Image size 768 × 768 128 × 128
Optim Adam SGD
LR 5e4 5e-3
Patch size 16 × 16 16 × 16 / 8 × 8

21

5 Experiments

In this chapter, we explain the datasets used in section 5.1 to evaluate our VideoSeg-
menter model. Further, Section 5.2 mentions the two metrics, Mean Intersection
over Union and Mean Accuracy used to evaluate the models. Finally, in sections
5.3 and 5.4, we present our experimental findings both quantitatively and quali-
tatively on both datasets.

5.1 Datasets
We evaluate our model for Video Semantic Segmenation on the Cityscapes [10]
and Synpick [23] datasets.

Cityscapes [10]

This benchmark dataset widely used in urban scene understanding and autonomous
driving tasks contains 5000 RGB images collected over 50 different German cities.
They are split into 2975 images used for training, 1525 for testing and 500 for the
validation set. Figure 5.1a shows two frames from the dataset along with their
segmentation maps. There are 30 labeled classes available, however only 19 of
them are used in order to train the network. Each sequence contains 30 frames,
of them annotations are available only for 19th frame. We use a sequence size of
four in order to train the network and make sure that the 19th frame is one of the
frames included in the sequence.

Synpick [23]

We also test our model on Synpick [23], a synthetic dataset used for dynamic scene
understanding in bin-picking. The scene consists of a gripper robot that moves in
different directions pushing 21 objects contained in the box. We make sure that
the robotic gripper is present in all cases. A snippet from the datasets sample is
shown in figure 5.1b

23

5 Experiments

(a) Cityscapes dataset sample (b) Synpick dataset sample

Figure 5.1: Two sample frames from both datasest with their segmentation maps

5.2 Metrics
This section elaborates on the metrics used to evaluate our model, namely Mean
Intersection over Union and Mean Accuracy.

Mean Intersection over Union (MIoU)

Mean Intersection over Union (MIoU) is a common metric used to evaluate seg-
mentation results which measures the degree of overlap between the predicted and
ground truth segmentation maps of each frame. It is calculated as in equation 5.1
for multi class segmentation predictions.

Intersection over union (IoU) =
groundtruth ∩ predicted

groundtruth ∪ predicted

Mean Intersection over Union (MIoU) =
IoU

N

(5.1)

wherein N denotes the number of classes.

Mean Accuracy

We report Mean Accuracy across the semantic classes. For each of the class labels,
mean accuracy is calculated and then averaged over these class-wise accuracies to
produce the final metric value. Calculation is done as in equation 5.2

Mean Accuracy =
1

N

N∑
i=1

TPi

TPi + FNi

(5.2)

wherein,

24

5.3 Quantitative results

• TPi denotes the number of correctly classified pixels for class i (True posi-
tives).

• FNi denotes the number of pixels that are misclassified for class i (False
negatives) .

• N denotes the number of classes.

5.3 Quantitative results
This section explains the results obtained on the two datasets quantitatively. Ta-
ble 5.1 summarizes the results on the best performing models on both datasets, i.e.
Cityscapes and Synpick as compared to Segmenter’s baseline model. VideoSeg-
menter trained with a mask transformer decoder and with MSE temporal regu-
larisation achieves the best results on Cityscapes, while the model trained with
the base variant of ViT with a patch size of 8 × 8 along with a linear decoder
achieves best results on Synpick. Further, tables 5.2 and 5.5 talk in detail about
individuals experiments on both datasets separately. We report MIoU and Mean
accuracy for all models.

Table 5.1: Summarized best results on Cityscapes and Synpick datasets
Cityscapes Synpick

MIoU Mean Acc MIoU Mean Acc
Segmenter 68.59 77.72 73.8 82.3
VideoSegmenter/Linear 70.55 78.74 75.13 83.38
VideoSegmenter/Mask w/ MSE 73.46 82.11 —– —–
VideoSegmenter/Linear/Base w/o MSE —– —– 87.49 92.72

Cityscapes

Table 5.2 summarizes the experiments conducted on Cityscapes along with their
metric findings. VideoSegmenter trained with the linear decoder shows a rise of
+1.5% in MIoU as compared to the one trained on Segmenter model (frame by
frame results). When experimenting with using MSE as the temporal regulari-
sation loss, we notice a 0.5% rise in MIoU. Another significant improvement is
noticed when using a mask transformer decoder as opposed to a linear decoder
with the highest MIoU recorded on Cityscapes to be 73.46 when trained using the
mask transformer and the additional MSE loss.

