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Abstract. We developed a scene text recognition system with active
vision capabilities, namely: auto-focus, adaptive aperture control and
auto-zoom. Our localization system is able to delimit text regions in im-
ages with complex backgrounds, and is based on an attentional cascade,
asymmetric adaboost, decision trees and Gaussian mixture models. We
think that text could become a valuable source of semantic information
for robots, and we aim to raise interest in it within the robotics com-
munity. Moreover, thanks to the robot's pan-tilt-zoom camera and to
the active vision behaviors, the robot can use its a�ordances to over-
come hindrances to the performance of the perceptual task. Detrimental
conditions, such as poor illumination, blur, low resolution, etc. are very
hard to deal with once an image has been captured and can often be
prevented. We evaluated the localization algorithm on a public dataset
and one of our own with encouraging results. Furthermore, we o�er an
interesting experiment in active vision, which makes us consider that ac-
tive sensing in general should be considered early on when addressing
complex perceptual problems in embodied agents.

Keywords: Scene text recognition, active vision, domestic robot, pan-tilt, auto-
zoom, auto-focus, adaptive aperture control.

1 Introduction

Beyond being a simple commodity, domestic service robots might open the doors
to a more ful�lling life to the elderly and handicapped. However, for robots to
perform assistance tasks under very complex and dynamic environments, great
robustness and �exibility are required. For example, the agents should gain in-
formation about the environment, the agent's situation in it, and that of other
agents. For this, perceptual processes have to turn the raw sensory data into
higher-level representations. In this investigation, we work towards the acquisi-
tion of information from a source seldom exploited in robotics, text embedded in
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images, commonly referred as scene text. Text is a valuable source of information
because: 1) It is readily available in human made environments 2) Humans make
extensive use of it 3) It contains semantic information. In the end, text provides
us humans with the information needed to identify and compare products at
the supermarket, �nd our path at the airport, ordering at a restaurant, etc. A
potential application of Scene Text Recognition (STR) in robotics is product
identi�cation, which is generally performed with some sort of appearance based
classi�cation. However, appearance based methods su�er of an inherent lack of
generalization because the appearance of products changes over time and across
vendors. If a robot could read text written on boxes and bottles, and understand
it, it would result in a more general solution.

STR is a very challenging topic �not to be confused with traditional Opti-
cal Character Recognition (OCR)� because scene text is known to have a large
intra-class variance in terms of font, color, layout, symbol repertoire, etc. and the
presence of background clutter. Nevertheless, advances in STR are not only ap-
plicable in robotics, but also pro�table by visually impaired and blind humans.
Therefore, we consider STR to be an important research topic and hopefully,
with this article, we raise more interest in it within the robotics community.
Although we deal with a perceptual task, our approach diverts respect to the
traditional and still often applied conception in computer vision that: sensation,
perception and cognition are isolated processes previous to actuation. Under such
paradigm, commonly referred as passive vision, the perceptual system is limited
to operate using the raw data captured by the sensors "as is". This �sensation-
followed-by-idea-followed-by-movement� lacks on �psychological adequacy� ac-
cording to [6]: �We begin not with a sensory stimulus, but with a sensorimotor
coordination... In a certain sense it is the movement which is primary, and the
sensation which is secondary, the movement of the body, head, and eye muscles
determining the quality of what is experienced�. Therefore, our robot does not
obtain information by plain observation, but also by interaction and selection
of stimuli using a Pan-Tilt-Zoom (PTZ ) camera, in such a way, that the agent
gains control of �what to see� and �how to see it� [13].

