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Abstract. RoboCup soccer competitions are considered among the most
challenging multi-robot adversarial environments, due to their high dy-
namism and the partial observability of the environment. In this paper
we introduce a method based on a combination of Monte Carlo search
and data aggregation (MCSDA) to adapt discrete-action soccer policies
for a defender robot to the strategy of the opponent team. By exploiting
a simple representation of the domain, a supervised learning algorithm is
trained over an initial collection of data consisting of several simulations
of human expert policies. Monte Carlo policy rollouts are then gener-
ated and aggregated to previous data to improve the learned policy over
multiple epochs and games. The proposed approach has been extensively
tested both on a soccer-dedicated simulator and on real robots. Using
this method, our learning robot soccer team achieves an improvement
in ball interceptions, as well as a reduction in the number of opponents’
goals. Together with a better performance, an overall more efficient po-
sitioning of the whole team within the field is achieved.

Keywords: Policy Learning; Reinforcement Learning; Humanoid Robots;
Multi-Robot Systems.

1 INTRODUCTION

Machine learning methods have been increasingly used in robotics to deal with
uncertain and unstructured environments. In such scenarios, directly learning
from data a (sub-)optimal set of parameters to generate robot behaviors is often
more robust than hard coding them from prior knowledge. However, the variety
of the problems and the lack of big amount of data still refrain researchers from
the application of standard learning approaches to challenging domains such as
RoboCup soccer competitions [5]. Here, in fact, manifold problems must be faced
by a multi-robot system, such as coordination and decision making under partial
observability of an adversarial and dynamic environment.

RoboCup soccer teams typically tackle competitions by deploying static be-
haviors for their robots. Here, each programmed agent executes a single policy
that takes into account the state of the robot teammates, but does not change at
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Fig. 1. MCSDA generates effective robot policies in a highly dynamic environment.

run-time. However, during the game the partial observable environment discloses
previously unavailable information, such as the strategy of the opponent team.
On the one hand, predefined behavioral protocols cannot handle the newly avail-
able knowledge. Hence, the use of a learning approach to update each agent’s
current policy would be beneficial to the team performance. On the other hand,
such information only consists of small portions of new data, that cannot be used
without exploiting the structure of the domain and adequate machine learning
methods.

In this paper, we specifically consider the setup proposed by the RoboCup
Standard Platform League (SPL), where NAO robots compete in a 5-vs-5 soc-
cer game (see Fig. 1). Our goal consists in generating a robot defender policy
that adapts to the strategy of the opponent team. Such strategy is not known
and, hence, makes the world dynamics unknown or difficult to model. The policy
that we generate is composed of a discrete and limited set of actions, and it is
at first instantiated to imitate an initial dataset of human (expert) deployed be-
haviors. To this end, we introduce Monte Carlo Search with Data Aggregation
(MCSDA). Our algorithm uses a standard classifier to imitate expert actions
given the current observation of a simplified representation of the game domain,
modeled by the position and velocity of the ball in the field, as well as the
player position. Since the classifier is trained over the distribution of observa-
tions and expert actions from multiple games, frequent patterns and main game
areas can be exploited by the learned policy. Such policy is then improved by
aggregating [11] the initial dataset with policy rollouts collected using simple
Monte Carlo search [13]. While our algorithm strictly relates to state-of-the-art
methods for reinforcement learning with unknown system dynamics [10] and re-
cent applications to games like Go [12], the main novelty of this paper consists
in the combination of these techniques, that allows to achieve good results on a
partially observable, high dynamic robotic context. With this paper, in fact, we
aim at showing that (1) the use of data aggregation together with Monte Carlo
search is practical, effectively improves the learner’s policy and preserves good



properties, and (2) by adopting a simplified representation of the domain a good
policy improvement can be obtained on complex and challenging robotic scenar-
ios. The obtained results show improvements in the overall team performance,
where the percentage of recovered ball and the number of won games increase
with the number of MCSDA iterations.

The reminder of this paper is organized as follows. Section 2 provides an
overview on the literature about policy learning and improvement, as well as
strategy adaptation in the RoboCup context; Section 3 describes in detail the
proposed approach introducing the MCSDA algorithm (Section 3.2). Finally,
Section 4 describes the robot platform and the experimental setup together with
the obtained results, while Section 5 concludes the paper with final remarks and
future work.