25

5 Experiments

We believe training Cityscapes using a more powerful encoder (e.g. the ViT
base variant) will yield best results. This experiment was not performed due to
large training times and memory consumption. However, the experiment with the
base variant and a patch size of 16 × 16 was performed on the frame-by-frame
model which resulted in a MIoU of 77.94%. This gives us the intuition that our
VideoSegmenter model would have produced better results when trained using the
base variant instead of the tiny variant.

Table 5.2: Quantitative results obtained on the Cityscapes dataset.
Results - Cityscapes

Model MIoU Mean Acc
Segmenter (Baseline) 68.59 77.72
VideoSegmenter/Linear w/o MSE 70.11 78.4
VideoSegmenter/Linear w/ MSE 70.55 78.74
VideoSegmenter/Mask w/o MSE 72.92 81.46
VideoSegmenter/Mask w/ MSE 73.46 82.11

Table 5.3 gives insights on the Intersection over Union per class and gives the
top four classes that show considerable improvements in values as compared to
the baseline model. Moving classes like the bicycle and rider categories show
significant improvements. This shows that our model is able to model temporal
continuity and accounts for moving objects between frames. Table 5.4 mentions
the two classes that perform slightly worse than the baseline model.

It is to be noted that our model relies heavily on the Segmenter models results
since the ViT encoder embeddings are frozen throughout training. This results in
similar findings with considerable improvements.

Table 5.3: The top four classes that give a significant rise in IoUclass values when
compared with the Segmenter model on Cityscapes dataset.

Class Segmenter-IoUclass VideoSegmenter-IoUclass

wall 55.86 59.50
traffic light 51.6 56.28
rider 45.97 52.34
bicycle 67.92 70.02

Synpick

Table 5.5 summarises the experimental results obtained on the Synpick dataset.
When using the tiny version of the ViT as the pretrained encoder and patch size

26

5.4 Qualitative results

Table 5.4: The only two classes that give worse values for IoUclass when compared
with the per class IoU values for Segmenter vs VideoSegmenter both
trained using the linear decoder.

Class Segmenter-IoUclass VideoSegmenter-IoUclass

sky 93.37 93.31
truck 64.62 63.29

of 16 × 16, we obtain best results when trained using a linear decoder with Mean
Squared Error (MSE) regularisation. It is noted that using mask transformer only
slightly improves results on Synpick as compared to the improvements noticed on
Cityscapes.

A significant rise +12% is gained when training using the pretrained weights
from the segmenter model trained on the base variant of the ViT and a patch size
of 8 × 8. Decreasing the patch size leads to better results as the model is able to
capture boundaries in a better manner but comes with the overhead of increasing
training times due to the large patch embeddings sequence.

Table 5.5: Quantitative results obtained on the Synpick dataset.
Results - Synpick

Model MIoU Mean Acc
Segmenter (Baseline) 73.8 82.3
VideoSegmenter/Linear w/o MSE 74.56 82.66
VideoSegmenter/Linear w/ MSE) 75.17 83.43
VideoSegmenter/Mask w/o MSE 74.72 83.65
VideoSegmenter/Linear/Base w/o MSE 87.50 92.75

5.4 Qualitative results
This section describes the qualitative results from the experiments that were done
during the course of the thesis.

Cityscapes

Figure 5.2 shows two examples of segmentation maps predicted when using a mask
transformer as our decoder which is our best performing model. Results show a
comparison between visuals from the Segmenter model vs our VideoSegmenter
results. Some improvements from our model are highlighted in the images and
prove to be more consistent across time steps. Our model is trained using a

27

5 Experiments

(a) Terrain is predicted a little more consistently (highlighted in green) as compared to the
predictions from segmenter model

(b) The enlarged part of the image shows the difference between our model and the segmenter
model. Our model correctly predicts the sidewalk even in the last frame as it makes use of
embeddings from previous frames.

Figure 5.2: Results on Cityscapes dataset comparing the baseline model trained using
Segmenter [34] with out best performing VideoSegmenter model trained us-
ing the mask transformer with regularization MSE loss

28

5.4 Qualitative results

sequence size of 4. Example 5.2b shows that even when the frame gets out of
the training horizon, our model classifies the sidewalk correctly as opposed to the
noisy prediction generated by the Segmenter model. This shows that using the
history of past frames to predict the future frames prove to give more consistent
results.

