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Abstract. As soccer in the RoboCup Middle Size League (MSL) starts
resembling human soccer more and more, the time the ball is airborne
increases. Robots equipped with a single catadioptric vision system will
generally not be able to accurately observe depth due to limited reso-
lution. Most teams, therefore, resort to projecting the ball on the field.
Within the MSL several methods have already been explored to deter-
mine the 3D ball position, e.g., adding a high-resolution perspective cam-
era or adding a Kinect sensor. This paper presents a new method which
combines the omnivision camera data from multiple robots through tri-
angulation. Three main challenges have been identified in designing this
method: Inaccurate projections, Communication delay and Limited amount
of data. An algorithm, considering these main challenges, has been im-
plemented and tested. Performance tests with a non-moving ball (static
situation) and two robots show an accuracy of 0.13 m for airborne balls.
A dynamic test shows that a ball kicked by a robot could be tracked from
the moment of the kick, if enough measurements have been received from
two peer robots before the ball exceeds the height of the robots.

1 Introduction

The Robot Soccer World Cup (RoboCup) Federation is an international orga-
nization which focuses on the promotion of robotics and Artificial Intelligence
(AI) research, by offering a publicly appealing challenge: build robots that play
soccer3. In the Soccer Middle Size League (MSL), robots of no more than 50 cm
in diameter and 80 cm in height, play soccer in teams of five. At the moment of
writing, 26 teams from all over the world compete in this league.

During a game of soccer, the position and velocity of the ball are of great
importance. To detect the position of the ball, most teams have equipped their
robots with a catadioptric vision system, which also serves a number of other
purposes. Although this is not prescribed by the league, it has been widely
adopted because of its price versus value as sensor. As soccer in the MSL starts
resembling human soccer more and more, the time the ball is airborne increases.

3 RoboCup Homepage: http://www.robocup.org/
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Robots equipped with only a catadioptric vision system have a single camera,
hence they will, generally, not be able to accurately observe depth due to limited
resolution. Most teams, therefore, resort to projecting the ball on the field.

Fig. 1 shows that projecting the ball (xb, yb, zb) on the field leads to a false
projection. The ball will be detected in position (xp, yp), where xp 6= xb and
yp 6= yb when the ball is airborne. The positioning of the robot will benefit when
the correct ball position (xb, yb), instead of the false projection is being used.
With the height of the ball (zb) it is possible to calculate where the ball bounces,
at these locations the ball could be intercepted after a lob pass.

Fig. 1: A MSL robot detecting an airborne ball (xb, yb, zb), creating a false pro-
jection (xp, yp).

This paper presents the design, implementation and testing of a new algo-
rithm based on cooperative sensing and triangulation. Section 2 presents related
research in the area of cooperative sensing and distributed sensor fusion. Sec-
tion 3 presents the main challenges faced during the design and implementation
of a multi-robot triangulation algorithm. Section 4 follows up on that by pre-
senting the general structure of the algorithm. In this section special attention
will be paid to how the previously defined challenges have been considered. Sec-
tion 5 presents the results obtained during tests with the algorithm, results with
a non-moving (static) and moving (dynamic) ball are presented. Section 6 con-
cludes this paper with concluding remarks and recommendations for future work
in this area.

2 Related Work

The topic of multi-robot tracking is one studied in many different applications
and different communities as presented by [4]. To structure this broad field, [4]
presents a unifying taxonomy to classify the various missions related to the topic.
This paper presents a Target Localization-application. The application discussed



here is characterized by (mostly) homogeneous teams of robots.4 Target local-
ization is also possible with heterogeneous teams as shown in [2].

An application using multiple sensors is presented in [7]. The part of the
research presented in [7] focusing on stereo vision with catadioptric cameras is
similar to the method presented here; triangulation. In this research the sensors
are not connected to the same platform (robot), this fact makes the implementa-
tion of the triangulation algorithm more difficult because of data communication
delay. This also shows from the research in [8], which researches cooperative map
building in the context of autonomous vehicles. The vehicles are communicating
via an IEEE 802.11n wireless interface, the data communication delay is taken
into consideration by calculating and applying the coordinate offset. Although
this method provides a solution in the context of autonomous vehicles, its results
will deteriorate in an environment as dynamic as the MSL.

Within the MSL itself a substantial amount of research has been performed
in the field of 3D ball detection and tracking. In [9] a solution is presented where
aerial balls are detected using a front-facing perspective camera, the distance
from the camera to the ball along the focal axis is calculated using the number
of pixels occupied by the ball in the image. In [11] the robot is equipped with an
additional front facing perspective camera, the measurement is combined with
omnivision using triangulation. Instead of adding a perspective camera to the
robot, [3] and [6] present a method using an additional Kinect sensor5. This
paper presents a method in which no additional sensors have to be added and
which is compatible with the ”league standard” omnivision system.