2 RELATED WORK

Policy learning is a very active area of research, due to its complexity and practi-
cal relevance. Reinforcement learning, Monte Carlo methods and imitation learn-
ing have been successfully applied in several contexts and domains. For example,
in robotics Kober and Peters [6] use episodic reinforcement learning in order to
improve motor primitives learned by imitation for a Ball-in-a-Cup task. Kor-
mushev et al. [7], instead, encode movements with and extension of Dynamic
Movement Primitives [4] initialized from imitation. Reinforcement learning is
then used to learn the optimal parameters of the policy, thus improving the
obtained performance. Differently, Ross et al. [11] propose a meta-algorithm
for imitation learning (DAgger), which learns a stationary deterministic pol-
icy that is guaranteed to perform well under its induced distribution of states.
Their method, which strictly relates to a no-regret online learning approach, is
then applied to learn some policies that can steer a car in a 3D racing game
and can play Super Mario Bros., given input image features and corresponding
expert demonstrations. The idea of applying policy learning on video-games has
been recently used also by Mnih et al. [8], that present a deep agent (deep Q-
network), that can use reinforcement learning to generate policies directly from
high-dimensional sensory inputs. The authors test their algorithm on classic
Atari 2600 games, achieving a level comparable to that of a professional hu-
man player across a set of 49 games. Similarly, Silver et al. [12] use deep “value
networks” and “policy networks” to respectively evaluate board positions and
select moves for the challenging game of Go. These neural networks are trained
by a combination of supervised learning from human expert games, reinforce-
ment learning and Monte Carlo tree search. The resulting program showed to
be able to beat human Go champions and to achieve a performance beyond any
previous expectation.

Building on the idea of adopting a combination of techniques similar to [12],
our work mostly relates to the AggreVate and NRPI algorithms by Ross and
Bagnell [10]. The former leverages cost-to-go information – in addition to correct
demonstration – and data aggregation; the latter extends the idea of no-regret



learners to Approximate Policy Iteration variants for reinforcement learning.
However, differently from previous work our algorithm (MCSDA) uses shorter
Monte Carlo roll-outs to evaluate policy improvements. By avoiding to always
estimate the full cost-to-go of the policy MCSDA is more practical – and usable
in robotics. Additionally, as explained in Section 3, the policy generated by our
algorithm can be seen as a combination of expert and learned policies, allowing
us to directly leverage results from [2].

Policy Adaptation in RoboCup

Policy classification and adaptation to the strategy of the opponent team is
not a new idea in RoboCup competitions. For example, Han and Veloso [3]
propose to employ Hidden Markov Models to detect opponents’ behaviors, rep-
resented as game states. The authors first characterize the game state in terms
of “behavioral-relevant state features” and then show how a cascade of HMMs
is able to recognize different pre-defined robot behaviors. This idea has been
further developed by Riley et al. [9], who propose a classification method for the
opponents’ behavior in a simulated environment. The authors first enable their
agents to observe and classify the actions of the adversaries, and then to accord-
ingly adapt their policy. More recently, Trevizan and Veloso [14] also address
the problem of classifying opponents, and their strategies with respect to a set
of behavioral components. Specifically, they are able to generalize and classify
unknown opponents as combination of known ones. Yasui et al. [15] introduce
a “dissimilarity function” to categorize opponent strategies via cluster analysis.
The authors improve their team performance by analyzing logged data of previ-
ous matches and showing that team attacking strategies can be recognized and
correctly classified. Finally, Biswas et al. [1] propose an opponent aware defensive
strategies. In particular, once the state of the opponents is received, the robotic
systems categorize the attacking robot as first and second level threats. Accord-
ingly, the team displaces a variable number of defenders in order to prevent the
opponent team to score.

It is worth remarking that all the aforementioned methods propose effective
solutions to the problem of decision making in presence of adversaries. However,
differently from our application of MCSDA on the RoboCup scenario – that
uses only a small portion of the game-state and operates under unknown system
dynamics, they operate in controlled environments, where full information is
available. Additionally, while the MCSDA algorithm can be separately applied on
each agent and automatically accounts for uncertainty, the described systems are
usually centralized and do not consider uncertain outcomes. For these reasons, we
consider our approach a valuable contribution also to the robotic and RoboCup
community, where partially observable and highly dynamic scenarios need to be
addressed.



