
Combining Simulations and Real Experiments
for Sample-efficient Gait Parameter Learning

using Multi-Fidelity Entropy Search

Bachelor Thesis

Author:
André Brandenburger

First Examiner: Second Examiner:
Prof. Dr. Sven Behnke Prof. Dr. Maren Bennewitz

AIS

Autonomous Intelligent Systems (AIS)
Computer Science Institute VI

University of Bonn

Bonn, Germany
April 14, 2018





Eidesstattliche Erklärung nach BAPO 2011 §17 Abs. 7

Hiermit erkläre ich, dass ich diese Bachelorarbeit selbständig verfasst und
keine anderen als die angegebenen Quellen und Hilfsmittel benutzt und die
aus fremden Quellen direkt oder indirekt übernommenen Gedanken als solche
kenntlich gemacht habe. Die Arbeit habe ich bisher weder veröffentlicht, noch
einem anderen Prüfungsamt in gleicher oder vergleichbarer Form vorgelegt.

(Ort, Datum) (Unterschrift)





Zusammenfassung

Der stabile Gang auf zwei Beinen ist eine anspruchsvolle Aufgabe und erfordert
meist wiederholte Anpassung der Parameter aufgrund von Abnutzung, Anwen-
dungsgebiet oder Ähnlichem. Auch wenn der Einsatz von Fused-Feedback den
Gang bereits stabilisiert, hängt dessen Leistungsvermögen stark von den neu
eingeführten Parametern ab. Diese Parameter korrekt einzustellen erfordert oft
viel Zeit und Expertenwissen, während es zudem die Hardware des Roboters
abnutzt. Dieses Problem kann zwar teils gelöst werden, indem der Roboter si-
muliert wird, jedoch spiegeln diese Simulationen nur schlecht die echte Welt
wider. Unter Anwendung von stichprobeneffizienter Bayes’scher Optimierung
möchten wir in dieser Arbeit die Gang-Parameter lernen um die Arbeitslast
und das nötige Expertenwissen zu reduzieren. Außerdem wird der Ansatz der
Multi-fidelity Entropy Search auf dieses Problem angewandt um Simulationen
effizient in den Optimierungsprozess einzubinden. Schließlich wird diese Metho-
de auf die igus R© Humanoid Open Platform angewandt und die resultierenden
Ergebnisse werden analysiert.



Abstract

Bipedal walking is a challenging task, whose performance strongly depends on
the choice of parameters. While the Fused Feedback Mechanisms improve the
gait stability, they introduce new parameters to be tuned. Generally, this pro-
cess of tuning not only requires time and expert knowledge, but also wears off
the hardware of the robot. While this problem can be partially solved by sim-
ulating the robot, simulations do not fully represent real-world performance.
Using sample-efficient Bayesian Optimization we want to learn gait parameters
in order to alleviate the workload and to reduce the required specific knowl-
edge of the operator. Furthermore, using Multi-fidelity Entropy Search, this
approach will combine valuable real-world experiments with robot simulations
to minimize system wear. In the end, this approach will be applied to the igus R©

Humanoid Open Platform to evaluate its performance.



Contents

1 Introduction 1

2 Related Work 3

3 NimbRo gait 7

4 Bayesian Optimization 9
4.1 Linear Bayesian Regression . . . . . . . . . . . . . . . . . . . . . 9
4.2 Non-Linear Bayesian Regression . . . . . . . . . . . . . . . . . . 11
4.3 Entropy Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.4 Multiple information sources . . . . . . . . . . . . . . . . . . . . 13

5 Sample-efficient Gait Learning using MF-ES 17
5.1 Cost function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.3 Termination criteria . . . . . . . . . . . . . . . . . . . . . . . . . 21

6 Setup & Evaluation 23
6.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.2.1 2D ArmAngleY Optimization . . . . . . . . . . . . . . . . 25
6.2.2 2D FootAngleY Optimization . . . . . . . . . . . . . . . . 26
6.2.3 4D Optimization . . . . . . . . . . . . . . . . . . . . . . . 29
6.2.4 KLD-threshold . . . . . . . . . . . . . . . . . . . . . . . . 34

7 Conclusion 35





List of Figures

1.1 Gait learning with multiple sources of information . . . . . . . . 2

3.1 Fused Feedback Mechanisms . . . . . . . . . . . . . . . . . . . . . 8

4.1 Cover’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Simulated 1D MF-ES Gaussian Process . . . . . . . . . . . . . . 15

5.1 Fused Angle deviation vs. Fused Feedback . . . . . . . . . . . . . 18
5.2 Penalty Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3 KLD evolution (filtered/unfiltered) . . . . . . . . . . . . . . . . . 21

6.1 igus R© Humanoid Open Platform in simulation . . . . . . . . . . 23
6.2 Software architecture . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.3 2D MF-ES Gaussian Process . . . . . . . . . . . . . . . . . . . . 25
6.4 2D MF-ES GP posterior sequence ArmAngle . . . . . . . . . . . 27
6.5 2D MF-ES GP posterior sequence FootAngle . . . . . . . . . . . 28
6.6 4D MF-ES iteration distribution and performance . . . . . . . . 30
6.7 4D optimized gait deviations . . . . . . . . . . . . . . . . . . . . 31
6.8 Gait deviation phase plots . . . . . . . . . . . . . . . . . . . . . . 31
6.9 4D optimized averaged and integrated gait deviations . . . . . . 32
6.10 4D optimized gait deviations in 25 second trial . . . . . . . . . . 32
6.11 Gait disturbance test setup . . . . . . . . . . . . . . . . . . . . . 33
6.12 Gait deviations at disturbance . . . . . . . . . . . . . . . . . . . 33
6.13 igus R© Humanoid Open Platform gait evaluations . . . . . . . . . 34





Acknowledgements

First of all I would like to thank Diego Rodriguez and Prof. Behnke for their
helpful and creative input and supervision. Additionally, thanks to everybody
of the soccer group for giving me assistance whenever I needed it. Finally,
I would like to thank Alonso Marco Valle and the Max-Planck-Institute for
Intelligent Systems for providing me with their Multi-fidelity Entropy Search
implementation.





1

Chapter 1

Introduction

A fundamental task for humanoid robots is walking robustly. The problem of
generating such a gait has already been investigated by numerous approaches,
which yielded improvements in aspects like stability[3, 19], speed[8], energy
efficiency[16, 12] or accuracy[25, 12].

Nonetheless, many approaches introduce parameters that need to be tuned
for specific robot platforms or applications (e.g. ground surface). The process
of tuning is by no means trivial and it is time consuming for the robot operator,
while it also wears off servos and bearings of the robot. The hardware wear-off
does not only cost money, but may also result in invalid parametrizations, since
hardware replacements might perform differently. To cope with that problem,
experiments can be performed in a simulated environment, which gives a rough
estimate about the real-world performance of parameters at a low cost.

However, solely working on simulations will not yield exactly the same results
as performing real-world experiments. This point is especially relevant for low-
cost robots, since this hardware does not normally work as precise as expected.
On the other hand, humanoid robotics is steadily making its way into our lives,
where low-cost robots are significantly more appealing. Additionally, cheaper
costs give institutions with small funding the opportunity to perform research
on the topic.

This thesis will address the problem of gait parameter learning with focus on
sample efficiency, while trading off real-world experiments with simulations to
alleviate the workload of the robot operator and preserve the hardware. We will
apply Multi-fidelity Entropy Search (MF-ES)[18] on parameters of the NimbRo
gait[3]. Using relative entropy as a quantitative measure, MF-ES chooses the
most informative point at each iteration, which reduces the amount of required
evaluations(see Fig. 1.1). Since MF-ES resembles a Reinforcement Learning
approach, it is necessary to define a customized cost function to evaluate the
parameter performance. This cost function can be arbitrarily complex by in-
corporating different criteria that are needed to yield a satisfactory gait. In this
manner, we propose to use a cost function based on the Fused Feedback as a
measure of gait stability. Finally, this approach will be evaluated on the igus R©

Humanoid Open Platform[4].
Consequently, we will talk about the related work in Chapter 2. Next, we

shortly explain the NimbRo gait in Chapter 3. Subsequently, the method of
Multi-fidelity Entropy Search will be defined in Chapter 4. In Chapter 5, this



2 CHAPTER 1. INTRODUCTION

Simulation

Real Robot

Figure 1.1: The proposed algorithm will trade off simulations with real experiments by max-
imizing relative Entropy.

method is applied on gait parameter learning by constructing a cost function
based on the robots gait stability. Moreover, the problem of simulator noise
is addressed and a regularization is introduced. Additionally, we propose a
termination criterion based on the Kullback-Leibler-Divergence. In the end, the
experimental results will be presented in Chapter 6.



3

Chapter 2

Related Work

In this Chapter we will firstly address bipedal walking, then we will discuss
different approaches of gait optimization.

There are numerous methods to produce stable gaits, but by far the most
common approaches are based on the calculation of the Zero-Moment Point
(ZMP). As a criterion of stability, the ZMP, the point where the horizontal
component of the moment of the ground reaction force is zero, is utilized to
calculate the optimal gait trajectory[15]. The application of ZMP methods is
especially successful on robots with actuators of high quality since it requires
exact joint and torque measurements. Additionally, it can only be used on
robots that are equipped with foot force sensors. Due to its reputation, it is
used in prominent examples like the Honda P2[14], Atlas[26] and TORO[9].