2 Related Work

Fibonacci search was introduced as an e�ective methodology for searching op-
timal focus values using the tenengrad operator in [11]. A system to optimize
focus and aperture, based on a hierarchy of arti�cial neural networks (ANN),
was described in [13]. In [14], a system for the extraction of low-resolution text
was developed. The system �rst locates text areas and then uses a PTZ camera
to capture and assemble a high-resolution mosaic of each region. The use of a
polynomial zoom model is mentioned but no details were given. Recently, [17]
developed a text localization system for a robot. That work is very relevant
because it also includes the extraction of semantic information from the text
using probabilistic models and textual web-search. [10] created a robot system
with text reading capabilities for aiding visually impaired humans in naviga-
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tion tasks. The robot, equipped with a Pan-Tilt Unit (PTU ), was designed to
read room numbers using a template matcher. However, the authors placed very
strong assumptions, such as: possible characters are limited to numbers and to
A-E characters. [18, 19] developed a text localization system based on Discrete
Cosine Transform (DCT ), and a text tracking system. A PTU was used to take
a panoramic capture from which text is detected. In those publications active
vision is limited to the capture of a mosaic to increase the Field of View (FOV ),
but no adaptive actions were performed. [4] introduced a set of features for text
discrimination. Those features are calculated from sub-regions (blocks) embedded
within the detection window that were found to exhibit a distinctive behavior for
text. Several statistical measures were computed and combined from the blocks
and used to train a Cascade of Boosted Classi�ers (CoBC ) with asymmetric
adaboost as stage classi�ers. [15] used a similar block layout to delimit regions
from which Histogram of Oriented Gradients (HOG) features were extracted to
train the �rst layers of a CoBC . The successive layers used Local Binary Patterns
(LBP) and multi-scale LBP . [16] extended their previous work in [15] to use two
Conditional Random Fields (CRF ) to �lter non-text connected components. An
image operator called Stroke Width Transform (SWT ), which proved to be very
useful and yield better results than other STR methods was introduced in [7]. We
introduced a Connected Component (CC ) based STR system in [1,3]. However,
it performs poorly on low-resolution text. Besides, being a passive STR system,
it is unable to adapt to di�erent image acquisition conditions, which limits its
usefulness in the real-world.

3 Text Localization

Text localization, i.e. to identify and delimit image regions that contain text, is
generally the �rst step in STR. This task is di�cult because of the large intra-
class variance of text, lack of prior-knowledge on the scale, orientation, etc. and
the presence of background clutter, which might generate similar visual stimuli as
text, e.g. windows of a building, a fence, etc. To �nd text regions, we pass a slid-
ing window through the image at each possible location and at di�erent scales.
At each location and scale, a set of discriminative features are extracted from the
image inside the detection window. Then, a classi�er uses the feature values to
assign a con�dence score to each detection window, higher scores indicate higher
probability of text and conversely. Finally, a con�dence map generated during
classi�cation is thresholded and smoothed, and the bounding rectangle of each
remaining segment stands for a text region. Localization is a canonical example
for rare-event detection [21], in which the expected amount of content for the
positive class (text) is much smaller than for the negative class (non-text). Such
conditions, along with the number of detection windows that need to be classi-
�ed, also make of text localization a di�cult problem. We use a CoBC [22] with
asymmetric adaboost [21] as stage classi�ers and decision trees [2, 20] of depth
two as weak learners. This particular classi�cation framework is specially well
suited for problems with skewed class distributions. Besides, the CoBC is com-
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Fig. 1: Example of blocks, each inner rectangle represents a block. The outer
rectangles represent the detection window.

putationally e�cient in comparison to other methods because it performs the
classi�cation in stages of increasing complexity. In the initial stages, the stage
classi�ers are very simple and operate on low-dimensional feature spaces, and
still they are able to discard a large amount of the non-text detection windows.
Later stages, require of more complex classi�ers operating over feature spaces
of a higher dimensionality. However, thanks to the decision tree algorithm, fea-
tures are calculated as needed, instead of pre-calculating the complete feature
vectors. Unfortunately, these concepts will not be discussed in detail due to space
constraints.

3.1 Feature Space

To train the CoBC , we used features that have been reported to perform well
in our domain. The features are extracted from sub-regions within the detection
window called blocks [4]. The blocks are arranged in such way, that the features
extracted from them exhibit low entropy, see Fig. 1. A �rst set of features we
use, introduced in [4], is based on mean and standard deviation values either
of the intensity image, the intensity gradient magnitude or the x or y intensity
gradients; we will refer to these features as �Chen�. A second set of features
is HOG [5], having a HOG per-block as de�ned in [15]. Roughly, the gradient
orientations are decomposed in a set of bins. Then, each pixel within a block,
casts an orientation vote in the corresponding bin in the HOG of that block. The
contribution of each pixel is weighted by the magnitude of the gradient at that
location. To minimize aliasing e�ects, we interpolate the values accumulated in
each histogram. From now on, Chen and HOG features will be referred as �raw�.
Furthermore, the raw feature values are processed to transform them into log-
likelihood ratios [4]. To this end, for each raw feature and possible combination of
pairs of raw features, we estimate the conditional probability density of the text
and non-text classes. In the case of feature pairs, this process creates new features
from the raw features. To model each probability density distribution we use a
Gaussian Mixture Model (GMM ) trained with the Expectation Maximization
(EM ) algorithm. The optimal number of components per-mixture is estimated
with the Bayesian Information Criterion (BIC ) [8].

