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Abstract. This paper proposes an architecture designed to create a proper cou-
pling between perception and manipulation for assistive robots. This is necessary
for assistive robots, not only to perform manipulation tasks in reasonable amounts
of time, but also to robustly adapt to new environments by handling new objects.
In particular, this architecture provides automatic perception capabilities that will
allow robots to, (i) incrementally learn object categories from the set of accu-
mulated experiences and (ii) infer how to grasp household objects in different
situations. To examine the performance of the proposed architecture, quantita-
tive and qualitative evaluations have been carried out. Experimental results show
that the proposed system is able to interact with human users, learn new object
categories over time, as well as perform object grasping tasks.
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1 Introduction
Assistive robots are extremely useful because they can help elderly adults or people
with motor impairments to achieve independence in everyday tasks [3] Elderly, injured,
and disabled people have consistently put a high priority on object manipulation [6].
On the one hand, a robot capable of performing object manipulation tasks in domestic
environments would be worthwhile. On the other hand, this type of end-users expect
robots to improve the task performance and to robustly adapt to new environments by
handling new objects. In other words, it is not feasible to assume one can pre-program
everything for assistive robots. Instead, robots should infer and learn autonomously
from experiences, including feedback from human teachers. In order to incrementally
adapt to new environments, an autonomous assistive robot must have the abilities to
process visual information, infer grasp points and learn and recognize object categories
in a concurrent and interleaved fashion.

However, several state of the art assistive robots employ traditional object grasping
and object category learning /recognition approaches, often resorting to complete geo-
metric models of the objects [9] [16]. These traditional approaches are often designed
for static environments in which it is viable to separate the training (off-line) and testing
(on-line) phases. Besides, the knowledge of this kind of robots is static, in the sense that
the representation of the known categories does not change after the training stage.

In this paper, a framework for assistive robots is presented which provides a tight
coupling between object perception and manipulation. The approach is designed to be
used by an assistive robot working in a domestic environment similar to the RoboCup
@Home league environment. This work focuses on grasping and recognizing table-
top objects. In particular, we present an adaptive object recognition system based on
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environment exploration and Bayesian learning. Moreover, the robot should manipulate
detected objects while working in the environment.

The contributions presented here are the following: (i) an integrated framework for
assistive robots that incorporates capabilities for object perception, learning and ma-
nipulation. (ii) unsupervised object exploration for constructing a dictionary of visual
words for object representation using the Bag-of-Words model; (iii) open-ended learn-
ing of object category models from experiences; (iv) a data driven grasp pose detection
approach for household objects including flat ones.

2 Related Work
Over the past decade, several researches have been conducted to develop assistive robots
for motor impairments or elderly people that enable them to stay active and less depen-
dent on others [3]. Jain et al. [6] presented an assistive mobile manipulator, EL-E, that
can autonomously pick objects from a flat surface and deliver them to the user. Unlike
our approach, the user provides a 3D location of the target object to the robot by point-
ing on the object with a laser pointer. In another work, a busboy assistive robot has been
developed by Srinivasa et al. [14]. This work is similar to ours in that it integrates object
perception and grasping for pick and place objects. However there are some differences.
Their vision system is designed for detecting mugs only, while our perception system
not only tracks the pose of different objects but also recognizes their categories.

Robotic grasping approaches are usually organized in three groups according to
the knowledge available about objects: objects can unknown, known or familiar [1].
Grasping approaches for known objects typically use complete geometry of objects to
improve grasp quality [1]. However, in real scenarios the complete knowledge about
geometry and other properties of objects are not known in advance (objects are initially
unknown). Thus, grasping approaches for unknown objects are needed. Hsiao et. al,
[5] proposed a data driven algorithm that searches among feasible top and side grasp
candidates for unknown objects based on their partial view. Its advantage is that no
supervised learning is required. In a similar approach [15] shows, a service robot is
capable of grasping different household objects at the RoboCup @Home competition.
However, unlike our approach, these grasp approaches are not able to grasp flat objects
e.g., plates. Another goal in the field of assistive and service robots is to achieve inter-
active object category learning and recognition. Martinez et al. [11] described a fast and
scalable perception system for object recognition and pose estimation.

