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Abstract. Major rule updates for the RoboCup Standard Platform
League (SPL) in recent years pose significant perception challenges for
recognizing objects with similar color. Despite the frequent color changes
to goalpost, soccer ball and jerseys, the soccer field itself remains unaf-
fected, which makes green the only reliable color feature that can be
exploited. In this paper, we propose an efficient approach for adaptive
soccer field detection model utilizing NAO’s two-camera system. Building
upon real-time image histogram analysis between top and bottom cam-
era frames, the field color classifier is robust under inconsistent lighting
conditions, and can be further processed to generate field boundaries.
This approach could also be useful for other object detection modules
and robot’s self-localization.
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1 Introduction

The RoboCup soccer competition requires a robust and efficient perception sys-
tem which should achieve accurate object detection and self-localization in real
time. However, due to the constrained nature of the computation on mobile
robots, vision has to run fast enough to provide real-time information while
leaving processing resources available to other autonomy algorithms. Moreover,
variable lighting conditions, frequent object occlusion and noise makes the prob-
lem even more challenging.

Similar to many other teams in the league, our team, the UPennalizers[1],
used to handle this problem using a manually defined color look-up table[2].
This method is well suited and efficient for image segmentation when object has
its unique color. Since everything except the field has been changed to white,
color-based segmentation becomes less effective to distinguish between different
objects. Furthermore, we are interested in having the robot eventually play soccer
outside with humans under natural lighting. This motivates us to develop a
new robust perception framework because the pre-defined color table lacks the
robustness when illumination varies.
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As green becomes the only unique color cone we can leverage, wisely using
it to detect static field becomes an important first step in perception, because it
could provide contextual information for other objects. For example, performing
ball and line detection only on the field could not only reduce the search region,
but also yield to more accurate result. Similarly, goalpost detection could be
more precise if the algorithm uses the fact that posts grow vertically onward the
field boundary.

Using the field region to aid the detection of other objects is not a novel
task in RoboCup. However, most teams generate field boundary with the pre-
labeled green color. It is among our best interest to investigate real-time green
feature analysis so that it could adapt to lighting changes. Berlin United 2015[3]
estimated the field color as a cubic area in the YUV color space, based on the
assumption that both top and bottom images are mostly covered by the field.
HTWK 2014[4] detect field color through a peak detection in a 2D CbCr-Color-
Histogram together with a fast search and region growing approach. This is also
based on the same assumption which is not necessarily true all the time. To get
rid of this assumption, HTWK 2015[5] trained 300 different images from SPL
events to extract the field color.

The teams from other leagues were also working towards illumination invari-
ance techniques in RoboCup soccer. In the middle size league, Mayer et. al. [6]
suggested to use automated on-site vision calibration routines, along with im-
proved color constancy algorithms and additional visual features aside of color
to tackle the lighting variations. Sridharan [7] from the UT Austin Villa team
proposed a color constancy method on Sony Aibo robots by comparing the color
space distributions with the color cubes in the training samples using the KL-
divergence measure.

Fig. 1. Camera model for
Alderbaran NAO robots
[10]

Unlike the previous approaches, we present a sim-
ple yet efficient method in this work. This method
considers a stronger assumption and does not require
training images. As shown in Figure 1, the two-camera
system for NAO robot has its unique advantage allow-
ing each camera performs different task. For exam-
ple, as noticed in the previous games, the coverage of
the bottom camera is always within the field because
of the lower pitch angles; Therefore, we only need to
implement field detection in the top camera image.
This gives us the opportunity to pre-analyze the color
distribution of bottom camera frames to find out the
statistics information of green pixels and apply it to
the top image. Now the task can be simply achieved
by basic histogram smoothing, peak picking [8] and
back projection techniques [9].

To complete the field detection module in our new
perception framework, we then analyze the linear relations of the edge points
to generate the field boundary. The boundary will re-define the search area for
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the detection of each object in top image, and also serves as a landmark feature
in our particle filter to correct robot’s orientation in localization. The object
detection will still be performed in the whole bottom image. The detailed object
detection mechanism is not within the scope of this paper, but will be mostly
based on the edge and shape features of the non-green pixels on the field. The
overall of this framework is shown in Figure 2.

Fig. 2. Overview of the field detection module in perception framework

2 Field Color Detection

This section provides an overview of the field color detection method proposed
in the perception framework. The approach utilizes the prior analysis of the
color histogram of the robot foot area to segment the soccer field in top camera
image using histogram back projection technique. Since the histogram analysis
and projection is performed in real time, this method could adapt to the lighting
changes during the game.