3 APPROACH

The generation of our adaptive policy relies on standard machine learning meth-
ods. First, a classifier is used to imitate a sub-optimal expert policy and accord-
ingly choose an action, given the current observation of the game domain. Then,
the learned policy is improved by aggregating, in an online learning fashion, pre-
vious data with Monte Carlo policy rollouts. Throughout the learning process,
the domain representation is simplified and it is reduced to the essential game
elements – the position and velocity of the ball in the field.

3.1 Preliminaries

We present our learning problem using the Markov Decision Process notation,
where S and A respectively represent a discrete set of states and actions, and
R(s) is the immediate reward obtained for being in state s ∈ S. R is assumed
to be bounded in [0, 1]. In our learning setting not only we observe the reward
function R, but also demonstrations of a sub-optimal policy π∗ that aims at
maximizing R and induces a state distribution dπ∗ . Additionally, we assume the
dynamics of the world to be unknown or to be accessible only through samples,
due to its complexity. Those samples can be obtained by directly observing a
policy executed in the world.

Our goal is to first find a policy π̂ such that

π̂ = arg max
a

Es′∼dπ∗ [s′ | a, s], (1)

and then to generate, at each iteration i ∈ {0, ..., N}, a new policy π̃i that
improves π̃i−1, with π̃0 = π̂. Such improvement is obtained by directly executing
π̃i−1 and aggregating the reward measured over several Monte Carlo simulations
to the rewards at previous iterations. Note that, (1) as in previous work [11, 10, 2]
we adopt a supervised learning approach to imitate and learn a policy, (2) since
the chosen actions influence the distribution of states, our supervised learning
problem is characterized by a non-i.i.d.1 dataset.

3.2 Monte Carlo Search With Data Aggregation

We now present Monte Carlo Search with Data Aggregation – MCSDA, a modi-
fication of the AggreVate and NRPI algorithms by Ross and Bagnell [10] that
(1) instead of the distribution of states induced by the expert, always uses the
learned policy to roll-in and (2) rather than estimating the full cost-to-go of the
policy, only uses shorter Monte Carlo roll-outs to evaluate policy improvements.

In its simplest form the algorithm takes as input a set De of state-action pairs
obtained from expert demonstrations and proceeds as follows. First, MCSDA
learns a classifier π̂ by using De in order to imitate the expert. This is used to

1 Independent and identically distributed



Algorithm 1: Monte Carlo Search with Data Aggregation (MCSDA).

Input: De: dataset of state action pairs {s, a} from expert demonstrations, N :
number of iterations of the algorithm, K: number of Monte Carlo
simulations, H: simulation steps.

Output: π̃N : policy learned after N iterations of the algorithm.
1 begin
2 Train classifier π̂ on De to imitate the expert.
3 Set π̃0 ← π̂.
4 Initialize D ← De.
5 for i = 1 to N do
6 Set s0 in some state from the initial state distribution D.
7 for t = 1 to T do
8 Get state st by executing π̃i−1(st−1).
9 A ← select or sub-sample (if needed) feasible actions in st.

10 foreach a ∈ A do
11 execute K Monte Carlo simulations of length H to estimate

Vp(st, a).
12 end
13 Set at ← arg maxa Vp(st, a).
14 Set D ← D ∪ {st, at}.
15 end
16 Train classifier π̃i on D.

17 end

18 return π̃N

19 end

initialize our policy π̃. Then, during each iteration, the algorithm extends its
dataset by (1) executing the previous policy π̃ and generating a state st at each
time-step, (2) selecting for each st an action at that maximizes the expected
value Vp(st, a) of performing action a at the given state, (3) aggregating the
new state-action pairs – at each time-step – to the previous dataset. Finally,
the aggregated dataset is used to train a new classifier π̃ that substitutes the
policy used at the previous iteration. The details of MCSDA are provided in
Algorithm 1.

By relying on data aggregation, MCSDA generates a sequence π̃1, π̃2, ..., π̃N
of policies and preserves the main characteristics of algorithms like AggreVate
– i.e., (1) it builds its dataset by exploring the states that the policy will probably
encounter during its execution, (2) it can be interpreted as a Follow-The-Leader
algorithm that tries to learn a good classifier over all previous data and (3)
can be easily transformed to use an online learner by simply using the dataset
in sequence. However, the implementation of MCSDA is more practical due to
the reduced amounts of roll-outs generated from the Monte Carlo simulation.
Additionally, our algorithm always performs the roll-in and the roll-out – after
the one-step deviation – with the learned policy. Still, it is worth to notice that
the learned policy is effectively generated from the mixture of sub-optimal expert



policies and learner’s experience from Monte Carlo simulations. Hence, expert
policy actions will be likely executed at the beginning, while their execution
probability will reduce with the number of iterations of the algorithm. This can
be interpreted as combining the sub-optimal policy of the expert and the learned
policy with a varying mixing parameter β that initially is equal to 1 – always uses
the expert – and decreases over subsequent iterations of MCSDA. Consequently,
we can rely on performances analogous to those presented by Chang et al. [2].