In most of the proposed systems described above, training and testing are separate
processes, which do not occur simultaneously. There are some approaches which sup-
port incremental learning of object categories. Kasaei et. al [7] and Oliveira et. al [13]
approached the problem of object experience gathering and category learning with a
focus on open-ended learning and human-robot interaction. They used instance-based
learning approach to describe object categories whereas we employ a model based ap-
proach in which a Naive Bayes learning method is used.

3 Overall System Architecture
The overall system architecture is depicted in figure 1. It is a reusable framework and
all modules were developed over Robot Operating System (ROS). The current architec-
ture is an evolution of the architecture developed in previous work for object perception
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and open-ended perceptual learning [7] [13]. The architecture consists of two mem-
ory systems, namely the Working Memory and the Perceptual Memory. Both memory
systems have been implemented as a lightweight NoSQL database namely LevelDB de-
veloped by Google. Working Memory is used for temporarily storing and manipulating
information and communications of all modules. A visual words dictionary, object rep-
resentation data and object category knowledge are stored into the Perceptual Memory.
The goal of the Grasp Selection is to extract a grasp pose (i.e. a gripper pose relative
to the object) using the presented grasp approach (section 7).The Execution Manager
module receives the action and dispatches it to the robot platform as well as records
success or failure information into the Working Memory.

The proposed architecture includes two perceptual learning components. The first
component is concerned with building a visual words dictionary for object representa-
tion. The dictionary plays a prominent role because will be used for learning as well
as recognition. The second component focuses on interactive object category learning
and recognition. After constructing the dictionary, when the robot captures a scene, the
first step is preprocessing, which employs three filtering procedures for removing un-
necessary data. The Object Detection module is responsible for detecting objects in the
scene. It creates a new perception pipeline for every detected object. Each pipeline in-
cludes Object Tracking, Object Representation and Object Recognition modules. The
Object Tracking module estimates the current pose of the object based on a particle
filter, which uses shape as well as color data [12]. The Object Representation module
describes objects as histograms of visual words and stores them into the Perceptual
Memory. A user can provide category labels for these objects via the User Interaction
module [10]. Whenever the instructor provides a category label for an object, the Object
Conceptualizer improves or creates a new object category model. In recognition situa-
tions, a probabilistic classification rule is used to assign a category label to the detected
object. In the following sections, the characteristics of the object perception, learning
and grasping modules are explained in detail.

4 Dictionary Construction
Comparing 3D objects by their local features would be computationally expensive. To
address this problem, an approach for object representation is adopted in which objects
are described by histograms of local shape features, as defined in Bag-of-Words models.
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A Bag-of-Words model requires a dictionary of visual words. Usually, the dictionary is
created via off-line clustering of training data, while in open-ended learning, there is
no predefined set of training data available at the beginning of the learning process. To
cope with this limitation, we propose that the robot freely explores several scenes and
collects several object experiences. In general, object exploration is a challenging task
because of the dynamic nature of the world and ill-definition of the objects [4].

In the following, we used boolean expressions to specify object perception capa-
bilities(see equations 1 and 2). In both object exploration and object detention cases,
we assume that interesting objects are on tables and the robot seeks to detect tabletop
objects (i.e. Ctable). On the one hand, to represent an object, it is important to store only
different views, which is possible when the object is moved. On the other hand, stor-
ing all object views while the object is static would lead to unnecessary accumulation
of highly redundant data. Hence, the Ctrack constraint is means the object candidate is
already being tracked. Moreover, Cinstructor and Crobot are exploited to filter out object
candidates corresponding to the instructor’s body as well as robot’s body. Accordingly,
the resulting object candidates are less noisy and include only data corresponding to the
objects:

ψexploration =Ctable ∧ Ctrack ∧ ¬ (Cinstructor ∨ Crobot) (1)

In our current setup, a table is detected by finding the dominant plane in the point
cloud. This is done using a RANSAC algorithm. Extraction of polygonal prisms is used
for collecting the points which lie directly above the table. Afterwards, an Euclidean
Cluster Extraction algorithm is used to segment a scene into individual clusters. Every
cluster that satisfy the exploration expression is selected. The output of this object ex-
ploration is a pool of object candidates. Subsequently, to construct a pool of features,
spin-images are computed for the selected points extracted from the pool of object can-
didates. It should be noted that to balance computational efficiency and robustness, a
downsampling filter is applied to obtain a smaller set of points distributed over the sur-
face of the object. We use a PCL function to compute spin-images.Finally, the dictio-
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Fig. 2. The robot moves through an office to explore several scenes and extract tabletop objects
to construct a dictionary of visual words.
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nary is constructed by clustering the features using the k-means algorithm. The centres
of the N (i.e. N = 90) extracted clusters define the visual words, wt (1≤ t ≤N). Figure 2
shows the procedure of constructing a dictionary of visual words. A video of the system
that a robot explores an environment 1 is available in: http://youtu.be/MwX3J6aoAX0.