In contrast to ZMP approaches, open-loop methods typically do not re-
quire exact joint measurements or additional external sensors. For example,
the NimbRo gait uses a motion pattern generator to produce periodical gait
motions, which depend on a given velocity vector[22]. This vector includes om-
nidirectional linear motion and also supports a target rotational velocity. To-
gether with compliant actuator settings, this method is able to produce a stable
gait, but its performance is not satisfactory regarding recovery from external
disturbances[22].

Thus, this open-loop approach was extended with Fused Feedback Mecha-
nisms[3] (see Chapter 3). This extension of the open-loop gait was able to yield
improvements, but its performance highly depends on a gain matrix, which can
be different for each robot. Hence, the matrix needs to be optimized by the
robot operator so the method can perform well.

The problem of parameter tuning has already been observed previously and
was addressed by applying learning algorithms to find optimized values. Röfer
suggests using evolutionary algorithms as a solution for a Sony Aibo quadruped
robot[25]. This optimization involves 26 parameters and uses a fitness function
based on smoothness and accuracy of the gait. Since the author does not provide
information about the required number of iterations, the sample-efficiency of this
method remains questionable.

Missura et al. propose an approach to learn foot placement for a stable
and distinguished gait[21, 20]. Since these goals can be contradictory, a trade-
off is introduced. To ensure that the algorithm does not slow down during
the optimization process, the authors chose the Locally Weighted Projection



4 CHAPTER 2. RELATED WORK

Regression as a local optimization framework. This decision is particularly
important for the online application of the method, since the amount of provided
data is high and processing time has to be kept minimal, but leads to the
restriction to local minima.

Faber et al. used Policy Gradient Reinforcement Learning and Particle Swarm
Optimization to improve an initial hand tuned set of parameters, namely the
P-Gain of a foot angle controller and a gait phase resetting mechanism[10].
With modified versions of the algorithms, the robot learned to walk notably
faster after 1000 iterations. Although this approach has shown good results,
the large amount of iterations needs to be improved in order to preserve the
robots hardware.

Heijmink et al. propose a method to learn gait parameters and impedance
profiles for a quadruped robot. Moreover, this goal is accomplished by using
the PI2 algorithm with a custom cost function. This cost function consists of
the weighted sum of partial cost terms based on speed tracking, energy con-
sumption, joint limits and torques. Using this approach, it was possible to learn
problem specific parameters in only 10 minutes of learning. Nonetheless, this
approach only features local optimization, since the PI2 algorithm only explores
by corrupting best guesses with Gaussian noise.

A different method proposed by Calandra et al. uses Bayesian Optimization
on a bipedal robot[5]. The goal of this approach was to replicate a given target
trajectory with the bipedal robot Fox. In that approach the gait was generated
using a Finite State Machine (FSM) and 8 parameters of the FSM were opti-
mized. After 80 iterations the algorithm found an optimum that resulted in a
stable gait and thus proved to be sample efficient. Still, since it only utilizes
real experiments, this approach will lead to hardware wear-off.

Furthermore, [23] also proposes a method based on Bayesian Optimization,
which additionally uses information gathered through simulations. They intro-
duce a dimensionality reduction based on the Determinants of Gaits (DoG) to
learn a parametrization for higher dimensional controllers. Although this ap-
proach was able to achieve good results for a 9-dimensional controller with a
remarkably small amount of 20 iterations, it requires, due to its informed kernel
structure, a large amount of precomputed simulator data[23].

In contrast to these approaches, [1] suggests to direct the optimization pro-
cess by using a search distribution to learn parameters on a robotic arm using
Bayesian Optimization. This search distribution is a Gaussian restriction on the
search space and leads to faster convergence of the algorithm. Still, although
this approach dynamically adapts the search distribution, the optimization loses
expressibility on a global scope since it only optimizes locally.

In addition to the previous work, Bayesian Optimization has been success-
fully used in numerous other approaches in the domain of robotics. For instance,
Bayesian inference is used in a Gaussian Process framework by Deisenroth et al.
to learn control tasks[7]. They applied their approach to a cart-pole system and
were able to swing the pole from a state of rest to an upright pose. Additionally,
the proposed algorithm tuned the controller of a low-cost robotic arm without
pose feedback by incorporating visual feedback.

Furthermore, Berkenkamp et al. propose to use Bayesian Optimization in
combination with safety constraints to safely learn parameters for robotic sys-
tems. The method uses a combination of safety conditions which are learned
during the optimization process of the performance function. With small mod-



5

ifications, the algorithm was able to learn to control a quadrotor UAV.
Moreover, Marco et al. use Bayesian Optimization combined with optimal

control to tune an LQR regulator[17]. Using this approach, the authors were
able to balance an inverted pendulum by tuning the controller automatically.

Thus, it has already been proven by many past works, that Bayesian Opti-
mization is a suitable tool for sample-efficient learning in robotics. Furthermore,
the approach of Bayesian Optimization was improved through the introduction
of Entropy Search [13] (see Chapter 4.3), by making it more sample efficient.
Additionally, it was extended to use multiple information sources with Multi-
fidelity Entropy Search (see Chapter 4.4), which is particularly interesting for
robotics, since it is often possible to simulate the respective system.

Similar to some of the discussed approaches, we propose a method based on
Bayesian Optimization which utilizes simulations and real experiments to learn
parameters for a bipedal gait. In contrary to what was previously presented, our
approach trades off real experiments and simulations at each iteration. More-
over, it uses relative Entropy as a measure of information content to lead the
process of optimization, which makes this method sample efficient. Furthermore,
we propose a termination criterion based on the Kullback-Leibler-Divergence.



6 CHAPTER 2. RELATED WORK



7

Chapter 3

NimbRo gait

In this chapter we will elaborate on the gait that is successfully used in multiple
RoboCup competitions by team NimbRo and the extensions that have been
made to it.

The gait is based on an open-loop gait pattern generator proposed by Missura
et al.}[22]. It is composed of three layers, namely a control interface, a motion
pattern generator and a leg interface. The control interface is the first layer
of the pipeline, which receives a target velocity vector and preprocesses it by
rescaling and smoothing it to prevent discontinuities in the gait, while also
providing a gait phase to the next layer. Secondly, the motion pattern generator
translates the preprocessed target gait velocity and the current gait phase to
abstract leg angles using periodic, rhythmic motions, which consist of multiple
motion primitives. These abstract leg angles are a representation of the leg pose,
consisting of the leg extension, three leg angles and two foot angles, and is, in
contrast to representations in cartesian or joint space, designed for easy use in
walking. Thus, the initial gait pose and essential walking motion primitives are
represented in the abstract space. These representations are translated into the
inverse space, where further motion primitives can be applied. In the end, the
leg interface translates these representations of the leg pose into joint angles.
The resulting gait shows satisfactory results when combined with a compliant
joint setting, while still being a model-free open-loop solution.

Moreover, to further improve the performance, this method has been ex-
tended by Allgeuer et al.}[3]. The proposed approach closes the open-loop by
implementing feedback mechanisms based on the Fused Angle representation[2].
Using the deviations dφ and dθ of the fused roll φB and fused pitch θB from
the expected orientation, the model calculates the activation value of different
corrective actions. These corrective actions are motion primitives, which are
weighted with their activation values and then applied on the primitives of the
open-loop gait. To obtain these activation values dφ and dθ are passed through
a feedback pipeline (see Fig. 3.1) to produce a PID vector e ∈ R6. This vector is
then multiplied by a gain matrix Ka ∈ R5×6 to generate the activation values.
The five corrective actions we will take into account are (also see Fig. 3.1):1

• Arm Angle: A swinging motion of the arms is used to shift the CoM and

1Note however that we will explicitly not discuss the Virtual Slope corrective action[3],
since it is not processed by Ka.



8 CHAPTER 3. NIMBRO GAIT

Smooth

Deadband

Smooth

Deadband

Mean

Filter

WLBF

Derivative

Mean

Filter

EW

Integrator

Kp Kd Ki

Corrective Action

Activation Values ua

Fused Feedback Vector e

Gains

Matrix Ka

Fused Angle Deviations d , dϕ

Figure 3.1: The feedback pipeline restricted to the used mechanisms (left) and a visualization
of the Fused Feedback corrective actions in sagittal direction (right). Note: Adapted from
[3].

apply a corrective impulse to the torso.

• Hip Angle: Using adjustments of the hip joints, the robot leans the torso
in sagittal and lateral direction.

• Continuous Foot Angle: This parameter resembles an offset of the foot
joint angles to achieve a tilt of the whole robot.

• Support Foot Angle: In contrast to the Continuous Foot Angle, this pa-
rameter depends on the gait phase and only activates the corresponding
support foot. Only one foot can be active at a time by fading them in and
out linearly.

• CoM Shifting: The relative position of the feet to the torso gets adjusted.
This adjustment shifts the CoM, which has a direct effect on the gait.