4 Active Vision Module

Images of poor quality can easily hinder the performance of a STR system, for
example, due to a loss of contrast between text and the background, or lack
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of spatial resolution for the task. To cope with this we developed three active
vision behaviors, namely: 1) Auto-focus, to prevent blur by defocus 2) Adaptive
Aperture Control (AAC ), to widen the dynamic range of the capture; both
aimed to retain the contrast of the text regions by optical means, and 3) Auto-
zoom, to acquire high-resolution images. The sensory system we use consists of
a SONY camera model VFW-VL500 and a Directed Perception PTU model 46-
17. The sensory space we consider is formed by the parameters: pan, tilt, zoom,
aperture and focus. The active vision behaviors have three major components,
either implicitly or explicitly: 1) Quality metrics, that assign a quantitative
value to the quality of an image 2) Actuation, to change the con�guration of
the sensory system by manipulating its electrical and mechanical components
3) Search strategies, to explore the con�guration space of the sensory system
and �nd desirable con�gurations.

Our active vision module has an initialization phase and a recognition phase.
In the initialization phase, the camera is prepared to localize candidate text
regions in the scene. First, we set the zoom to its minimum value to maximize
the FOV and set the focus to its maximum value to produce sharp images of
relatively distant objects. Furthermore, the AAC behavior corrects the camera
aperture according to the illumination conditions of the scene. Once the sensory
system has been set up for the scene, we store the current con�guration of the
sensory system. Afterwards, we capture a frame and localize text regions in it
using the algorithm described in Sect. 3 to obtain a set of bounding rectangles of
candidate text areas; most of which correspond to real text, and eventually some
false positive regions. Finally, a priority calculated from the text con�dence map
is assigned to each candidate region. During the recognition phase, the regions
are attended one by one in order of descending priority as follows. Each candidate
region is centered and zoomed-in, in order to capture a high-resolution image.
Then, the aperture is optimized again and auto-focus is executed to acquire a
sharp image. After processing each region, the sensory system is set back to the
previously stored con�guration before the next candidate region is processed,
see Fig. 2.

Fig. 2: Example of active STR. From left to right: Localization results after the
initialization phase, centering candidate region 1 (a carton box at approximately
3 m w.r.t the camera, the top-left candidate region), after zooming-in, after AAC
and auto-focus.
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4.1 Auto-Focus

Real world cameras require of lenses to focus the light passing through the
aperture against the image plane, where the imaging sensor is located. However,
�xed lenses cannot adequately focus light coming from arbitrary distances. In
general, given a lens with a focal length f , only objects located at a distance
dout in front of the lens will produce a sharp image on a plane behind the
lens located at a distance din, called focal plane. Therefore, objects at di�erent
distances will have di�erent focal planes. Light rays coming form objects that
lie either closer or farther than dout will be projected as a circle of radius r
instead of a point over the focal plane. However, since the sensor resolution is
limited, if the radius of a blur circle is small enough, the defocus e�ects will
not be resolved by the sensor and will not be observable; this range of distances
is known as Depth of Field (DOF ). Auto-focus consist thus, of changing the
distance din so that the focal plane of a certain object of interest is aligned with
the image sensor. The acquisition of focused images is desirable in STR because
text can be considered as high-spatial-frequency content, which is smoothed due
to defocus, leading thus to weak intensity gradients. To optimize the focus, we
measure the image quality using the thresholded gradient magnitude operator
(also known as tenengrad operator) de�ned in Eq. 1, and use Fibonacci search
to �nd the maximum [11].

Tenengrad(|∇I|) =
∑
x

∑
y

|∇I|(x, y) for |∇I|(x, y) > τ . (1)

Where |∇I| is the magnitude of the intensity gradient and τ is a threshold 1.
For a certain DOF , the tenengrad operator will exhibit its maximum when an
object in the Region of Interest (ROI ) within that DOF is focused. Nevertheless,
the tenengrad operator can have local maximum if the ROI contains objects at
di�erent DOF s. It is also important to know that the DOF decreases as the
magni�cation increases, making it harder to focus magni�ed objects.