5 Object Detection and Representation
For fast processing of massive point clouds, two filters are used, namely distance filter-
ing and downsampling [7]. Furthermore, knowledge of the positions of the arm joints
relative to the camera pose is retrieved from the Working Memory and sensor data (i.e.
points) corresponding to robot’s body is filtered out from the original point cloud. After
preprocessing, the next step is to find objects in the scene. The object detection module
implements the following specification:

ψdetection =Ctable ∧ Ctrack ∧ Csize ∧ ¬ (Cinstructor ∨ Crobot ∨ Cedge) (2)

The object detection uses a size constraint, Csize, to detect objects which can be manipu-
lated by the robot. Moreover, a Cedge constraint is considered to filter out the segmented
point clouds that are too close to the edge of the table. The object detection then as-
signs a new Track ID to each newly detected object and launches an object perception
pipeline for the object candidate as well. The object detection pushes the segmented
object candidates into the perception pipelines for subsequent processing steps.

The Object Tracking module is responsible for keeping track of the target object
over time while it remains visible [12]. It receives the point cloud of the detected object
and computes its geometric center of object view as the position of the object. The
object tracking sends out the tracked object information to the Object Representation
module.

The input to the object representation module is a point cloud of an object candidate
O. The object representation module involves three main phases: keypoint extraction,
computation of spin images for each keypoint and, finally, representing an object view
as a histogram of visual words. For keypoint extraction, a voxelized grid approach is
used to obtain a smaller set of points by taking only the nearest neighbor point for each
voxel center [7]. Afterwards, the spin-image descriptor is used to encode the surround-
ing shape in each keypoint using the original point cloud. By searching for the nearest
neighbor in the dictionary, each local shape is assigned to a visual word. Finally, each
object is represented as a histogram of occurrences of visual words, h = [h1 h2 ... hN ],
where the ith element of h is the count of the number features assigned to a visual word,
wi. The obtained histogram of the given object is dispatched to the Object Recognition
module and is recorded into the Perceptual Memory if it is marked as a key view.

6 Interactive Object Category Learning
Human-robot interaction is essential for supervised experience gathering, i.e. for in-
structing the robot how to perform different tasks. Particularly, an open-ended object
learning and recognition system will be more flexible if it is able to learn new objects

1 The ROS bag file used in this video was created by the Knowledge-Based Systems Group,
Institute of Computer Science, University of Osnabrueck.

http://youtu.be/MwX3J6aoAX0
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from a human user. For example, if the robot does not know how a ’Mug’ looks like, it
may ask the user to show one. Such situation provides an opportunity to collect training
instances from actual experiences of the robot and the system can incrementally update
it’s knowledge rather than retraining from scratch when a new instance is added or a
new category is defined. The details of the interaction module and supervised object ex-
perience gathering is discussed in [10]. The Object Conceptualizer (category learning)
module is activated when the instructor provides a category label for the object.

6.1 Object Conceptualizer

In this work, object category learning is a process of computing a Bayesian model for
each object category. There are two reasons why Bayesian learning is useful for open-
ended learning. One of them is the computational efficiency of Bayes approaches. In
fact, the model can be incrementally updated when new information is available, rather
than retrained from scratch. Second, open-ended systems usually have limited amount
of memory available and therefore, it must involve experience management to prevent
the accumulation of experiences. In Bayesian learning, new experiences are used to
update category models and then the experiences are forgotten.