Experiments have shown that the resulting gait is portable to different
robots, sometimes even without modification of the gain matrix Ka[3]. Nev-
ertheless, by proper tuning of the parameters for the corresponding robot, it is
possible to achieve an effective improvement of the gait. Although experience
has shown that only around 10 non-zero values of these originally 30 matrix
entries suffice for a satisfactory gait, still the process of manual tuning remains
time consuming and requires expert knowledge over the system.



9

Chapter 4

Bayesian Optimization

When confronted with problems that are expensive to evaluate, Bayesian Opti-
mization is a state-of-the-art method to find an optimum with a small amount of
evaluations. With its roots in experimental design it has already shown its sam-
ple efficiency in many applications[13]. In this chapter we will lay its basis by
first discussing Linear Bayesian Regression before we extend it using the Kernel
Trick. Then, we will define acquisition functions which are oriented by sample
efficiency. Namely, using a criterion based on the Kullback-Leibler-Divergence
we will discuss the method of Entropy Search. Moreover, we will also discuss
Multi-fidelity Entropy Search, a method supporting multiple sources of infor-
mation.

4.1 Linear Bayesian Regression

For introducing Bayesian Optimization, we will first take a look at the standard
linear model, like proposed in [24]. The general setting is, provided a countable
point set X ⊂ Rd of n samples with corresponding target values f(X) ⊂ R, we
want to find a line parametrization ω ∈ Rd that interpolates the data best, given
some prior knowledge, a model. Furthermore, we assume our target function
f(X) is corrupted by normal distributed noise ε with standard deviation σ.
More precisely, for a sample xi ∈ X we now are looking for a function

f(xi) = ωTxi , i = 1, . . . , n , (4.1)

while for each xi we can only observe

yi = f(xi) + ε (4.2)

ε ∼ N(0, σ2) . (4.3)

Using Eq. (4.1) and Eq. (4.2), it is possible to formulate the likelihood of the
observations y as

p(y|X,ω) =

n∏
i=1

p(yi|xi,ω) , (4.4)

since we assume independence between our samples. If we further expand the
product and factorize the exponential parts of the likelihood - and the scalar



10 CHAPTER 4. BAYESIAN OPTIMIZATION

part respectively - we can construct a joint distribution[24]

p(y|X,ω) =

n∏
i=1

(
1√
2πσ

exp

(
−
(
yi − xi

Tω
)2

2σ2

))

=
1

√
2π

n
σn
exp

(
−‖y −XTω‖22

2σ2

)
. (4.5)

Thus, we get a distribution p(y|X,ω) = N(XTω, σ2Id), which can be used to
create a posterior distribution p(ω|y,X) using a prior model p(ω) by applying
the Bayes rule[24]

p(ω|X,y) =
p(y|X,ω)p(ω)

p(y|X)
. (4.6)

Please note that the marginal likelihood p(y|X) does not depend on ω and can
thus be neglected as a normalization factor over all ω. Additionally, we assume
our prior model to be zero-mean Gaussian distributed with covariance matrix
Σ

ω ∼ N(0,Σ) . (4.7)

Neglecting the marginal likelihood, after the application of the Bayes formula
and the matrix inversion lemma we get the resulting posterior[24]

p(ω|X,y) ∝ exp

(
− 1

2σ2

(
y −XTω

)T (
y −XTω

))
exp

(
−1

2
ωTΣ−1ω

)
∝ exp

(
−1

2
(ω − ω̄)

T

(
1

σ2
XXTΣ−1

)
(ω − ω̄)

)
(4.8)

with ω̄ = 1
σ2

(
1
σ2 XXT + Σ−1

)−1
Xy. By introducing A = 1

σ2 XXT + Σ−1, it is
possible to build a posterior Gaussian distribution

p (ω|X,y) ∼ N
(
ω̄,A−1

)
, (4.9)

whose mean ω̄ is the maximum-a-posteriori (MAP) estimate[24]. The MAP
estimate here is the most probable instance of ω with our provided data and
model.

It is furthermore important to see that p(y|X,ω) defines a probability dis-
tribution for each point in the input space, thus resembling a stochastic process
over X. Since we previously assumed normal distributed noise over our target
space (likelihood), the resulting stochastic process is called Gaussian Process
(GP).

To receive an estimate f∗ for a specific point x∗, it is necessary to take all
possible models into account and multiply them by their likelihood. Thus, if we
restrict our estimate to x∗, we will receive

p(f∗|x∗,X,y) =

∫
p(f∗|x∗,ω)p(ω|X, y)dω

= N
(
xT∗ ω̄,x

T
∗A−1x∗

)
(4.10)

by applying x∗ to Eq. (4.9).
The approach of Bayesian Linear Regression can be extended using the Ker-

nel Trick, the basis of all Kernel Methods, so that non-linear functions can be
learned. This key idea will lead us to the topic of non-linear Bayesian regression.



4.2. NON-LINEAR BAYESIAN REGRESSION 11

-2 0 2

-2

-1

0

1

2

2

-2

0

2

4

6

8

2 00 -2 -2

Figure 4.1: An example of linear separability in a higher dimensional feature space. The
red and blue dots of the input data are not linearly separable in the input space (left),
but if transformed into a higher dimensional feature space using a non-linear transformation
φ(x, y, z) = (x, y, x2 + y2 − 1)T it becomes linearly separable (right).

4.2 Non-Linear Bayesian Regression

Applying the Kernel Trick to Linear Bayesian Regression, it is possible to trans-
form the input space into a feature space. This feature space is typically of much
higher dimension to enable linear regression methods to learn non-linear func-
tions according to Cover’s theorem[6]. An illustration of the concept of Cover’s
theorem applied on a classification problem can be found in Fig. 4.1. If we want
to implement this transformation explicitly, we will potentially need to perform
all calculations in the feature space, including expensive matrix inversions[24].
Fortunately, it is possible to reduce all calculations to pairwise inner products
of the samples and we can define this inner product without dealing with the
feature space explicitly.

Namely, we extend Eq. (4.10) by a Kernel function φ for a vector input and
Φ = φ (X) as the application of φ on the data set X to receive a distribution

p(f∗|x∗,X,y) = N

(
1

σ2
φ (x∗)

T
A−1φ Φy, φ (x∗)

T
A−1φ φ (x∗)

)
(4.11)

in the feature space spanned by φ for Aφ = 1
σ2 ΦΦT + Σ−1. Since Eq. (4.11)

would invoke an expensive inversion of Aφ (recall Φ is high dimensional), we
expand Aφ and rewrite the distribution

p(f∗|x∗,X,y) = N(φ (x∗)
T

ΣΦ
(
K + σ2Id

)−1
y, (4.12)

φ (x∗)
T

Σφ (x∗)− φ (x∗)
T

ΣΦ
(
K + σ2Id

)−1
ΦTΣφ (x∗))

(4.13)

for K = ΦTΣΦ, requiring multiple steps which can be found in [24]. It can be
observed, that in Eq. (4.13) all matrix inversions are in the input space, thus
in a typically much lower dimension compared to Eq (4.11). This way, it is



12 CHAPTER 4. BAYESIAN OPTIMIZATION

possible to benefit from the power of the feature space, without sacrificing too
much computational power.

Note also that it is not even necessary to know the shape of the corresponding
feature space, since we will only work with the inner products in the input space.
The function that defines these inner products is called the Kernel.

In this manner, we need to find and to parametrize a suitable kernel function
in order to learn non-linear functions. Literature offers a large selection of kernel
functions for different purposes, where two of the most common kernels are the
squared exponential (SE) kernel

kSE(x,x′) = σ2 exp

(
−1

2
(x− x′) l−1 (x− x′)

)
(4.14)

and the rational quadratic (RQ) kernel

kRQ(x,x′) = σ2

(
1 +

1

2α
(x− x′) l−1 (x− x′)

)−α
, (4.15)

where the squared exponential kernel assumes very smooth and even functions,
while the rational quadratic kernel is not as strict in that regard[13]. Note that
both kernels have specific parameters that need to be tuned, typically called
hyperparameters. Both kernels share the specific lengthscale l ∈ Rd which
roughly determines the distance of two points to majorly influence each other,
while a scale factor σ2 ∈ R determines the problem-specific signal variance.
α ∈ R on the other hand is only used by the RQ kernel and is a relative weight
scale for the variation of the lengthscale[24].

In this manner, if a suitable kernel function is applied, the resulting function
estimate can be used to create an estimate over the location of its minimum,
namely by minimizing the posterior mean function. Using the variance of this
point, it is possible to evaluate the certainty of that candidate being the actual
minimum. Thus, we can use the Gaussian Process framework as an optimization
tool.

On the other hand, if we want to perform active learning, we need to ad-
dress the problem of choosing the evaluation points at each iteration. Prominent
examples of those acquisition functions are probability of improvement and ex-
pected improvement. For a parameter interval X ⊆ Rd and a target function
J : X → R, the former will choose a point θ ∈ X that has the highest probability
to be better than the current best guess θbg, thus optimizing

θt+1 = arg max
θ∈X

p(E[J(θ)] < E[J(θbg)]) . (4.16)

In contrast, the latter takes into account the expected difference of the function
values by choosing

θt+1 = arg max
θ∈X

max(E[J(θ)]− E[J(θbg)], 0) . (4.17)

A further extension of these acquisition functions can be found in the next
sections.