3.3 Using MCSDA to Improve Robot Soccer Policies

The application of MCSDA to the RoboCup context is not straightforward,
but requires an additional modeling effort. First, in order to reduce the size of
the problem, only the two-dimensional position pr = (xr, yr) of the robot, the
position pb = (xb, yb) and velocity vb = (vxb, vyb) of the ball in the field have been
adopted to represent the game state and, hence, to build our learning dataset.
Additionally, we generated the state-action pairs by considering the following
subset of actions: stand (the robot does not move), move up (the robot moves
forwards), move down (the robot moves backwards), move left, move right.

Given this reduced domain representation, as well as the goal of generating
a robot policy that adapts to the game adversaries, we applied MCSDA to the
RoboCup scenario by using the opponent team as our expert. To this end, first
we created a simple heuristic-based classifier to recognize the opponents’ actions
with respect to the ball (i.e., we collected their policy) and, then, learned such
policy in order to perform imitation. Note that at execution time the learned
policy is mapped to our robots by considering their relative position with respect
to the ball. In this work, such a mapping has been manually defined. This resolves
situations where the opponent (expert) robot and our (learner) agent face the
ball from opposite directions and, for example, the opponent’s move left action
maps to move right on our robot. Finally, Monte Carlo roll-outs have been
executed as illustrated in Fig. 2 and using a reward function shaped as:

R(s) =
MAX FIELD DISTANCE− |pr − pb|

MAX FIELD DISTANCE
, (2)

where MAX FIELD DISTANCE corresponds to the game-field diagonal. To run
our Monte Carlo simulations, we used both a simplified simulator and a more
complex one, provided by the B-Human RoboCup Team2.

4 EXPERIMENTAL EVALUATION

RoboCup is a dynamic adversarial environment where robots needs to adapt
to the surroundings quickly and efficiently. For these reasons, the goal of this
experimental section is to evaluate our learning approach in the short range after

2 https://www.b-human.de/



Fig. 2. Example of a full iteration of the Monte Carlo roll-outs: the robot evaluates all
its actions, and selects the best one to maximize Vp(st, a). In this example, the top-left
sub-figure shows the world state at a given time t, and the current policy suggests
the robot to execute move left. Accordingly, the other sub-figures show the evolution
of the world state after each roll-out extending the current policy until the horizon
H = 3. The robot evaluates all the 5 actions: stand (top-center), move up (top-right);
move down (bottom-left); move left (bottom-center); move right (bottom-right). In
these figures, the blue arrow represents the chosen action for the current roll-out, while
the purple arrows represent the movements of the robot according to the current policy.
The yellow circle represents the point pb used to compute the reward according to Eq. 2.

few number of simulation steps. The evaluation has been carried out through
the B-Human soccer simulator entirely written in C++ with the middle-sized
humanoid NAO robot. In this section, we test and validate the effectiveness of
the two main phases of our approach: the continuous policy improvement via
Monte Carlo roll-outs and the policy initialization via imitation learning. In our
experiments we set the roll-out horizon H = 3. This value has been found to
be a good trade-off between in-game performance improvement and usability of
the approach. Extending the horizon, in fact, improves the player performance
at the cost of more computational resources.

4.1 Policy Improvement

The goal of our learner is to improve its performance while playing against op-
ponent robots and to decrease the number of opponent scores while intercepting
as many balls as possible. According to Eq. 2, we can evaluate each action of our
learner by considering the reward that the robot obtains during a match. Such
a measurement expresses how good the learner is positioned within the field
with respect to the ball. Therefore, we analyze the average reward of our agent
as well as the number of ball interceptions and the final score of each match.
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Fig. 3. Normalized average reward of the learner (blue) and baseline (orange) after
different MCSDA iterations.

Fig. 3 reports the normalized average reward obtained by the learner during five
regular games, after a different number of MCSDA iterations. On the y-axis is
reported the obtained average reward.