3 Main Challenges

Before the design of the triangulation algorithm, a set of main challenges has been
identified. Basically, the triangulation algorithm calculates the intersection of two
lines, defined by the position of the robot (and its height) and the projection of
the respective robot. The main challenges presented in this section, hinder the
implementation of this ’simple’ algorithm. The main challenges are: Inaccurate
projections, Communication delay and Limited amount of data. In this section
each challenge will be treated separately, elaborating on where it originates from
and how it affects the triangulation of omnivision camera data.

3.1 Inaccurate Projections

The vision software is responsible for detecting the ball in the image captured
by the camera in the catadioptric vision system. The exact structure of this

4 some teams have equipped the goalkeeper with different or additional sensors. [1]
5 Kinect: https://dev.windows.com/en-us/kinect



software differs between teams, but frequently the main structure is compara-
ble. The image captured is segmented based on colors, and from this blobs are
identified. The blobs are ranked according to the probability of the blob being
the ball, based on: the color of the ball, its size and shape. The position of the
center of the blob in the image captured, is communicated to the rest of the
system as the projection [10]. The projection might be inaccurate because of the
limited resolution of the catadioptric vision system or because of motion blur e.g.

The ’simple’ algorithm presented at the start of this section, could rely on
the calculation of the intersection of two lines. But due to the inaccuracies in
projection, or in the localization of the robot, the lines of sight might not have an
intersection. An algorithm searching for the intersection of the lines will therefore
not suffice in this context.

3.2 Communication Delay

To be able to triangulate lines of sight, a robot requires the position and pro-
jection of at least one other robot, which means that the robots have to com-
municate information. Sharing information between robots induces additional
delay on the information. To communicate, several teams in the MSL use the
Real-time Data Base (RTDB) [5], where robots communicate via a distributed
shared memory and an adaptive TDMA protocol for wireless communication.

If the effects of this additional delay would not be considered in the triangula-
tion algorithm, lines of sight from different time instants might be triangulated.
During a MSL game the ball can reach speeds of up to 11 m/s, with a com-
munication delay of 20 ms, triangulating a different time instant introduces an
error of 0.22 m into the triangulation algorithm. The effect of this error on the
triangulated ball, depends on the positions of the robots relative to the ball and
the height of the ball.

3.3 Limited Amount of Data

Aside from the delay on the data received from peers, the data from peers might
also not be available at every time instant. If a peer, is not able to detect the
ball because it is outside the field of view or the line of sight of the peer is ob-
structed by another robot, the ball is not detected by the peer and therefore not
communicated. Secondly, the robot-robot communication will often not run at
the same frequency as the acquisition of images by the vision system.

The combination of the two factors above might lead to time instants where
no information or information from only one robot is available. It is desirable
that the triangulation algorithm provides an output also at these time instants.



4 Triangulation Algorithm

In this section we propose a new triangulation algorithm, the emphasis here will
be on how the main challenges, presented in the previous section, are considered
in the design of the algorithm.

Fig. 2 shows an example of a state of the triangulation algorithm. In this
example, the current time is tn and the algorithm represented executes on Robot
1. Robot 1 therefore has all position and projection information (represented by
the circles) from itself, up to tn. The information from the two other robots
still has to arrive. Because of the communication delay, the data from Robot 2 is
available up to tn−3 and data from Robot 3 is available up to tn−2. The proposed
algorithm triangulates the most recent time instant where information from the
most robots is available; in this case tn−4. The algorithm applies triangulation
to pairs of lines of sight. If more than two lines of sight are available (in the
case of tn−4) the lines of sight are triangulated pairwise, the results of these
pairwise triangulations are combined by averaging. Pairwise triangulation has
been chosen because the method for finding the minimum distance between two
lines is one which is relatively easy and therefore more suitable to be implemented
in a real-time system, compared to the method used for triangulating n lines.
After triangulation, the 3D ball position is filtered by means of a Kalman filter.
This results in a filtered 3D ball state at tn−4. The state at tn−4, in combination
with the ball model, is used to determine the 3D ball state at tn.

Ball

Robot 3

Robot 2

Robot 1

Triangulation
+

Kalman filter

Fig. 2: An example of a state of the triangulation algorithm, used by three robots.
The circles in the rows denoted by ”Robot” represent communicated data, circles
in the row denoted by ”Ball” denote data regarding the state of the ball.



(a) (b)

Fig. 3: Graphical representation of a minimum distance algorithm applied to: (a)
two lines of sight (b) a line of sight and the predicted position of the Kalman
filter.