4.3. ENTROPY SEARCH 13

4.3 Entropy Search

With the aim of globally optimizing a function J(θ), Entropy Search (ES)
uses ideas from experimental design to reduce the amount of necessary eval-
uations[13]. The belief pmin over the location of the minimum is approximated
by a non-uniform grid, which, upon convergence, will be peaked around the
actual minimum[13]. Using a Gaussian Process (see Section 4.1) it is possi-
ble to model noise on the input data while approximating the target function
efficiently. Moreover ES uses the following acquisition function

θt+1 = arg max
θ∈X

(E(∆H(θ))) (4.18)

based on the expected change of entropy ∆H, such that the most informative
point is efficiently chosen at each iteration. There are multiple approximations
needed to perform these calculations, which can be found in [13].

By using the relative entropy, ES is able to locate the minimum with only
a fraction of the evaluations that were necessary for comparable optimization
algorithms - a property especially useful for problems with expensive function
evaluations[13].

However, it is important to note that the performance of the algorithm
depends on the prior assumptions used in the GP. If the GP prior represents
the actual data noise and covariance only poorly, this may lead to unwanted
behavior of the algorithm. Small discrepancy however is typically caught by the
probabilistic nature of the method.

4.4 Multiple information sources

Whilst in the preceding sections we only discussed data that originated from
one source, [18] extended the ES algorithm to integrate multiple sources of
information. The resulting method is called Multi-fidelity Entropy Search (MF-
ES) and typically trades off real experiments with simulations. MF-ES optimizes
the following cost function

Jreal(θ) = Jsim(θ) + εsim(θ) (4.19)

over a parameter set θ ∈ X, which in turn now is composed of two costs, Jsim
and εsim. The measured cost on the physical system is denoted as Jreal and is,
if not measured directly, expressed as the measured cost in the simulation Jsim
and an error term εsim(θ). It is important to understand that the systematic
simulator error εsim(θ) can be a complex transformation and is inevitably re-
quired to infer the real cost from Jsim. However, this transformation can be
learned directly by incorporating εsim into the Gaussian Process, which is the
key idea of MF-ES.

Consequently, the approach introduces two kernel functions ksim and kε,
where the latter resembles the systematic simulator noise. Furthermore, to
compare simulator evaluations with real experiments, it is required to introduce
a binary flag δ, where δ = 1 indicates a real experiment and δ = 0 a simulation
respectively[18]. Thus, we conclude with a kernel function

k(a,a′) = ksim(θ,θ′) + kδ(δ, δ
′)kε(θ,θ

′) , (4.20)



14 CHAPTER 4. BAYESIAN OPTIMIZATION

with a parameter extension a = (δ,θ) and a kernel indicator kδ(δ, δ
′) = δδ′,

which is only active if both evaluations were performed in the real world[18].
Accordingly, two real experiments are expected to covary stronger than the
cases where one evaluation has been performed in simulation, i.e. where the
covariance is solely expressed through ksim.

Again, it is useful to highlight the consequence of the introduction of kε,
which encodes the transformation between the simulated and the real world.
Since kε is modeled inside the GP, it is not necessary to address possible trans-
formations between Jsim and Jexp explicitly - it only requires assumptions about
the shape of the error in form of a mean and a covariance function.

It is important to note, however, that δ has to be explicitly incorporated into
the acquisition function of the algorithm, since the algorithm would otherwise
only choose to evaluate real experiments, which naturally deliver most infor-
mation about the target function. To address this issue, trade-off parameters
are introduced for both information sources. More precisely, the ES acquisition
function is extended by positive weights ui resulting in the following selection
criterion

θt+1 = arg max
θ∈Rd,i∈{sim,real}

(
∆Ht(θ)

ui

)
. (4.21)

The application of this method on a synthetic example is visualized in
Fig. 4.2.



4.4. MULTIPLE INFORMATION SOURCES 15

Simulation Real Experiment

90

100

110

120

130

140

C
o

s
t 

J
(

)

Gaussian process posterior, iteration 2

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

E
[

 H
]

10
-3 Expected change in Entropy, iteration 2

100

110

120

130

140

C
o

s
t 

J
(

)

Gaussian process posterior, iteration 50

0 0.5 1 1.5 2 2.5 3 3.5 4
-1

0

1

E
[

 H
]

Expected change in Entropy, iteration 50

Figure 4.2: A synthetic example for a 1D optimization using Multi-fidelity Entropy Search,
where real experiments were substituted by simulations. In the GP visualizations, simulations
are shown as blue dots, real experiments (simulated) in red. The surfaces in the corresponding
colors resemble the covariance of the simulation and the real experiments. Below the GP
visualizations the corresponding expected change in entropy is depicted, which is remarkably
higher in early iterations (upper figures).



16 CHAPTER 4. BAYESIAN OPTIMIZATION



17

Chapter 5

Sample-efficient Gait
Learning using MF-ES

In this chapter we introduce a framework that utilizes Multi-fidelity Entropy
Search to learn the Fused Feedback gains of the NimbRo gait. This includes
the design of a cost function, the search of suitable hyperparameters for a GP
model and a proposed termination criterion.

5.1 Cost function

A preliminary for the application of Reinforcement Learning approaches is the
design of a cost function. Since the system learns exactly the models that min-
imize this cost function, it is important that it reflects the actual goal of the
optimization. In the scope of this thesis, the main goal of the optimization is
an improvement of the walking stability, while keeping the required amount of
iterations low. The final cost function will include parts of the Fused Feedback
as a stability measure, since a gait with a low activation of corrective actions
is favorable. Furthermore, the evaluations of simulations are computed by the
mean of multiple trials to reduce the simulator noise. Although reduced noise
of real-world experiments is also beneficial, the proposed measure would be too
expensive and thus is only used for simulations. Finally, we will introduce a
regularization that prioritizes small parameters over parameters of large mag-
nitude, since latter typically result in higher torques.

In this manner, we first have to address the problem that simulators can be
noisy. However, since simulations are generally cheap to perform, the easiest
approach is to work with the mean of N > 0 evaluations

J̄sim(θ) =
1

N

N∑
i=1

Jsim(θ) , (5.1)

for a parameter θ ∈ X inside a compact interval X ⊂ Rd. Of course, if con-
fronted with outliers of high magnitude, it is also possible to use the median
instead of the mean. Further reduction of noise can be achieved by careful
construction of the cost function J .



18 CHAPTER 5. SAMPLE-EFFICIENT GAIT LEARNING USING MF-ES

5 10 15 20

Time [s]

0

0.05

0.1

A
c
ti
v
a

ti
o

n

Fused Angle deviation vs. Fused Feedback

Figure 5.1: This figure displays the difference between the absolute Fused Angle deviations
‖dα‖1 (blue) and the absolute proportional Fused Feedback ‖eP,α‖1 (red). Due to the dead-
band and mean filter, which are applied to the Fused Angle deviations to yield the Feedback
values, the Fused Feedback signal is smoother and low amplitudes get rejected.

Generally, since the Fused Angle deviations1 dα(pitch) and dβ(roll) represent
the unintended tilt that is induced by walking, it can be used as a measure of
the gait stability, with

dα = αexpected − αmeasured (5.2)

dβ = βexpected − βmeasured . (5.3)

Thus, we want our cost function to be proportional to these measurements to
achieve optimized parameters in terms of gait stability. The most direct way
to accomplish this proportionality is to integrate over the deviations during the
experiments of duration T

J(θ) =

∫ T

0

‖dα(θ)‖1 + ‖dβ(θ)‖1dt . (5.4)

Note that since measurements are taken at discrete time steps, the integral in
Eq. (5.4) is in fact realized through a sum. Although this is a straight forward
definition of the cost, it comes with downsides, for example noise sensitivity. Due
to the fact that the measurements are taken in the control loop at a high rate,
measurement errors can easily sum up and distort the result. To cope with that
problem, we apply a mean filter and a smooth deadband to the measurements
like proposed in [3]. So, we only consider the proportional part (ePα, ePβ) of

the Fused Feedback vector e = (ePα, ePβ , eIα, eIβ , eDα, eDβ)
T

and consequently
modify the cost function as

J(θ) =

∫ T

0

‖ePα(θ)‖1 + ‖ePβ(θ)‖1dt , (5.5)

which still represents the notion of the Fused Angle deviations, like shown in
Fig. 5.1.

Furthermore, this modification can also be thought of removing the necessity
for the algorithm to learn the different filter elements of the feedback pipeline.

1To prevent confusion about the notation and contrast it to the parameters θ, the Fused
Angle pitch is denoted as α and the roll as β respectively in contrast to the notation in
Chapter 3.



5.1. COST FUNCTION 19

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

(
)

Penalty function

Figure 5.2: ν(θ) uses the logistic function to create a smooth penalty function against param-
eters of large magnitude. Here, we use θmax = 4, s = 7.5, λ = 0.75 and γ = 6.