Specifically, the learning defender features our MCSDA algorithm, while the
non-learning defender has a fixed policy initialized at iteration zero. Such a
baseline is a suitable comparison that allows us to quantify the improvements
of our robot in terms of positioning with respect to its own initial policy. It is
worth noticing that each reported match has been played with different poli-
cies generated at different iterations of MCSDA. Hence, each match represents
a different configuration of the learner, where its actions are determined by a
policy computed after 100, 200, 300, 400, 500 iterations of our algorithm. The
plot shows a constant improvement with respect to our baseline and over pre-
vious configuration of its trained policy. It is worth remarking that the drop
in performance between game 3 and 4 can be due to different factors affecting
the game, such as player penalization and ball positioning rules. However, such
drop has a marginal impact with respect to the previous improvements, and the
performance of consequent matches remains constant.

Additionally, thanks to the nature of our testing environment, we are able to
report more direct evaluation indices for our approach. To this end, we report the
number of intercepted balls and the number of opponent scores. In particular,
Fig. 4 shows the sum of intercepted balls of the two teams (learning and non-
learning) on the same set of games as before, and Table 1 reports their final
scores.

It is worth noticing that the number of intercepted balls of our learning
agent (green) is more than twice the number of the opponent defender (yellow).
Furthermore, the final results of the different matches promises an interesting
profile: even though the learner does not win all of the matches, the number
of opponent scores decreases as the learner refines its policy. Since MCSDA
is applied only on defense robots, we do not achieve any improvement on the
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Fig. 4. Sum of intercepted ball over five matches after different MCSDA iterations.

Table 1. The table reports the final scores of five matches after different MCSDA
iterations.

MCSDA iterations

Teams 100 200 300 400 500

Learning 2 3 0 1 1

Non-learning 3 2 1 1 1

number of goals of our team. However, as expected, by increasing the number of
iterations of our algorithm, the number of goals of the opponent team decreases.

4.2 Imitation Influence

Since our robots operate in dynamic environments the policy training process
cannot be too long. Therefore, we need to restrict the search space for our learn-
ing process as much as possible. To this end, we generate an initial policy by
running 100 matches with the only purpose of analyzing most probable posi-
tions and velocities of the ball, as well as opponents’ positions within the field
as introduced in Section 3.3.

In this case, we setup an experimental evaluation with the aim of studying
the influence of our policy initialization on the overall MCSDA approach. In the
setting shown in Fig. 5, the blue team deploys a robot learner featuring an ini-
tialized policy, while the red team deploys a learner with a non-initialized policy.
In this test, we let the two defenders train their policies for 300 iterations. After-
wards, we select the two different policy profiles in order to play a regular match.
Fig. 5 shows the normalized averaged reward of the two learners: orange for the
initialized policy, and purple for the not-initialized one. It is worth noticing that
– as expected – an initialized policy significantly improves the learning process.
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5 DISCUSSION AND FUTURE WORK

In this paper we presented MCSDA, an algorithm that strictly relates to re-
cently developed approaches for policy improvement. We used and evaluated
our method to generate better strategies for soccer defense in the RoboCup sce-
nario. The application of MCSDA on this context allowed our robots to increase
the number of ball interceptions, as well as to reduce the number of opponents’
goals. Together with a better performance, an overall more efficient positioning
of the defender player within the field has been achieved.

Contributions

The main contribution of this paper consists in the combination of data aggre-
gation together with Monte Carlo search. The use of Monte Carlo search results
in a practical algorithm, that allows a real-world implementation on a robot
domain. By relying on data aggregation, instead, MCSDA preserves the main
characteristics of algorithms like AggreVate and can be easily transformed to
an online method. Finally, we also show that using MCSDA with a simplified
representation of the domain a good policy improvement can be obtained on
complex and challenging robotic scenarios.

Limitations and Future Work

Our algorithm still presents some limitations. In fact, even if Monte Carlo sim-
ulations make MCSDA practical, it requires expensive calls to a simulator and,
hence, it has been applied to a single robot player. While simple simulators can
be used, neither the online application of the algorithm, nor its use on a larger
number of robots are straightforward. For this reason, as future work, we would
like to adapt and test our algorithm to learn policies online and consequently



apply the algorithm to the whole robot soccer team. Furthermore, we plan to
perform additional studies on the performance guarantees that MCSDA can
achieve.
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