2.1 Robot Foot Area Projection

In any soccer games, players should stay on the field if not being penalized.
Same rule also applies to robot soccer, meaning robot’s feet should always be
surrounded by the field, which is green carpet in this case. This provides a valid
assumption which makes the foot area as our region of interest:
Assumption: the majority color within robot’s foot area is green.

The correctness of this assumption depends on the definition of the foot
area. It holds true for most of the positions on the field; however, when robot
approaches to the field line, a large portion of white will also appear in the image,
as shown in the Figure 3 left. Assuming the resolution of the image Ibtm from
bottom camera is w × h, based on camera’s projective transformation[11], the
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width of line (around 5 cm) should not occupy more than 15%× h pixels. Here
the robot foot area ROI is defined in Ibtm as follows:

Ibtm(i,j) ∈ ROI, if 0.625h 6 i 6 h, and 0.125w 6 j 6 0.875w (1)

The equation basically chooses the bottom 37.5% region of the image from bot-
tom camera to be the foot area. This percentage is estimated by the logging data
of a mock game. Larger values may include more white components, mostly ball
and other robots’ feet, while smaller foot area may be completely occupied by
field lines, both risk holding against the assumption.

In addition, robot’s head angle is constantly changing in order to keep track
of the ball during the game. The defined ROI in the image may be projected
to the ball, robot’s own feet and jersey when kicking the ball (Figure 3 middle),
or robot’s shoulder when head yaw value increases. Therefore, to complete the
definition of foot area, the ROI will be discarded if when head pitch θ < −24.6◦

or head yaw |ψ| > 65◦ in the corresponding frame. All the other cases are safe
since robot will adjust its head angles to align the ball in the center of the image
Ibtm when the ball is getting close, so that the ball will not appear in the defined
foot area if θ > −24.6◦.

Fig. 3. Left: the field of view of bottom camera when θ = 0, ψ = 0; and the defined
foot area ROI in Ibtm. Middle: when θ = −24.6◦, ROI need to be discarded since field
green may not be the majority color. Right: when |ψ| = 65◦, ROI need to be discarded
since robot’s shoulder occupies the most of the region.

2.2 Histogram Analysis

The green color of the soccer field may ideally have unique distribution over the
G channel of the RGB color space. However, the field itself may not be lit evenly,
for instance if lit by different spotlights or natural lighting, it could cause incon-
sistent apparent green across the field. Therefore, using an illumination invariant
color space is important in order to eliminate the effect of varying green inten-
sities. Here the RGB color space is transformed into normalized chromaticity
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coordinates, such that g chromaticity is:

g =
G

R+G+B
(2)

The 1D histogram of the g chromaticity space will be used to extract the field
feature from robot foot area ROI. Specifically, g can be quantized into n bins
and the histogram bin set can be expressed as Bin = [1, 2, ..., n]. Each bin has a
number of hb pixels, where b ∈ Bin.

If the assumption that the majority color in the ROI is green stays true, the
histogram should have a peak value hb,max which indicates that bin b consists
of most pixels of field green. In order to further solidify the assumption, the
histograms of five previous ROIs are combined. The values for the same bin can
be simply added together. This essentially extends the ROI over the frames to
minimize the non-green pixel distribution.

Note that five previous ROIs are not equivalent to five previous frames, since
some frames might not pass the head angle check to have the valid ROI. Also,
the images of ROIs for the previous frames will not be stored; instead, only the
histograms of valid ROIs will be saved in a queue of size 5 for future processing.
In this way, the algorithm can still run in a fast and efficient manner.

The histogram normalization is then performed on the new combined his-
togram Hb. This will obtain the probability that a pixel’s g value is in bin b,
given it is a pixel in the extended ROI. This distribution can be abbreviated as
Pb:

Pb =
Hb∑n
1 Hb

(3)

The bottom left histogram in Figure 4 shows this probability distribution. Here
n is set to be 32 in order to simplify the model. However, this histogram needs
to be further processed to be representative for the whole field. First, a high pass
filter, shown as the horizontal yellow line, is used to filter out the bins with low
probability. The bins are discarded if the value is less than 30% of the peak value.
The vertical yellow line is to remove the local maxima in the distribution. Based
on the results of the proposed histogram model, the bins represent green pixels
should be consecutive and the distribution of their values should be unimodal
for global maxima, any local maxima is most likely to be another color.

Pb = 0 if Pb < 0.3Pb,max (4)

Pb = 0 if Pb 6= Pb,max and Pb−1 < Pb, Pb+1 < Pb (5)

After post-processing with filtering and thresholding techniques, the new
histogram P̄b with fewer bins (Figure 4 bottom middle) becomes a valid model
to represent field feature, since it should only contain the pixel information of
field green.
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Fig. 4. Top: five consecutive valid ROIs in queue. Bottom Left: combined histogram
for each ROI on top, further thresholding and filtering by yellow lines. Bottom Middle:
histogram model for field feature. Bottom right: green classification on Itop.