Moreover, it is favorable to regularize the magnitude parameters, since higher
values typically result in higher servo torques. Thus, we define a loss function
ν : X → R, which smoothly penalizes parameters of higher magnitude. Gen-
erally, we regularize using a logistic function with maximum gradient where
‖θ‖2 = λθmax for λ ∈ [0, 1]

ν(θ) =
s

1 + exp (−γ(‖θ‖2 − λ‖θmax‖2))
. (5.6)

Where θmax is the maximum value of our current parameter θ, the penalty
magnitude s ∈ R has to be defined depending on how hard large parameters
shall get penalized and γ ∈ R controls the smoothness of the phase transition.
An example setup of this penalty function can be seen in Fig. 5.2.

Moreover, we restrict the optimization to parameters in a common plane
(i.e. sagittal & lateral). Since corrective actions in the sagittal plane are only
activated by the Fused Angle pitch α and in the lateral plane by the Fused
Angle roll β, their performance is sufficiently expressed in the respective plane.
Restricting the cost function to these planes further reduces the impact of noise,
which leads to a better performance of our optimization. In this manner we
propose two final cost functions

Jexp,α(θ) =

∫ T

0

‖ePα(θ)‖1dt+ ν(θ) (5.7)

Jexp,β(θ) =

∫ T

0

‖ePβ(θ)‖1dt+ ν(θ) , (5.8)

to evaluate the gait of corrective actions in the two different planes separately.
For the real world experiments we remain with a cost function Jexp equal

to Eq. (5.7) and Eq. (5.8), while for the simulations the final cost functions are
expressed as

J̄sim,α(θ) =
1

N

(
N∑
i=1

∫ T

0

‖ePα(θ)‖1dt

)
+ ν(θ) (5.9)

J̄sim,β(θ) =
1

N

(
N∑
i=1

∫ T

0

‖ePβ(θ)‖1dt

)
+ ν(θ) . (5.10)



20 CHAPTER 5. SAMPLE-EFFICIENT GAIT LEARNING USING MF-ES

In order to improve the performance of the learning algorithm, the cost function
above deals with the magnitude of distortion by simulator noise.

Furthermore, it is necessary to address cases where the robot falls during
an experiment. Since the measured deviations during these falls can exceed
the expressibility of the kernel function, they would bias surrounding parame-
ters towards a high cost. In order to limit this negative effect, we introduce a
maximum cost

Ji,max = µi + ψJ , (5.11)

where ψJ ∈ R resembles the admissible distance of a measured cost to the prior
mean µi ∈ R for i ∈ {sim, exp}. This maximum cost is then used as an upper
bound for the cost

Ĵi (θ) = min (Ji (θ) , Ji,max) . (5.12)

5.2 Hyperparameters

Since it is not possible to describe every Gaussian Process with the same param-
eters, it is necessary to find a suitable model and its respective parameters like
explained in Section 4. We decided to use the rational quadratic (RQ) kernel,
since it is not as smooth as the squared exponential (SE) kernel, and optimized
the parameters for use in a 2D optimization. In this application we prefer the
less smooth RQ kernel, since we assume the problem of gait learning to be of
non-smooth nature. For the 4D optimization, we deduce the values from the
2D experiments.

The choice of the RQ kernel requires to determine 3 parameters, namely
a lengthscale l, a signal variance s2 and an exponent α, but it also leaves a
prior mean and covariance to be set. While l and α are parameters that have
to be chosen by the user based on the expected shape on the function, an
approximation of s2 can be found empirically. Note, however, that with enough
data, l and α can be inferred. Since we want to keep the amount of prior
data low, we manually chose a set of parameters that promised to trade off
exploration and exploitation adequately.

In this manner, we chose l =
(
θimax

8

)
i
∈ Rd and α = 0.25 to produce a

reasonable trade-off between exploration and exploitation, where θimax is the
maximum value of parameter θi. We use the same lengthscales for the simula-
tion as for the real evaluations. Additionally, we suggested the prior standard
deviation to be stot = 10 to model the initial uncertainty of the model, while
we propose simulations reduce this uncertainty for the real model by κ = 0.6.
The standard deviations are then calculated as

ssim = κ stot = 6

sreal = stot
√

(1− κ2) = 8 .
(5.13)

Moreover, using 5 evaluations of the real robot and simulation each, values for
the standard deviations were estimated. Undoubtedly, this small number of
evaluations will not result in an exact estimate, but the resulting parametriza-
tion still was good enough to produce satisfactory results in our actual appli-
cation. The standard deviation of the evaluations in the simulator was set to
σsim = 0.1298 and the standard deviation of the difference between a simulation
and a real experiment was set to σε = 5.3515.



5.3. TERMINATION CRITERIA 21

0 100 200 300 400 500 600 700

Iteration #

0

0.1

0.2

0.3

Figure 5.3: The figure shows the evolution of the Kullback-Leibler-Divergence in a simulation-
only run. The blue graph shows the unfiltered KLD over the iterations, whereas the orange
data has been filtered by a saturated filter with v = 0.9. The vertical magenta line displays
the iteration, where a threshold of εKLD = 0.003 would have stopped the learning process.

Furthermore, for the sake of visualization, we ensure that the evaluated
points are close to the mean function by setting the corresponding means µsim =
53.3502 and µε = −37.1385. This also positively effects the estimate around the
domain borders and thus improves the performance of the algorithm especially
in early iterations.

5.3 Termination criteria

In the context of global optimization it is very important to determine when
to stop the algorithm. The most simple and frequently used criteria are based
on the number of iterations. Whereas this condition works fine for problems
that are fast to compute, it looses applicability when iterations become more
expensive, especially if there is no prior knowledge over the behavior of the
algorithm on a given dataset. Performance driven conditions are often based
on the predictions of a test set and stop the algorithm when the performance
on the test increases slow enough, or even decreases in case of overfitting. In
any case, these criteria require a test set, which is normally constructed as
subset of the dataset for large scale data. This is not feasible when the data is
highly limited, and so it is favorable to use any available data in the learning
procedure. Using only a small test set, i.e. a hand full of reference points, will
not be representative to the problem and may result in unwanted behavior.

In this manner, we propose a termination criterion which is originated from
the idea of Entropy Search[13]. The Kullback-Leibler-Divergence2 (KLD) be-
tween the prior and expected posterior of an iteration expresses the expected
amount of gained information that results by evaluating the current query point.
We formulate a criterion that stops the algorithm as soon as the expected
Kullback-Leibler-Divergence E(∆H(θt)) is no longer significant. However, to
ensure that outliers do not lead to a premature stop, we apply a saturated filter
(Fig. 5.3) defined for the iteration t and a velocity factor 0 < v < 1 as follows

KLD1 = E(∆H(θ1)) (5.14)

KLDt = (1− v)KLDt−1 + vE(∆H(θt)) (5.15)

2Also known as relative Entropy or Information Gain.



22 CHAPTER 5. SAMPLE-EFFICIENT GAIT LEARNING USING MF-ES

Consequently, we stop the algorithm if KLDt < εKLD for a KLD-threshold
εKLD > 0. Since the filter is not saturated in the beginning, we propose a
minimum number of iterations that are performed before the KLD-threshold
criterion is applied. This is necessary, since a bad prior mean can lead to a low
KLD right after the first iteration and thus would lead to a premature stop. We
propose a KLD-threshold εKLD = 0.01, which would have stopped a synthetic
2D optimization after 261 iterations (see Fig. 5.3). Moreover, in Fig. 5.3 you
can see the impact of the proposed filter. While the raw data is fluctuating
and would have lead to a fast termination of the algorithm, the filtered data,
however, is more stable and can be used by the criterion.

Nonetheless, it is favorable to use a composition of termination criteria, since
the convergence of the KLD cannot be guaranteed if our prior assumptions do
not represent reality well-enough. Thus, we use the KLD-threshold criterion in
combination with a maximum number of iterations to set a hard time constraint.



23

Chapter 6

Setup & Evaluation

In this chapter, we will discuss the application of our approach on the igus R©

Humanoid Open Platform. Moreover, we will evaluate the results and highlight
the performance of our method.

6.1 Experiment Setup

As a robot platform we chose to use the igus R© Humanoid Open Platform[4]
(see Fig. 6.13), which is 92cm tall and weights 6.6kg. It has 20 Degrees of
Freedom and is equipped with a gyroscope and an accelerometer. The platform
has already shown its robustness during multiple RoboCup competitions[11].
Furthermore, the robot uses a Gigabyte BRIX computer with an Intel i7-5500U
and 4GB of RAM. The igus R© Humanoid Open Platform is equipped with 6
Robotis MX-106 actuators per leg and 8 MX-64 for the remaining joints.

Due to the robots low computational power, this learning approach has been
distributed over two systems (see Fig. 6.2). The optimization and all simulations
have been performed on a Desktop-PC with an 8-core Intel i7-4890K and 8GB
of RAM, where the optimization has been performed in MATLAB R2017b. All
used computers are set up with Ubuntu 14.04 and ROS Indigo and Gazebo 2.2.6
as a simulator (see Fig. 6.1). This PC was able to achieve a real-time factor of
1.5 in the simulator, which would not be possible on the robot, thus the process
was significantly sped up.