4.1 Inaccurate Projections

Due to inaccuracies in the projections, the lines of sight of the robots might not
cross. Therefore, a minimum distance algorithm is in place. Fig. 3(a) graphically

represents the minimum distance algorithm. The lines
−−−→
RxPx and

−−−→
RyPy represent,

respectively, the lines of sight of robot x and y. To find the minimum distance
−−→nmd, the line −→n between two arbitrary points, one on each line, is parameterized

−→n = −→n0 +
−−−→
RxPxs1 −

−−−→
RyPys2. (1)

the minimum distance line −−→nmd is perpendicular to both lines of sight, hence{−→n · −−−→RxPx = 0
−→n ·
−−−→
RyPy = 0

. (2)

Solving this system of equations yields a closed-form solution for the parameters
s1 and s2, which are used to describe the intersection points Ix and Iy. The 3D
ball position communicated to the rest of the system is in between Ix and Iy.
This latter average can be replaced by a weighted average based on the length

of e.g.
−−−→
RxPx. The larger the distance between the robot and projection, the less

accurate it will be.

4.2 Communication Delay

Due to the communication delay in the robot-robot communication, the arrival
of information from peers is delayed. The proposed triangulation algorithm con-
siders this effect by storing the information from the robots in a data buffer. The



data buffer is graphically represented in the top of Fig. 2.

Triangulation on data from time instants in the past requires the storage of
this information. The data buffer stores the information from the peer robots
and the robot itself in this buffer, quantized to time instants defined by the
execution times of the robot.

4.3 Limited Amount of Data

The data buffer could contain: no information or information from only a single
robot. To find the 3D ball position, the ’simple’ algorithm would require at least
two lines of sight at a certain time instant.

In case no information from the robot itself and from its peers is available, the
algorithm applies the model to the previous state to estimate the ball position
at the current time instant. If the ball experiences disturbances: e.g. bouncing
off other robots or being kicked by another robot this method will show serious
deviations as these disturbances are not modeled.

In case only one robot detects the ball, it is not possible to obtain a 3D
ball position using the ’simple’ algorithm presented previously. It is, however,
desirable to include the new information in the derivation of the 3D ball position
at the current time instant. The algorithm therefore implements a minimum
distance algorithm similar to that presented before, see Fig. 3(b). In the case
of only one line of sight, the minimum distance −−→nmd between the line of sight−−−→
RxPx and the predicted position of the Kalman filter B for that particular time
instant will be determined. −−→nmd is in that case defined as

−−→nmd = min
s

√−→n · −→n = min
s

−→n · −→n . (3)

Equating
d(−→n ·−→n )

ds to zero yields the value of s which parameterizes line −−→nmd. The
3D ball position communicated to the rest of the system is in between Ix and
B. This latter average can be replaced by a weighted average based on e.g. the

length of
−−−→
RxPx. Note that this method assumes that the predicted position of

the Kalman filter B is an accurate representation for the ball position, so the
ball should not be affected by disturbances during the time, the prediction is
made over.

5 Results

In this section a performance analysis of the algorithm will be presented, it con-
sists out of two tests: static and dynamic. This section is structured accordingly.



5.1 Static Test

To validate the implementation of the algorithm and to quantify the accuracy
of the algorithm in a static environment, a set of static tests is defined. The ball
is positioned on 5 predefined (x, y) positions6 which make up set P:

P = {(0, 6.05), (0, 3.03), (0, 1.94), (1.5, 3.03), (−1.5, 3.03)} . (4)

For each position in P, two different heights are used: the ball was placed on the
field z = 0.11 m, and on a green box7 z = 0.42 m. For each of the ball position
(x, y, z), 200 measurements are logged and the mean error and standard devia-
tions in the 200 measurements are determined. A photo during execution of P3

with z = 0.42 m, is presented in Fig. 4.

For each of the ball positions (x, y, z) the mean error and standard deviation
within the measurement set is determined, the results are shown in Table 1.
These results are also compiled into Fig. 5. In this figure the robot positions are
denoted by a ×. The mean detected position is shown by the red and yellow
dots, for each of the (ground truth) positions on the field; represented by the
black dots. For the figure the detected ball positions have been quantized to two
values of z: z = 0.11 m and z = 0.42 m, presented in different plots.

The analysis of the mean error table, shows that the mean error when the ball
is lifted (z = 0.42 m) is always higher than when it is on the field (z = 0.11 m).
The increase in (mean) error was probably caused by the less accurate detection
of the ball. The ball will appear closer to the edge of the omnivision image, where
the pixel density is less. The inaccuracy caused by the latter, combined with the
other sources of inaccuracies mentioned in subsection 3.1 is also enlarged as the
distance over which the ball is projected increases.

Evaluating the performance of the triangulation algorithm in the static situ-
ation shows a mean error of 0.13 m when the ball is airborne and 0.08 m when
it is on the field. The standard deviation on the measurements is always lower
than 2 cm. This performance is considered to be satisfactory for use in the MSL.