Further, results from training using a linear decoder vs a mask transformer are
visualised in figure 5.3 . It can be seen that there is a significant improvement in
visuals when training using a mask transformer as the decoder. The segmentation
maps are more consistent across the time frames. Figure 5.3b shows significant
improvements when predicting sidewalks while figure 5.3a shows more consistency
in predicting the traffic signs across the frames as highlighted by the boxes.

Synpick

Figure 5.4 shows improvements obtained by our model as compared to the results
from the frame by frame method used in Segmenter [34] and highlights them. Fig-
ure 5.4a shows that the object belonging to the class banana depicted in light pink
changes its shape when predicted using the frame by frame model by Segmenter
[34] from frame three onwards. However, when tested on our VideoSegmenter
model, it provides consistent results and the shape of the object is maintained
until the 8th frame as outlined in green colour. As a small ablation study on the
variant of the ViT [13] transformer block used to train the Segmenter [34] model
and patch size, we experiment with the base version of the ViT along with a patch
size of 8 × 8. As seen in figure 5.5, we see that the object boundaries are much
more clearer and well-defined. A particularly difficult class, the clamp can be seen
predicted quite well as compared to Segmenter results also visualized in figure 5.5.

29

5 Experiments

(a) The sidewalks highlighted in red and green show the difference in segmentation maps.

(b) The traffic sign can be seen predicted consistently in all frames. The difference is highlighted
in red and green.

Figure 5.3: Results on Cityscapes demonstrating the effectiveness of using a mask trans-
former instead of a linear decoder.

30

5.4 Qualitative results

(a) Objected highlighted is a banana depicted in a ligh pink shade. The segmentation obtained
by using Segmenter [34] model changes the shape to being fat than the actual object as
highlighted in red. Our model correctly predicts the object as the frame progresses.

(b) The object highlighted is a clamp depicted in brown. In frames 6 and 8, the Segmenter [34]
model gives noisy predictions. These are improved when employing our model as highlighted
in green.

Figure 5.4: Qualitative results on the Synpick dataset comparing results obtained by
training Segmenter [34] and our VideoSegmenter model using the linear de-
coder with regularization loss.

31

5 Experiments

Figure 5.5: Synpick results when using the tiny and base variants of the ViT [13]. The
base variant uses a patch size of 8 × 8. The latter gives more defined outlines
for the objects and predicts objects like clamp depicted in brown very well.

32

6 Conclusion and Future Work
This chapter summarizes the work done during the course of this thesis and
presents the future scope in the field that can be done to improve results.

Our proposed VideoSegmenter model that provides segmentation for each frame
in a video sequence in an auto-regressive manner by incorporating temporal rela-
tions between consecutive frames successfully improves the results by around 2%
for both datasets. Additionally, we show qualitatively that our model gives more
consistent results across a time frames, which in turn leads to less noisy predictions
as compared to results from a frame-by-frame segmentation model that does not
account for temporal relations.

We also employ means to enforce temporal regularisation between consecutive
frames by employing the Mean Squared Error loss between the predicted embed-
dings and the ViT embeddings, leading to even better results. However, results
can be further improved by fine-tuning the weighting hyperparameter in a better
way.

Although we achieve significant results through our VideoSegmenter model, due
to time and computation constraints, some experiments were left out. These are
outlined below that could be conducted in order to achieve better results.

We use the tiny version of the ViT transformer variant [13] to model our ViT
encoder. Employing the pretrained base/large version of the ViT transformer
would lead to better results. However, the model size is too large and would
require large amounts of memory and training times.

Decreasing patch sizes to a small number like 8 × 8 as experimented with the
Synpick [23] dataset leads to better, sharper and more defined results. This could
not be employed with the Cityscapes dataset owning the high training times due
to a larger patch sequence size. In the future, this could be tested to lead to much
better results.

In conclusion, our VideoSegmenter architecture learns to model temporal con-
tinuity between frames for the task of Video Semantic Segmentation clearly out-
performing the strong Segmenter baseline. Addressing the above points is crucial
and would lead to more promising results in the future.

33

List of Figures
2.1 Long-Short-Term Memory network Architecture, figure from [39].