4.2 Adaptive Aperture Control

The aperture controls the amount of light entering the camera, and must be set
accordingly to the the scene's illumination and structure. Otherwise, the cap-
tured image might exhibit a narrow dynamic range and thus poor contrast. Two
extreme manifestations of this phenomena are overexposure and underexposure.
Whereas for a �xed aperture and under certain conditions, underexposure can
be corrected with the use of additional light sources, this does not occur with
overexposure. However, the opposite also holds true, if there is not enough light
in the scene, opening the aperture will not prevent underexposure on its own
unless the robot illuminates the scene. In this investigation, we use the entropy
of the intensity image as a quality measure [9] and Fibonacci search to maximize
the entropy. In the end, well illuminated images generally present a more evenly
distributed intensity histogram.
1 We use temporal averaging and set τ = 0 instead [11].
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4.3 Auto-zoom

Digital cameras capture a 2D discrete approximation of a 3D continuum. The
spatial resolution with which an image region is captured, depends on the number
of pixels in the imaging sensor and the distance between the camera and the
points in 3D space within that region. In general, low-resolution images are
challenging to deal with in computer vision, and are often found when working
in problems involving small structures2 observed from a distant viewpoint. For
this reason we implemented auto-zoom, which allows to acquire high-resolution
images of a ROI . Our auto-zoom algorithm begins by centering the ROI in
the camera frame, which is achieved through iterative correction of the camera
external orientation using a PTU . At each step, the image of the ROI becomes
a template. Then, a small pan and tilt correction towards the camera center is
performed (0.1◦ each) and the improvement in centering is measured in vertical
and horizontal direction by �nding the ROI in a new capture using a cross-
correlation based template matcher. Using the x and y displacement of the ROI
respect its previous location and the pan and tilt angles, we estimate new pan
and tilt commands. The necessity for an iterative solution arises because we
assume an uncalibrated camera at this point. Later on, the zoom parameter
value that would allow a capture of the highest resolution of the ROI can be
found using Eq. 2.

zmax(z0, Rw, Rh) = Zv

(
ζM (z0)min

(
w

Rw
,
h

Rh

))
. (2)

Where z0 is the initial zoom parameter value, Rw and Rh are the width and
height of the ROI respectively, Zv is a polynomial model [14, 23] that maps
magni�cation factors to zoom parameter values, M is a polynomial model that
maps zoom parameter values to magni�cation factors, w and h are the width
and height of the image respectively, and ζ is a multiplier on the resulting mag-
ni�cation. The optimal degree of these cubic polynomials was estimated using
BIC . The regression was performed on 32 data points obtained by recording
the corresponding zoom parameter value of 8 di�erent magni�cation factors for
4 di�erent calibration targets, where each calibration target was a black circle
printed on a white sheet of paper. For each calibration target, the camera po-
sition and orientation was �rst manually set so that at zoom parameter 0, the
target �ts withing a square of known size overlaid in the camera images. Then,
the zoom was increased so that the calibration target �ts in a larger square and
so on. The side length ratio of each of the squares respect to the smallest one
corresponds to the magni�cation factor. Auto-focus was performed at each step
but the focus parameter values were not used for regression.

5 Experimental Evaluation

We trained a CoBC of four stages, for which we �rst assembled training and
validation image collections using images of the ICDAR train dataset [12] and
2 Such as text written on a can.
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Fig. 3: Normalized training images. On the left for the negative class, and on the
right for the positive class.

hundreds of images of scenes such as parks, streets, kitchens, living-rooms, gro-
cery products, etc. obtained from the Internet. With this, we attempt to capture
the high variability of the text and non-text classes. Afterwards, we generated
a set of normalized training and validation images for the positive and negative
classes (see Fig. 3) from which feature vectors for the training and validation ex-
amples were extracted. The normalized images have the same width and height
as the detection window (24 × 12 pixels) and resemble the detection windows
classi�ed by the CoBC . The training datasets per-stage were formed of 3,378
examples of each class and the validation datasets contained 2,218 examples of
the positive class and 30,000 examples for the negative class. The feature space
had 7,180 dimensions, formed by 160 raw features extracted from 20 blocks,
which after being turned into log-likelihoods ratios over the individual and pair-
wise combinations of raw features produced additional 7,056 features. In order to
avoid a higher dimensionality in the data, the raw feature combinations were only
performed over features of the same kind. Finally, the con�dence map threshold
and the threshold of the last stage classi�er were optimized on a validation set
of images.