2.3 Green Classification

The histogram model P̄b will then be used to find the green pixels in the im-
age Itop from top camera. Same quantization technique for the color space is
performed. Essentially, a 32 bin 1D histogram of the g chromaticity space is
calculated on Itop.

Here, a fast and efficient binary green classifier is more desired then the
probabilistic green model, so the back projection process can be simplified. For
all the non-zero bin b in P̄b, the pixels on Itop which are also in bin b are green.
Bottom right plot in Figure 4 masked the pixels classified as green on Itop. It is
acceptable that the classification result is not completely precise, as long as it
does not affect the formation of the field boundary.

Note that in this task, the parameters of both cameras need to be set the
same so that the green pixels of two images could generally match. Although
occasionally there were small inconsistencies between the cameras, but those
slight differences did not affect the classification results in the experiments we
performed.

As shown in Figure 5, this field color detector approach is robust under incon-
sistent lighting conditions between multiple images. We also tested the algorithm
under the natural light, and since the normalized g chromaticity channel is illu-
mination invariant, the pixel values for green carpet under shadow and sunshine
are similar; therefore, the method still works fairly well as shown in Figure 6.

2.4 Experiments & Results

For the purpose of evaluating the perception rate and quality, different log files
were recorded. Each log files contain 100 frames and was created when the ba-
sic robot behavior was performed in our lab environment. In order to simulate
different lighting conditions, two different scenarios created, as seen in Figure 5
(left). For comparison, the same set of log files was also evaluated upon other
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Fig. 5. When lighting changes during the game (top and bottom left), the peak value
for histogram has a one-bin shift (top and bottom middle), and the green classification
results are as expected (top and bottom right).

Fig. 6. The top and bottom scenes show that this field color detection approach works
with inconsistant lighting conditions within the field, specifically under natural lighting
which could cast shadows.
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two methods: using the G channel in RGB (unnormalized G) as color space; and
our traditional color look-up table method using Gaussian Mixture Model for
color segmentation. The camera parameters and configuration of robot are set
the same during the comparison.

One visualization example of those three methods can be seen in Figure 7.
It shows the green classification results for each method under two lighting con-
ditions. Since green is classified in real time from the true green color around
robot’s foot area, both our proposed method (left) and the method using unnor-
malized G channel (middle) provide consistent results in various illuminations;
however, without using g chromaticity space, the classification cannot handle
the inconsistent light within the field as well as the greenish background.

Fig. 7. The comparison of green classification results for three different methods on
Itop , evaluated upon both dark (top) and bright (bottom) scene.

The traditional colortable-based method works well if the lighting condition
does not change after the color was manually labeled (Figure 7 top right). Given
static nature of pre-defined color-table, it cannot work when lighting changed
(bottom right). In that condition, Our method significantly out-performs the
colortable based techniques.

The quantitative results are summarized in Table 1. The true positive rate
is calculated from the percentage of correctly classified green pixels in the total
green pixels for all the logging data, while the false positive rate is the percentage
of incorrectly classified green pixels in total non-green pixels. Note that the log
images were down-sampled to simplify the process of manually selecting and
labeling the green area to obtain the ground truth. The results clearly show
the necessity of normalizing G channel in color space, and the advantage of our
proposed method over the color-table method.

3 Field Boundary Detection

Knowing the field boundaries helps robot limiting the search region for the ob-
jects of interest, which lead to improved detection speed and accuracy. The field
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Perception Rate Proposed method Unnormalized G Color- table

True Positive Rate 87.6% 68.1% 70.4%

False Positive Rate 1.4% 27.2% 7.5%
Table 1. Field color detection rate of the proposed method compared to other two
approaches.

boundary detection algorithm utilizes the field color classifier from the previous
section to analyze the vertical scanlines and search linear relation of the green to
non-green class transitions. HTWK [4] used RANSAC [13] algorithm to match
the model of two straight lines, while B-Human 2013 [12] estimated the bound-
ary by successively calculating the convex hull [14]. Our method here is a hybrid
model which combines the advantages of both techniques.

3.1 Field Boundary Points

Fig. 8. Left: horizon line on the binary green clas-
sifier . Right: selected field boundary points on top
camera image.