The three gates, input, forget and output gate as seen in the figure
are the backbone of the LSTM structure and maintain the flow of
information within a cell. 5

2.2 Transformer Model Architecture, figure from [40] 6
2.3 Attention mechanisms in the transformer model, figures taken from

[40] . 7
2.4 Vision transformer Model, figure extracted from [13]. The images

are divided into patches of fixed size and are then processed by the
Transformer Encoder whose architecture is depicted on the right. . 8

3.1 LSTM-SegNet architecture from [24]. The three positions to insert
a convLSTM layer are highlighted here and color coded schemes
are represented on the right. 11

3.2 TMANet Model Architecture. The current frame along with the
memory sequence are fed to the shared backbone which are then
passed to the encoding layers to embed the features extracted. They
are processed by the TMA block that models temporal relations. . . 11

4.1 The architecture of the Segmenter Model taken from [34] 14
4.2 VideoSegmenter Model Architecture which has four learnable mod-

ules, the ViT encoder, Predictor, Corrector and Decoder blocks in
order to predict semantic segmentation maps of the input sequence
provided. 16

4.3 The Predictor-Corrector Architecture. Predictor takes in the patch
embeddings from the ViT encoder to predict the embeddings at the
subsequent time step. Out of the predicted patch embeddings, only
the last one is used, which is fed to the corrector module that fuses
predicted embeddings with the ViT patch embeddnfs and produces
a spatio-temporal rich embeddings to be used by the decoder to
produce segmentation maps. 18

4.4 The Mask Transformer decoder. cls represent the class embeddings
and yL1

f represent the output embeddings from the corrector module. 19

35

List of Figures

5.1 Two sample frames from both datasest with their segmentation maps 24
5.2 Results on Cityscapes dataset comparing the baseline model trained

using Segmenter [34] with out best performing VideoSegmenter
model trained using the mask transformer with regularization MSE
loss . 28

5.3 Results on Cityscapes demonstrating the effectiveness of using a
mask transformer instead of a linear decoder. 30

5.4 Qualitative results on the Synpick dataset comparing results ob-
tained by training Segmenter [34] and our VideoSegmenter model
using the linear decoder with regularization loss. 31

5.5 Synpick results when using the tiny and base variants of the ViT
[13]. The base variant uses a patch size of 8 × 8. The latter gives
more defined outlines for the objects and predicts objects like clamp
depicted in brown very well. 32

36

List of Tables
4.1 Variants in the Vision Transformer as described in [13]. 20
4.2 Summarized hyper-parameters used during training on VideoSeg-

menter. Layers_pred and Layers_corr represent the number of
layers used in the predictor and corrector transformers. 21

5.1 Summarized best results on Cityscapes and Synpick datasets 25
5.2 Quantitative results obtained on the Cityscapes dataset. 26
5.3 The top four classes that give a significant rise in IoUclass values

when compared with the Segmenter model on Cityscapes dataset. . 26
5.4 The only two classes that give worse values for IoUclass when com-

pared with the per class IoU values for Segmenter vs VideoSeg-
menter both trained using the linear decoder. 27

5.5 Quantitative results obtained on the Synpick dataset. 27

37

Bibliography
[1] Abien Fred Agarap. Deep learning using rectified linear units (relu). 2019.

arXiv: 1803.08375 [cs.NE].
[2] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normal-

ization. 2016. arXiv: 1607.06450 [stat.ML].
[3] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. “Segnet: a deep

convolutional encoder-decoder architecture for image segmentation.” In: Ieee
transactions on pattern analysis and machine intelligence 39.12 (2017), pp. 2481–
2495.

[4] Gabriel Brostow, Julien Fauqueur, and Roberto Cipolla. “Semantic object
classes in video: a high-definition ground truth database.” In: Pattern recog-
nition letters 30 (Jan. 2009), pp. 88–97. doi: 10.1016/j.patrec.2008.04.
005.

[5] Siddhartha Chandra, Camille Couprie, and Iasonas Kokkinos. “Deep spatio-
temporal random fields for efficient video segmentation.” In: Proceedings
of the ieee conference on computer vision and pattern recognition. 2018,
pp. 8915–8924.

[6] Siddhartha Chandra and Iasonas Kokkinos. “Fast, exact and multi-scale in-
ference for semantic image segmentation with deep gaussian crfs.” In: Com-
puter vision–eccv 2016: 14th european conference, amsterdam, the nether-
lands, october 11–14, 2016, proceedings, part vii 14. Springer. 2016, pp. 402–
418.