Figure 6.1: The igus R© Humanoid Open Platform walking in simulation. The shown gait uses
parameters resulting from a simulation-only optimization terminated by the KLD-threshold
criterion.



24 CHAPTER 6. SETUP & EVALUATION

Optimization

Manager

Optimizer

(MATLAB)

User

Gait

Parameter Server

Parameter Server

GaitSimulator
Get � 

G
e
t 

�

Set � 

S
ta

rt
/S

to
p

Start/Stop/Reset

 

Q
u
e
ry

C
o
s
t 

D
e
v
ia

ti
o
n
s

Deviations

Start/Stop

Start exp.

S
e
t 

�

Robot

Desktop PC

Figure 6.2: The used software architecture. The graph depicts the most important ROS nodes
and the communication between them. The blue boxes indicate processes on the Desktop PC
and the red boxes on the robot respectively.

Furthermore, we developed an interface between the optimizer in MATLAB
and the robot, which redirects all queries and starts the corresponding experi-
ment. Once an experiment is completed in simulation, the simulator is reset by
a custom resetter to reduce simulator induced noise. Still, the problem of noise
could not be sufficiently addressed at that point. Real-world experiments get
forwarded to the robot over an Ethernet connection. The robot was supervised
during all real experiments, thus we implemented the interface to block the start
of the experiment until the supervisor has triggered the trial.

Additionally, we need to specify a parametrization for the penalty function
ν(θ). We chose λ = 0.75 and s = 7.5 to achieve a high level of punishment
for parameters larger than λθmax. Furthermore, the smoothness of the phase
transition has been set to γ = 6. A 1D plot of this parametrized penalty function
can be seen in Fig. 5.2. Moreover, in case the robot falls, we set ψJ = 25 as the
admissible positive deviation from the prior mean.

All performed experiments followed the same procedure: The robot was
queried to walk on the spot for 3 seconds, after which it starts walking forward
for 10 seconds. During all time the robot calculates its expected and measured
Fused Angle, resulting in the Fused Angle deviations used in the cost function.
We evaluate our approach in two different configurations. Firstly, we featured
a 2D optimization restricted on only the ArmAngleY P- and D-gain, while
FootAngleY and timing was enabled - all other feedback mechanisms have been
disabled. The second configuration extends the previous one by using a 4D op-
timization of both ArmAngleY and FootAngleY P- and D-gains. Furthermore,
timing and all other feedback mechanisms were disabled in this configuration to
evidence the real contribution of the optimization of the selected parameters.



6.2. EVALUATION 25

4

GP posterior, iter. 25

2

2

-10

0

10

20

30

40

50

60

70

0

C
o

s
t 

J
(

)

2

1

40

-10

0

10

20

30

40

50

60

70

40

GP posterior, iter. 75

2

2

2

1

4 0
0 1 2 3 4

-10

0

10

20

30

40

50

60

70
GP posterior, iter. 148

Figure 6.3: Visualization of the Gaussian Process after the 2D optimization of the ArmAngleY
parameters. Real-world evaluations are shown red, whereas simulations are blue. The purple
mesh resembles the posterior mean, the gray mesh shows the covariance and the green dot
resembles the current minimum estimate. Due to the simulator error, simulations result in a
higher cost. This transformation is learned by the GP to efficiently use simulator data in the
learning process.

Additionally, we will perform a short evaluation of the KLD termination
criterion using a simulator-only run of the algorithm.

6.2 Evaluation

6.2.1 2D ArmAngleY Optimization

In this configuration, the ArmAngleY proportional and derivative corrective
actions and timing were enabled. The optimization was stopped after 149 iter-
ations once the constraint of 25 real-world experiments was reached, resulting
in 124 simulations. The cost of the original parameters was 16.1458, whereas
the optimized parameters resulted in a cost of 16.2679. Consequently, the opti-
mization process was able to yield parameters that are only 0.78% worse than
parameters that have been manually tuned by an expert.

Still, since only ArmAngleY P- and D-gain were optimized, the process was
hardly restricted to local search over all parameters that define the gait. The
simultaneous optimization of more parameters is more promising and will be
discussed in Sec. 6.2.3. A visualization of the resulting posterior distribution
after the 2D optimization process, can be found in Fig. 6.3.

However, to depict the behavior of the algorithm, it is useful to take the de-
velopment of the Gaussian Process posterior into account, like shown in Fig. 6.4.
The top row of the figure displays the distribution of the points, the middle
row shows the GP posterior with simulations and the bottom row without re-
spectively. It is possible to observe that the point distribution is not uniform.



26 CHAPTER 6. SETUP & EVALUATION

Especially in early iterations, the difference between the middle and bottom row
is apparent. The simulations influence the estimate over the real experiments
and thus lead the selection of the query points for the real robot. However, the
more real experiments are performed, the less information of the simulator is
transferred, because of the corresponding kernel hyperparameters. Nonetheless,
since the real robot is the actual target function for the algorithm, it is favorable
to fit tighter to the real data. It is also possible to observe, that simulator data
generally corresponds to a higher cost. One reason for this is simulator induced
noise, which accumulates over the trial.

6.2.2 2D FootAngleY Optimization

Using the insights of the optimization described in Sec. 6.2.1, we adapted the
setup slightly and performed another optimization. In this manner, the hy-
perparameters of the kernel have been modified and we decided to optimize
FootAngleY instead of ArmAngleY. The latter decision was lead by the expe-
rience, that the influence of the foot parameter on the gait stability was larger,
especially in the simulator (see Fig 6.5).

Since it was discovered that the simulator only had small influence on the real
world posterior (see Fig. 6.4), the hyperparameters of the Gaussian Process were
modified. Namely, to fix sexp = 8 and increase ssim = 12, the corresponding
variables stot =

√
208 and κ = 12√

208
were set (see Sec. 5.2). Furthermore, the

modeled noise of the real world has been corrected, such that σsim = 2.32, and
small modifications have been made to the software.

The algorithm was compared with Random Search like described in Alg. 1.
Random Search corrupts the current best guess with uniform noise ρ at each
iteration and greedily chooses the best point. We applied the algorithm on
the same experimental setup with a maximum of 25 iterations and set ρ =
0.125. Our algorithm performed 20 real experiments and was able to return 15%
better results. Furthermore, the resulting parameters of the foot optimization
had 38% lower cost than the results of the arm optimization, which underlines
the importance of foot feedback. It is furthermore interesting to note, that
the chosen parameter was not at the border of the domain. Additionally, the
evaluations of the Random Search algorithm caused a fall of the robot once, and
almost lead to a fall at another time, whereas our approach always evaluated
safe parameters.

Similar to Fig. 6.4, the behavior during optimization has been visualized in
Fig. 6.5. The three rows correspond to the (top to bottom) query point dis-
tribution, the GP posterior and the hypothetical posterior without simulations.
Like desired, the impact of the simulation has been increased, which can be seen
clearly at each iteration. This lead to a large portion of the domain being unex-
plored, since high simulator costs ruled out large regions. This behavior would
not have been possible without simulations, like visualized by the difference of
the middle and the bottom row graphs.

Moreover, by evaluating this experiment, we have shown that it is possible
to achieve a high impact of the simulation on the target function by adapting
hyperparameters. Combining this with the results of Sec. 6.2.1, we have shown
that it is possible to achieve both, low and high influence of the simulator. Thus,
proper tuning of the hyperparameters can lead to a good compromise of both,
and builds the basis for future work.



6.2. EVALUATION 27

0 2 4

0

1

2

3

4
Iter.1

0 2 4

0

1

2

3

4
Iter.60

0 2 4

0

1

2

3

4
Iter.69

0 2 4

0

1

2

3

4
Iter.123

0 2 4

0

1

2

3

4
Iter.149

4

0

D

20

20

40

P

60

2
04

4

0

D

20

20

40

P

60

2
04

4

0

D

20

20

40

P

60

2
04

4

0

D

20

20

40

P

60

2
04

4

0

D

20

20

40

P

60

2
04

4

0

D

20

20

40

P

60

2
04

4

0

D

20

20

40

P

60

2
04

4

0

D

20

20

40

P

60

2
04

4

0

D

20

20

40

P

60

2
04

4

0

D

20

20

40

P

60

2
04

Figure 6.4: The Gaussian Process posterior of the ArmAngleY optimization over different
iterations. The upper covariance bound has been removed from all plots for better visibility of
the mean, but the lower bound is shown as a grey mesh. Blue dots resemble simulation queries,
red dots real experiments respectively. The purple mesh displays the mean estimate over the
target function. (top) The different queries are shown in the parameter space. (middle) The
GP posterior that has been used during the optimization process. (bottom) The GP posterior
without simulator-data.