The first step of field bound-
ary detection is to search for
the possible points on the
field edge. Since the valid field
boundary points should al-
ways be below robot’s hori-
zon, we calculate the hori-
zon line through robot’s head
angle transformation and top
camera’s projection. A top-
down approach from the hori-
zon to the bottom of the im-
age is then adopted to build
a score Si,j for each pixel i
on the corresponding vertical
scanline j . The policy is as
follows: the score is initialized to 0 on the horizon line. A reward is added to
Si−1,j for each Si,j . If the Pixeli,j is classified as green, reward is set to be 1;
otherwise reward is -1. Since the scan is downwards from non-field region to field,
the pixel where the score is the lowest is then selected as the boundary point on
that scanline.

The algorithm continues to perform on the next vertical scanline in the top
camera image. Figure 8 left shows the horizon line on the binary green classifier.
The selected field boundary points are marked as yellow spots in Figure 8 right.

3.2 Convex Hull Filtering

In most cases, the field boundary points extracted from minimum score do not
show clear linear relations. There are lots of false positive spots either due to
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the inaccuracy of green classification; or the objects on the field such as robots
and ball which occlude part of the boundary. Those points need to be filtered
out for further processing.

A filtering technique utilizing convex hull is performed on the raw field bound-
ary points. Since most of the false boundary points are from the objects on the
field, which are below the actual boundary, we calculate the upper convex hull
from the raw boundary point set. For points not on the upper hull, associate
them with upper hull edge formed by their 2-nearest neighbor vertices. The point
far away from its corresponding edge is then removed. Figure 9 left shows the
upper hull of the raw points; figure 9 middle shows the filtered boundary points.

3.3 RANSAC Line Fitting

In order to represent boundary points as boundary lines, a variant of RANSAC
algorithm is implemented to fit the best line first. The algorithm randomly
chooses two points in the filtered boundary points to form a line and check
the distance between all the points and that line. If the distance is below a
certain threshold, the corresponding point can be considered as an inlier. This
process runs iteratively to maximize the number of inliers and find the best fit
line to be a field boundary.

Fig. 9. Field boundary detection for both single boundary line case (top) and two lines
case(bottom). The detection follows the sequence of building upper convex hull (left),
filtering raw boundary points (middle) and line fitting using RANSAC (right).

The boundary points are not fitted by the first line might either because
of noise, or the existence of a second boundary line. Therefore, the decision
needs to be made carefully whether the second round of line fitting should be
performed. If the percentage of the points left is above certain threshold, and
nearly all of those points are distributed on the same side of the point set used
to fit the first line, they are less likely to be just noise. A second round of
RANSAC with smaller distance threshold is then performed on those points to
match a secondary boundary line. The final step is to remove the lines above
the intersection of two boundary lines to form a concrete field boundary. Figure
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9 right shows the accurate line fitting for both single and two field boundary
line(s).

4 Localization

The field boundary could be added as another vision-based landmark feature for
robot’s self-localization. As proposed from Schulz and Behnke [15], the approach
utilizing the structure of field boundary and lines could be quite useful in robot’s
self-localization.

Currently, our localization algorithm[1] utilizes 200 particles to estimate the
position state of the robot. A particle filter is implemented to track the con-
tinuous changes on the position, orientation and weight of each particle. Field
boundary information can be included in the measurement update phase to ad-
just the particle state. Since the boundaries can be detected from far away, the
position calculation may have large variance; therefore, field boundary detec-
tion will only correct particles’ orientations and weights. If two boundaries can
be detected, there are only four hypothesis of robot’s orientation. If only one
boundary can be seen and robot cannot see goal post at the same time, it is
fair to assume that robot is facing the sideline. Combining with the body yaw
value in the motion update phase, field boundaries can be extremely useful in
determining robot’s orientation. Figure 10 shows how field boundaries correctly
update the particles’ orientations.

Fig. 10. Field boundary detection (top) and the corresponding positions and orienta-
tions of the particles (bottom). Using two boundary lines in the measurement update,
and robot’s body yaw in the motion update, particle filter tracks robot’s direction (Left
and Middle). Single boundary line could also serve as an additional landmark feature
besides goal post to achieve more accurate localization (right).

5 Conclusion

We have presented an efficient approach for soccer field detection. Unlike other
approaches that assume green is the majority color in both top and bottom im-
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ages, we decrease the assumption region to robot’s foot area, and utilizing head
angles and previous frames to enhance the appearance of the green pixels. We an-
alyze the histogram of g chromaticity space to find the threshold for top camera
green classification. The binary field color classifier is then used to generate the
field boundary using convex hull filtering and RANSAC line-fitting algorithms.
We also briefly described how field boundary could help robot’s self-localization.

The results indicate that our approach works adaptively on the field under
variable lighting conditions and dynamic environment. Although it has been
tested in our lab, we expect to fully examine the new perception framework
built upon this field detection approach in real game scenario in RoboCup U.S
Open 2016, and have the new system ready for the outdoor games in RoboCup
2016.
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