[7] Siddhartha Chandra, Nicolas Usunier, and Iasonas Kokkinos. “Dense and
low-rank gaussian crfs using deep embeddings.” In: Proceedings of the ieee
international conference on computer vision. 2017, pp. 5103–5112.

[8] Kyunghyun Cho et al. On the properties of neural machine translation:
encoder-decoder approaches. 2014. arXiv: 1409.1259 [cs.CL].

[9] MMSegmentation Contributors. MMSegmentation: openmmlab semantic seg-
mentation toolbox and benchmark. https://github.com/open- mmlab/
mmsegmentation. 2020.

[10] Marius Cordts et al. “The cityscapes dataset for semantic urban scene un-
derstanding.” In: Proceedings of the ieee conference on computer vision and
pattern recognition. 2016, pp. 3213–3223.

39

https://arxiv.org/abs/1803.08375
https://arxiv.org/abs/1607.06450
https://doi.org/10.1016/j.patrec.2008.04.005
https://doi.org/10.1016/j.patrec.2008.04.005
https://arxiv.org/abs/1409.1259
https://github.com/open-mmlab/mmsegmentation
https://github.com/open-mmlab/mmsegmentation

Bibliography

[11] Jacob Devlin et al. Bert: pre-training of deep bidirectional transformers for
language understanding. 2019. arXiv: 1810.04805 [cs.CL].

[12] Mingyu Ding et al. “Every frame counts: joint learning of video segmenta-
tion and optical flow.” In: Proceedings of the aaai conference on artificial
intelligence. Vol. 34. 07. 2020, pp. 10713–10720.

[13] Alexey Dosovitskiy et al. “An image is worth 16x16 words: transformers for
image recognition at scale.” In: Arxiv preprint arxiv:2010.11929 (2020).

[14] Mohsen Fayyaz et al. “Stfcn: spatio-temporal fcn for semantic video segmen-
tation.” In: Arxiv preprint arxiv:1608.05971 (2016).

[15] Ian J. Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning.
http://www.deeplearningbook.org. Cambridge, MA, USA: MIT Press,
2016.

[16] Kaiming He et al. Deep residual learning for image recognition. 2015. arXiv:
1512.03385 [cs.CV].

[17] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory.” In:
Neural computation 9.8 (1997), pp. 1735–1780. doi: 10.1162/neco.1997.
9.8.1735.

[18] Gao Huang et al. Deep networks with stochastic depth. 2016. arXiv: 1603.
09382 [cs.LG].

[19] Diederik P. Kingma and Jimmy Ba. Adam: a method for stochastic opti-
mization. 2017. arXiv: 1412.6980 [cs.LG].

[20] Jiangtong Li et al. “Video semantic segmentation via sparse temporal trans-
former.” In: Proceedings of the 29th acm international conference on multime-
dia. MM ’21. Virtual Event, China: Association for Computing Machinery,
2021, pp. 59–68. isbn: 9781450386517. doi: 10.1145/3474085.3475409.
url: https://doi.org/10.1145/3474085.3475409.

[21] David Nilsson and Cristian Sminchisescu. Semantic video segmentation by
gated recurrent flow propagation. 2017. arXiv: 1612.08871 [cs.CV].

[22] Adam Paszke et al. Pytorch: an imperative style, high-performance deep
learning library. 2019. arXiv: 1912.01703 [cs.LG].

[23] Arul Selvam Periyasamy, Max Schwarz, and Sven Behnke. “Synpick: a dataset
for dynamic bin picking scene understanding.” In: 2021 ieee 17th interna-
tional conference on automation science and engineering (case). IEEE. 2021,
pp. 488–493.

[24] Andreas Pfeuffer, Karina Schulz, and Klaus Dietmayer. “Semantic segmen-
tation of video sequences with convolutional lstms.” In: 2019 ieee intelligent
vehicles symposium (iv). IEEE. 2019, pp. 1441–1447.

40

https://arxiv.org/abs/1810.04805
http://www.deeplearningbook.org
https://arxiv.org/abs/1512.03385
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/1603.09382
https://arxiv.org/abs/1603.09382
https://arxiv.org/abs/1412.6980
https://doi.org/10.1145/3474085.3475409
https://doi.org/10.1145/3474085.3475409
https://arxiv.org/abs/1612.08871
https://arxiv.org/abs/1912.01703

Bibliography

[25] Vishnu Pradeep et al. “Self-supervised sidewalk perception using fast video
semantic segmentation for robotic wheelchairs in smart mobility.” In: Sensors
22.14 (2022), p. 5241.