28 CHAPTER 6. SETUP & EVALUATION

0

0.2

0.4

0.6

0.8

1

00.51

Iter.1

0

0.2

0.4

0.6

0.8

1

00.51

Iter.60

0

0.2

0.4

0.6

0.8

1

00.51

Iter.69

0

0.2

0.4

0.6

0.8

1

00.51

Iter.104

0

0.2

0.4

0.6

0.8

1

00.51

Iter.126

20

1

40

60

80

0

100

P

120

0.5

D

0.5

0 1

20

1

40

60

80

0

100

P

120

0.5

D

0.5

0 1

20

1

40

60

80

0

100

P

120

0.5

D

0.5

0 1

20

1

40

60

80

0

100

P

120

0.5

D

0.5

0 1

20

1

40

60

80

0

100

P

120

0.5

D

0.5

0 1

20

1

40

60

80

0

100

P

120

0.5

D

0.5

0 1

20

1

40

60

80

0

100

P

120

0.5

D

0.5

0 1

20

1

40

60

80

0

100

P

120

0.5

D

0.5

0 1

20

1

40

60

80

0

100

P

120

0.5

D

0.5

0 1

20

1

40

60

80

0

100

P

120

0.5

D

0.5

0 1

Figure 6.5: The Gaussian Process posterior of the FootAngleY optimization over different
iterations. The upper covariance bound has been removed from all plots for better visibility
of the mean, but the lower bound is shown as a grey mesh. Blue dots resemble simulation
queries, red dots real experiments respectively. The purple mesh displays the mean estimate
over the target function. Note that all plots have been rotated around the Z-axis for better
visibility. (top) The different queries are shown in the parameter space. (middle) The GP
posterior that has been used during the optimization process. (bottom) The hypothetical GP
posterior without simulator-data.



6.2. EVALUATION 29

Data: Compact interval X ⊂ Rd, search granularity ρ > 0, max.
iterations n

Result: Estimated optimum θ̂ ∈ X
Initialize random θbest ∈ X;
ybest =∞;
while i < n do

y = J(θ);
if y < ybest then

θbest = θ;
ybest = y;

end
θ = random(θbest ± ρ);
Bound θ to X;

end

return θ̂ = θbest;

Algorithm 1: Random search. The algorithm corrupts the current best
guess in each iteration and evaluates the resulting point.

6.2.3 4D Optimization

In the second configuration, we optimized 4 parameters, namely the ArmAngleY
P- and D-gain together with the FootAngleY P- and D- gain, since these pa-
rameters have been observed to be crucial for a robust gait. In the optimization
and evaluation only the corrective actions that get optimized are enabled. The
setup was stopped by the user after a total of 301 iterations, consisting of 271
simulations and 30 real world experiments. The run was stopped since it was
not possible to achieve the initially targeted 50 real world experiments in a
time-frame of 10 hours. Nevertheless, the algorithm was able to deduce enough
information from the performed simulations to produce reasonable results in the
4D optimization.

The resulting parameters were evaluated using the same setup that was used
during optimization (see Section 6.1), performed 15 times. The optimized gait
had an average cost of 10.38 and resulted in contrast to the manually tuned
gait with a mean cost of 16.28 in an improvement of 35.25%, like shown in
Figure 6.6. In order to achieve a better evaluation of the gait stability, we also
compared the costs without the penalty function. The resulting performance of
the optimized parameters was 53.22% better than the default parameters.

Moreover, we performed a side-by-side comparison of the measured Fused
Angle Deviation over time during 5 trials (Fig. 6.7). We also show the average
of the absolute deviations together with its integral in Fig. 6.9. Please recall
from Section 5.1 that this integral is not the same as the cost function, as the
cost function uses the Fused Feedback which is different from the Fused Angle
deviations like described in Chapter 3.

In Fig. 6.7, you can see there is no big difference between the optimized
and the hand tuned parameters during the first part of the graphs, because the
robot was walking on the spot during that time, which typically is very stable.
However, as soon as the robot starts walking, the deviations start to diverge and
the difference between the parameters becomes apparent. While the optimized



30 CHAPTER 6. SETUP & EVALUATION

Cost improvement

Manually tuned Optimized
0

5

10

15

20

A
v
e

ra
g

e
 C

o
s
t 

J

Query distribution

Real Simulated
0

50

100

150

200

250

300

N
u

m
b

e
r 

o
f 

q
u

e
ri
e

s

Figure 6.6: (left) 4D Optimization only using 30 real experiments (9.8% of total evaluations)
thanks to the information gained through simulations. (right) The average sagittal cost of 15
evaluation is displayed, with (red) and without (blue) the penalty function. The algorithm
chose larger parameters than previously, which were performing significantly better.

parameters reproducibly generate deviations of lower amplitude, the manually
tuned parameters have partially large deviations and higher variance. This can
be explained through the inability of the robot to recover fully from disturbance:
Since the robot is not able to fully recover, the disturbances propagate through
the trial. Furthermore, when performing test runs with longer duration (25
seconds instead of 15), these deviations occasionally lead to the robot falling
with manually tuned parameters, which did not occur with the optimized values.

Furthermore, the mean absolute deviation d̄α = mean (‖dα‖) and its integral

D̄α =
∫ T
0
d̄αdt are displayed in Fig. 6.9. It becomes most apparent that, once the

robot has started walking, the amplitude of the deviations are typically lower for
the optimized parameters. This effect is visible in the integral of the absolute
average, where the two graphs visibly diverge, in which the manually tuned
parameters perform worse than the optimized parameters. This observation can
also be made in Fig. 6.10, where the robot was performing five longer tests of 25
seconds. It is again possible to see, that the deviations of the default parameters
are typically higher. The same observations can be made in the phase plot of
the deviations, like depicted in Fig. 6.8. During most of the trials, the hand
tuned parameters lead to higher disturbances than the optimized parameters,
which are displayed by arches far from the center of the plot.

Additionally, we evaluated the parameters by performing experiments on
a field with small obstacles (see Fig. 6.11). During the trial, the robot steps
on these obstacles and thus the gait is disturbed. Despite a large deviation,
the robot regains stability, which can be also seen in the phase plot of the
deviations (see Fig. 6.12). The large arch on the right hand side corresponds to
the disturbance at around 10 seconds in the plot over time. This disturbance
returns to a stable region near the origin, meaning the robot has stabilized.
Furthermore it can be observed, that the deviation is biased. This is because
the robot is slightly tilted by the obstacles constantly.

Moreover, the resulting parameters were also qualitatively convincing, when
comparing the visual appearance of the gait. More precisely, the optimized gait
looked more stable and generally walked with a more upright torso compared
to the manually tuned parametrization like shown in Fig. 6.13. A video of these



6.2. EVALUATION 31

-0.1

0

0.1

d

Deviation of manually tuned parameters

2 4 6 8 10 12

Time [s]

-0.1

0

0.1

d

Deviation of 4D optimized parameters

Figure 6.7: A comparison between manually tuned (top) and optimized (bottom) parameters
during five real-world experiments. Each curve shows the development of the Fused Angle
deviation over time in an experiment. The vertical magenta line indicates the time at which
the robot starts walking forward.

-0.1 0 0.1

d

d 0.

1.5

-1.5
-0.1 0 0.1

d

d 0.

-1.5

1.5

Figure 6.8: The deviation of a single pair of parameter is displayed as a phase plot (comp.
Fig. 6.7). The X axis denotes the deviations, whereas at the Y axis its derivative is shown.
It is possible to see, that the manually tuned parameters (right) lead to higher disturbances
during straight walking compared to the optimized parameters (left).



32 CHAPTER 6. SETUP & EVALUATION

0

0.05

0.1

2 4 6 8 10 12

Time [s]

0

20

40

60
Integrated deviation

Average absolute deviation

Figure 6.9: The average absolute deviation d̄α over five experiments of the optimized and
default parameters are displayed in the upper figure. The integral D̄α of these values is
shown in the lower figure. These values are for evaluation purpose only and can not be
directly compared to the cost, since the latter is constructed of the Fused Feedback (see
Chapter 3). The vertical magenta line indicates the time at which the robot starts walking
forward. The blue line resembles the hand tuned parameters, the red line the optimized
parameters respectively.

-0.1

0

0.1

d

Deviation of 4D optimized parameters

Time [s]

-0.1

0

0.1

d

Deviation of manually tuned parameters

Figure 6.10: A comparison between manually tuned (top) and optimized (bottom) parameters
during five longer real-world experiments, where the robot was walking 20 seconds instead of
10. Each curve shows the development of the Fused Angle deviation over the 25 seconds of the
experiment. The vertical magenta line indicates the time at which the robot starts walking
forward.



6.2. EVALUATION 33

Figure 6.11: The setup of the disturbance test is displayed, where the robot has to walk over
small obstacles. It is possible to see, that the disturbance destabilizes the robot temporarily.

0 5 10 15

Time [s]

d 0

-0.2

0.2

-0.2 -0.1 0 0.1 0.2

d

-2

-1.5

-1

-0.5

0

0.5

1

1.5

d.

Figure 6.12: (left) The gait deviation is displayed over time. The robot stepped on an obstacle
during walking, which is clearly visible in the graph. The magenta line indicates the approx-
imate moment of contact with the obstacles. (right) The phase plot of the corresponding
deviations.