5.2 Dynamic Test

To see if the triangulation algorithm is suitable for real-time 3D ball positioning
by robots in the MSL, the algorithm has to be tested under dynamic game situ-
ations. The kick from a soccer robot has been selected as a dynamic event. The
challenge that comes with tracking a kick, is the ball leaving the detectable space

6 with respect to frame presented in: http://wiki.robocup.org/images/1/1a/MSL_
WMDataStruct.pdf

7 a green box has been selected, to ensure that the actual detection of the ball by the
vision module, is not affected by the presence of the box.



Fig. 4: Photo taken during the execution of P3 with z = 0.42 m, from the static
tests.
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Fig. 5: Graphical representation of the results of the static test. The positions
in (ground truth) set P are represented by black dots. The mean detected po-
sitions are represented by the red and yellow dots; corresponding to the robot,
represented by the respective colored cross.

of the robots; the ball is not being detected when it exceeds the robot height.
This means that before the ball leaves the detectable space of the robot, the
triangulation algorithm has to have received enough measurements from peer-
robots for its Kalman filter to have estimated the state accurately enough. If the
state is estimated accurately, the point where it reenters the observable space
can be calculated with decent accuracy. This subsection provides an analytic
analysis of the dynamic tests. A photo of the setup is presented in Fig. 6.



Table 1: The mean error (µ) and standard deviation (σ) for both robots in the
static test. ↑ represents z = 0.42 m and ↓ represents z = 0.11 m. The averages
for all position are presented in the last row, denoted by E.

Robot 1 Robot 2

µ [m] σ [cm] µ [m] σ [cm]

P1

↑ 0.159 0.45 0.159 0.43

↓ 0.117 0.51 0.106 0.55

P2

↑ 0.083 0.52 0.091 0.70

↓ 0.076 0.92 0.067 0.84

P3

↑ 0.208 0.34 0.205 0.32

↓ 0.142 0.36 0.138 1.01

P4

↑ 0.087 1.96 0.065 0.57

↓ 0.073 1.38 0.023 1.32

P5

↑ 0.139 1.02 0.090 1.17

↓ 0.070 1.96 0.034 0.89

E
↑ 0.135 0.75 0.121 0.64

↓ 0.095 1.03 0.074 0.92

The detected 3D ball positions from the robots without the ball (see Fig. 6)
are presented in Fig. 7. The points in the figure represent the (filtered) trian-
gulated balls, by the respective robots. The points are connected by lines to
emphasize the sequence of points. Fig. 7 shows that 8 samples are obtained from
the moment the ball is kicked to the moment the ball leaves the observable space.
The robots are positioned (x, y) at (0, 2), (0, 4) and (−2, 3)8, where the latter
robot is going to kick the ball.

The initial state estimate x0 represents a ball lying at the midpoint of the
field. At the start of the experiment the Kalman filter is given some time to
converge to the state presented in Fig. 6. These tests have been executed with
a scalar matrix Q = 1 · I, R = 0.1 · I and P0 = 1 · I. These matrices are used
as tuning parameters for the Kalman filter, the results presented in Fig. 7 have
been achieved after a rough tuning. The tuning of the Kalman filter in this case
allows the Kalman filter to quickly converge to the actual ball trajectory after
the kicking event, which was not included in the model. This, however, makes the

8 with respect to frame presented in: http://wiki.robocup.org/images/1/1a/MSL_
WMDataStruct.pdf



estimation of the Kalman filter more susceptible to measurement inaccuracies,
which can clearly be seen from the inaccuracies in the triangulated ball output.

Fig. 6: Photo of the setup of the dynamic test.
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Fig. 7: The results of the dynamic test, where the ball trajectory, as detected by
two robots (blue for the robot at (0, 4) and orange for the robot at (0, 2)), is
presented. The colored dots represent the detections of the ball.

6 Conclusion and Future Work

This paper presents a method for 3D ball positioning in which no additional
sensors have to be added and which is compatible with the ”league standard”



omnivision system. The algorithm was implemented on the robots of both team
CAMBADA and team Tech United. Static tests show that the error increases
when the ball is airborne. An increase of ≈ 4 cm is observed if the ball is at
a height of 0.42 cm compared to the situation where the ball is on the field.
Dynamic tests show that it is difficult to track a kick from a robot. The Kalman
filter has to react on the kick of the robot within samples, but it should not be
susceptible to measurement inaccuracies.

The implementation on both teams is now directed towards testing. Before
it is suitable for competition, the algorithm has to be integrated in the software
more closely. For example: the projection of the ball can appear outside the field,
both teams ignore the projection in this case. Tech United also employs Kinect
sensors for ball detection, sensor fusion is therefore a point of attention as well.
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