The localization algorithm was evaluated on the ICDAR dataset as well as
on a dataset of images of grocery products (referred as grocery images). All of
the grocery images are RGB images of 640×480 pixels captured at a distance of
60 cm w.r.t to the camera. The performance was measured in terms of pixel-wise
precision and recall. In general, precision is de�ned as p = |C|

|E| , recall as r =
|C|
|T |

and their harmonic mean h = 1
α/p+(1−α)/r |α = 0.5 , where C stands for the

correct detections, E for all detections, and T for the target detections accord-
ing to the ground truth. Since our method does not implement word grouping
and the ground truth consists of bounding rectangles of each word the precision
estimate will result pessimistic. Nevertheless, word grouping is very hard to real-
ize on low-resolution images and is of minimal practical use for our application.
Moreover, we compare our algorithm against the literate_pr2 3 package placed
in the public domain and available in the Robot Operating System (ROS ) repos-
itories. The literate_pr2 package was used with OCR validation disabled. The
results of the evaluation are given in Table 1. Although our algorithm performed

3 The algorithm is based on [7].
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Table 1: Text localization results in terms of pixel-wise precision, recall and
harmonic mean. Complementary, the average execution time per-input image is
given.

Method Dataset p r h time(s)

Presented method
ICDAR 0.68 0.59 0.63 6.08
Grocery Images 0.66 0.77 0.71 1.58

literate_pr2
ICDAR 0.45 0.67 0.54 0.18
Grocery Images 0.43 0.75 0.5361 0.03

Fig. 4: Examples of the performance of our localization method on the ICDAR
dataset on top and on the grocery images at the bottom.

better in both datasets, it also resulted slower than the literate_pr2 package.
We attribute this drawback to the small validation datasets used to create the
CoBC . Some localization results for our method can be seen in Fig. 4. The recall
of our method was poor in images of the ICDAR dataset in which only one or
two characters occupy an entire image.

5.1 Adaptive Aperture E�ect in the Localization Algorithm

To validate the usefulness of our active vision module, we devised an experiment
intended to resemble one of many situations a robot can face under operation in
the real-world. For this, we placed the camera at a distance of approximately 60
cm from a table in a room with normal indoor illumination. The camera sensory
system was prepared as in the initialization phase described in Sect. 4. We call
the resulting aperture initial aperture value, or reference. We observed that these
aperture values produced well illuminated images of the scene (see Fig. 5a). Then,
we turned-o� the light in the room and turned-on a table lamp and made a new
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capture called passive; note that the camera was still con�gured with the initial
aperture value (see Fig. 5b). Finally, we performed AAC to optimize the camera
aperture to the new illumination conditions and made a �nal capture called
active (see Fig. 5d). We repeated the same process to make a series of captures of
di�erent products on the table. Each of the images (reference, passive and active)
were captured in 4 variants: one shot, one shot with Gaussian �ltering, and
temporal average of 2 and 5 frames. Hence, the images exhibit di�erent degrees
of noise and blur to ensure that the di�erent results are due to illumination. The
performance of the localization algorithms in these images is depicted in Fig. 6.

6 Conclusions

In this investigation we devised and evaluated an active STR system with text
localization, auto-zoom, auto-focus and AAC capabilities. Our evaluation on a
public dataset and on a new dataset gives evidence of the performance of our
localization method. Moreover, we demonstrated how the ability to adapt to
changes in the environment is crucial to the performance of STR systems. Since
harsh acquisition conditions are often problematic in other similar tasks, we
are convinced that active vision, and active sensing in general will play a crucial
role in the development of robotics and should, whenever possible, be considered
when working on di�cult classi�cation problems. In our experience, it is more
e�ective to do so than to devise more complex passive perceptual systems. Fur-
ther improvements to our system include the addition of a controllable external
light source.
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(a) (b) (c)

(d) (e)

Fig. 5: AAC allows captures under di�erent illumination conditions to be more
consistent. Fig. 5a, image captured using the initial aperture, being the table
lamp o�. Fig. 5b, passive image captured with the initial aperture and the table
lamp on. Fig. 5d, active capture with the table lamp on, after executing the
AAC behavior again. Fig. 5c and Fig. 5e are the pixel-wise Euclidean distances
in RGB space, between Fig. 5a and Fig. 5b, and Fig. 5a and Fig. 5d respectively.
Brighter values indicate a larger Euclidean distance.

Fig. 6: A series of captures were made following the same procedure as in Fig. 5.
On top, results of our algorithm. The literate_pr2 results are displayed at the
bottom. From left to right: pixel-wise precision, recall and harmonic-mean. The
recall of both algorithms decreases more signi�cantly if the aperture is not
adapted to the new illumination conditions.