[26] Alec Radford et al. “Improving language understanding by generative pre-
training.” In: (2018).

[27] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. “Learning
representations by back-propagating errors.” In: Nature 323 (1986), pp. 533–
536. url: https://api.semanticscholar.org/CorpusID:205001834.

[28] Xingjian Shi et al. Convolutional lstm network: a machine learning approach
for precipitation nowcasting. 2015. arXiv: 1506.04214 [cs.CV].

[29] Connor Shorten and Taghi Khoshgoftaar. “A survey on image data aug-
mentation for deep learning.” In: Journal of big data 6 (July 2019). doi:
10.1186/s40537-019-0197-0.

[30] Mennatullah Siam et al. “A comparative study of real-time semantic seg-
mentation for autonomous driving.” In: Proceedings of the ieee conference
on computer vision and pattern recognition (cvpr) workshops. June 2018.

[31] Mennatullah Siam et al. “Video object segmentation using teacher-student
adaptation in a human robot interaction (hri) setting.” In: 2019 international
conference on robotics and automation (icra). 2019, pp. 50–56. doi: 10.1109/
ICRA.2019.8794254.

[32] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. 2015. arXiv: 1409.1556 [cs.CV].

[33] Nitish Srivastava et al. “Dropout: a simple way to prevent neural networks
from overfitting.” In: Journal of machine learning research 15 (June 2014),
pp. 1929–1958.

[34] Robin Strudel et al. “Segmenter: transformer for semantic segmentation.”
In: Proceedings of the ieee/cvf international conference on computer vision.
2021, pp. 7262–7272.

[35] Yuan Tian, Tao Guan, and Cheng Wang. “Real-time occlusion handling in
augmented reality based on an object tracking approach.” In: Sensors 10.4
(2010), pp. 2885–2900.

[36] Sercan Türkmen. “Scene understanding through semantic image segmenta-
tion in augmented reality.” MA thesis. S. Türkmen, 2019.

[37] Sepehr Valipour et al. Recurrent fully convolutional networks for video seg-
mentation. 2016. arXiv: 1606.00487 [cs.CV].

[38] Sepehr Valipour et al. “Recurrent fully convolutional networks for video
segmentation.” In: 2017 ieee winter conference on applications of computer
vision (wacv). 2017, pp. 29–36. doi: 10.1109/WACV.2017.11.

41

https://api.semanticscholar.org/CorpusID:205001834
https://arxiv.org/abs/1506.04214
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1109/ICRA.2019.8794254
https://doi.org/10.1109/ICRA.2019.8794254
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1606.00487
https://doi.org/10.1109/WACV.2017.11

Bibliography

[39] Greg Van Houdt, Carlos Mosquera, and Gonzalo Nápoles. “A review on the
long short-term memory model.” In: Artificial intelligence review 53 (Dec.
2020). doi: 10.1007/s10462-020-09838-1.

[40] Ashish Vaswani et al. “Attention is all you need.” In: 2017. url: https:
//arxiv.org/pdf/1706.03762.pdf.

[41] Hao Wang, Weining Wang, and Jing Liu. “Temporal memory attention for
video semantic segmentation.” In: 2021 ieee international conference on im-
age processing (icip). IEEE. 2021, pp. 2254–2258.

[42] Yang Wang et al. Occlusion aware unsupervised learning of optical flow. 2018.
arXiv: 1711.05890 [cs.CV].

[43] Wenhui Zhang and Tejas Mahale. “End to end video segmentation for driv-
ing: lane detection for autonomous car.” In: Arxiv preprint arxiv:1812.05914
(2018).

42

https://doi.org/10.1007/s10462-020-09838-1
https://arxiv.org/pdf/1706.03762.pdf
https://arxiv.org/pdf/1706.03762.pdf
https://arxiv.org/abs/1711.05890

	Introduction
	Theoretical background
	Multi-Layer Perceptron
	Recurrent Neural Networks
	Long-Short-Term Memory Networks
	Transformers
	Vision Transformer

	Related work
	Optical Flow Methods
	Conditional Random Fields Models
	Memory-Based Models

	Proposed Method
	Segmenter
	VideoSegmenter
	ViT Encoder
	Predictor
	Corrector
	Decoder

	Training Losses
	Implementation details

	Experiments
	Datasets
	Metrics
	Quantitative results
	Qualitative results

	Conclusion and Future Work