34 CHAPTER 6. SETUP & EVALUATION

Figure 6.13: The igus R© Humanoid Open Platform is performing gait evaluations. The top
sequence shows the manually tuned gait, whereas at the bottom the resulting gait of the 4D
optimized parameters is displayed. Qualitatively, it is possible to see that the magnitude of
the robots tilt is smaller in the top sequence.

results is available online1.
Another remarkable property of the applied approach is shown by the fact

that the robot did not fall a single time during the optimization process. This
shows that the algorithm was successfully generalizing the information gathered
from the simulation, such that parameters that resulted in a fall in simulation
and thus in a higher cost, were ruled out without the need of physical experi-
ments. Furthermore, this generalization also leads to a lower amount of required
physical experiments, which underlines the success of this approach.

6.2.4 KLD-threshold

The KLD-threshold criterion was evaluated in a 2D simulation-only experiment.
The best parameter estimation after the KLD-threshold was applied (261 iter-
ations) had a resulting mean cost of 111.4604. This performance was compared
with the parameter estimation resulting after letting the algorithm run until the
Kernel matrix becomes singular, which was after 624 iterations. Since small er-
rors in the prior model become more relevant when the algorithm approximates
regions with higher resolution, i.e. after a larger amount of iterations, these
errors can lead to bad assumptions. Presumably, this is the reason why the
robot was not able to walk with the parameters resulting after 624 iterations.
In contrary to this, the robot was able to walk with the parameters at the KLD
induced termination. Moreover, the resulting gait was qualitatively convincing
and the robot was able to walk stable (see Fig. 6.1).

Undoubtedly, this result underlines the importance of a proper termination
condition and shows that our approach is able to deliver a satisfactory criterion.

1http://www.ais.uni-bonn.de/videos/RoboCup_Symposium_2018



35

Chapter 7

Conclusion

In the scope of this bachelor thesis, we implemented a method that trades off
robot simulations and real-world experiments to optimize the parameters of the
Fused Feedback mechanisms in a sample-efficient manner. Compared to manual
tuning, our approach showed a remarkable improvement in gait stability and
was able to learn a 4D parametrization without making the robot fall during
optimization.

There are still multiple adaptions that can improve the performance of our
method. Firstly, it is possible to incorporate the bias of the cost function into
the mean function, opposed to the constant mean function that is currently
used. This point will have an impact on the sample efficiency, because the use
of more prior data might relieve the algorithm, such that it does not have to
learn that data. This extension will most likely result in a reduced amount of
simulations.

Additionally, if the goal is to learn parameters for robots with the same
physical model in the simulator, it is possible to store the Gaussian Process
until the first physical experiment is about to be performed. This way it will be
possible to reduce the required time for the optimization process for the next
robot.

Moreover, we are making efforts to reduce the amount of noise inside the
simulator, such that we could remove the averaging inside the cost function.
This again would reduce the amount of required time drastically.

A different problem of the method is the low dimensionality that can be
currently addressed. We hypothesize to solve this issue by introducing a dimen-
sionality reduction and by optimizing in a lower-dimensional space.

Another improvement could be achieved by learning the hyperparameters of
the kernel during optimization.

This approach successfully used information gained through simulations and
thus reduced the required amount of real-world experiments drastically. More-
over, using this approach, after 30 real-world experiments we achieved an im-
provement of more than 50% compared to the prior parameters and thus were
able to prove the success of our implementation. Furthermore, we proposed a
termination criterion based on the Kullback-Leibler-Divergence, underlined its
importance and we demonstrated that the parameters at the point of termina-
tion lead to a stable gait.



36 CHAPTER 7. CONCLUSION



BIBLIOGRAPHY 37

Bibliography

[1] Riad Akrour et al. “Local Bayesian Optimization of Motor Skills”. In:
Proceedings of the 34th International Conference on Machine Learning.
Proceedings of Machine Learning Research (PMLR). International Con-
vention Centre, Sydney, Australia, 2017, pp. 41–50.

[2] Philipp Allgeuer and Sven Behnke. “Fused Angles: A Representation of
Body Orientation for Balance”. In: Int. Conf. on Intelligent Robots and
Systems (IROS). Hamburg, Germany, 2015.

[3] Philipp Allgeuer and Sven Behnke. “Omnidirectional Bipedal Walking
with Direct Fused Angle Feedback Mechanisms”. In: Proceedings of 16th
IEEE-RAS Int. Conference on Humanoid Robots (Humanoids). Cancún,
Mexico, 2016.

[4] Philipp Allgeuer et al. “The igus Humanoid Open Platform: A Child-sized
3D Printed Open-Source Robot for Research”. In: Künstliche Intelligenz
30.3 (2016).

[5] R. Calandra et al. “Bayesian Gait Optimization for Bipedal Locomotion”.
In: Proceedings of the 8th International Conference on Learning and Intel-
ligent Optimization. Lecture Notes in Computer Science. Springer, 2014,
pp. 274–290.

[6] T. M. Cover. “Geometrical and Statistical Properties of Systems of Linear
Inequalities with Applications in Pattern Recognition”. In: IEEE Trans-
actions on Electronic Computers EC-14.3 (1965), pp. 326–334.

[7] Marc Peter Deisenroth, Dieter Fox, and Carl Edward Rasmussen. “Gaus-
sian processes for data-efficient learning in robotics and control”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 37.2 (2015),
pp. 408–423.

[8] Hao Dong, Mingguo Zhao, and Naiyao Zhang. “High-speed and energy-
efficient biped locomotion based on Virtual Slope Walking”. In: Autonomous
Robots 30.2 (2011), pp. 199–216.

[9] Johannes Englsberger et al. “Overview of the torque-controlled humanoid
robot TORO”. In: 14th IEEE-RAS International Conference on Humanoid
Robots. 2014, pp. 916–923.

[10] Felix Faber and Sven Behnke. “Stochastic optimization of bipedal walk-
ing using gyro feedback and phase resetting”. In: 2007 7th IEEE-RAS
International Conference on Humanoid Robots. 2007, pp. 203–209.



38 BIBLIOGRAPHY

[11] Hafez Farazi et al. “RoboCup 2016 Humanoid TeenSize Winner NimbRo:
Robust Visual Perception and Soccer Behaviors”. In: RoboCup 2016: Robot
World Cup XX. 2017, pp. 478–490.

[12] Elco Heijmink et al. “Learning optimal gait parameters and impedance
profiles for legged locomotion”. In: IEEE-RAS 17th International Confer-
ence on Humanoid Robotics. 2017, pp. 339–346.

[13] P. Hennig and CJ. Schuler. “Entropy Search for Information-Efficient
Global Optimization”. In: Journal of Machine Learning Research (2012),
pp. 1809–1837.

[14] Kazuo Hirai et al. “The development of Honda humanoid robot”. In: IEEE
International Conference on Robotics and Automation (ICRA). IEEE.
1998, pp. 1321–1326.

[15] Shuuji Kajita et al. Introduction to humanoid robotics. Vol. 101. Springer,
2014. Chap. 3.

[16] Petar Kormushev et al. “Learning to exploit passive compliance for energy-
efficient gait generation on a compliant humanoid”. In: Autonomous Robots
(2018).

[17] Alonso Marco et al. “Automatic LQR tuning based on Gaussian process
global optimization”. In: 2016 IEEE International Conference on Robotics
and Automation (ICRA). 2016, pp. 270–277.

[18] Alonso Marco et al. “Virtual vs. Real: Trading Off Simulations and Physi-
cal Experiments in Reinforcement Learning with Bayesian Optimization”.
In: IEEE International Conference on Robotics and Automation (ICRA).
2017, pp. 1557–1563.

[19] M. Missura and S. Behnke. “Omnidirectional capture steps for bipedal
walking”. In: 13th IEEE-RAS International Conference on Humanoid Robots.
2013, pp. 14–20.

[20] Marcell Missura and Sven Behnke. “Online learning of bipedal walking
stabilization”. In: KI-Künstliche Intelligenz 29.4 (2015), pp. 401–405.

[21] Marcell Missura and Sven Behnke. “Online learning of foot placement for
balanced bipedal walking”. In: 14th IEEE-RAS International Conference
on Humanoid Robots. 2014, pp. 322–328.

[22] Marcell Missura and Sven Behnke. “Self-stable Omnidirectional Walking
with Compliant Joints”. In: 8th Workshop on Humanoid Soccer Robots.
IEEE-RAS International Conference on Humanoid Robots, 2013.

[23] Akshara Rai et al. “Bayesian Optimization Using Domain Knowledge on
the ATRIAS Biped”. In: CoRR abs/1709.06047 (2017).

[24] CE Rasmussen and CKI Williams. Gaussian Processes for Machine Learn-
ing. en. Adaptive Computation and Machine Learning. Cambridge, MA,
USA: MIT Press, 2006, p. 248.

[25] Thomas Röfer. “Evolutionary Gait-Optimization Using a Fitness Function
Based on Proprioception”. In: RoboCup 2004: Robot Soccer World Cup
VIII. Berlin, 2005, pp. 310–322.

[26] Russ Tedrake et al. “A closed-form solution for real-time ZMP gait gener-
ation and feedback stabilization”. In: IEEE-RAS 15th International Con-
ference on Humanoid Robots. 2015, pp. 936–940.