The probabilistic category model requires calculating the likelihoods of the object
given the category k, p(O|Ck), and it is also parametrized by the prior probabilities
p(Ck). The likelihoods of objects in each category, p(O|Ck), cannot be estimated di-
rectly. To make it tractable, we assume that visual words of objects are independent
given the category. Therefore, the p(Ck)p(O|Ck) is equivalent to the joint probability
model p(Ck,w1, . . . ,wn) = p(Ck) p(w1, . . . ,wn|Ck). The joint model can be rewritten
using conditional independence assumptions:

p(Ck|w1, . . . ,wn) ∝ p(Ck)
n

∏
i=1

p(wi|Ck), (3)

where n is the size of the dictionary and p(wi|Ck) is the probability of the visual word
wi occurring in an object of category k:

p(wi|Ck) =
sik +1

n
∑

j=1
(s jk +1)

, (4)

where sik is the number of times that word wi was seen in objects from category Ck. On
each newly seen object of this category with hi features of type wi, the following update
is carried out: sik← sik +hi . The prior probability of category k, p(Ck), is estimated by
dividing the number of seen objects from category k by the total number of seen objects
in all categories.

6.2 Object Category Recognition

The last part of object perception is object category recognition. To classify an object
O, which is represented as a histogram of occurrences of visual words h = [h1, . . . ,hn],
the posterior probability for each object category p(Ck|h) is considered as the object-
category similarity (i.e. OCS(.)) and approximated using Bayes theorem as:

OCS(O,Ck) =
p(h|Ck)p(Ck)

p(h)
, (5)
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Since the denominator does not depend on Ck, it is constant and can be ignored.
Equation 5 is re-expressed based on equation 3 and multinomial distribution assump-
tion. In addition, to avoid underflow problems, the logarithm of the likelihood is com-
puted:

OCS(O,Ck) = log p(Ck)+
n

∑
i=1

hi log p(wi|Ck), (6)

The category of the target object O is the one with highest likelihood. If, for all cate-
gories, the OCS(.) is smaller than a given threshold (e.g. CT = 0.75), then the object
is classified as Unknown; otherwise, it is classified as the category that has the highest
similarity. Consequently, object information including object recognition result, point
cloud and global characteristics of the given object such as main axis, center and size
of bounding box are written to the Working Memory, where the grasp selection module
can fetch them to support object manipulation. Grasp Selection is triggered when a user
instructs the robot to perform a task (e.x. serve a meal).

7 Grasp Methodology

In this work, we assume that it is possible to select suitable grasps pose for different
household objects by only using partial object views. The grasp selection module re-
trieves the point cloud of a given object from working memory (see figure 1). The point
cloud is then processed to determine an appropriate object’s bounding box and refer-
ence frame. For constructing the object-centric reference frame, the vertical direction
perpendicular to the table is assigned to the local z-axis since objects are assumed to
be placed on a table. Principal Component Analysis (PCA) is used to compute the axes
of minimum and maximum variance in the horizontal plane using points projected on
the surface plane. The maximum variance axis is assigned to the x-axis. Although the
result of PCA indicates the lines align to the eigen vectors, but the sign and direction of
this line remains ambiguous to calculate x-axis. The direction of the x-axis is defined
as the oposite direction to the origin of the arm base frame.. Then, the bounding box
of the object calculated along these axes is computed and the center of the bounding
box is defined as the origin of the object’s coordinate system. Since the object is only
partially visible, the center of the object’s bounding box is used as a proxy for the true
center of mass. In this study, we use a set of heuristic grasp strategies. They are defined
as follows:

Top grasp strategy: It is assumed that the object is only approached by the robot
along the z-axis (perpendicular to the surface) while the gripper closing direction is
aligned with the y-axis. Thus, in order to find the suitable grasp pose on the object, it is
only needed to find the grasp position on x-axis. To do that, first, the object points are
projected onto the xy-plane. Then, the points are clustered using equally sized intervals
along x-axis. Each cluster indicates one grasp candidate. For each one, the maximum
and the minimum of the positions of points along y-axis indicate the grasp width. In
order to select a proper grasp candidate, since grasping around the center of mass of an
object is preferable, the cluster around the origin is the first to be analyzed. This grasp
minimizes the torque about the gripper axis due to the objects weight. If the grasp width
of the selected candidate is larger than the width of the gripper (i.e. 12cm), the other
grasp candidates will be analyzed. The grasp candidates are then sorted based on how



8 S.Hamidreza Kasaei, Nima Shafii, Luís Seabra Lopes, Ana Maria Tomé

Fig. 3. The projected objects’ points on the planes of the object bounding box (gray box) are
analyzed to select the grasp pose (black square). The bad grasp poses (red squares) are rejected.

much their grasp width fits to the robot’s palm. The size of palm of the JACO arm is
5cm. Note, the grasp candidates that reach to the limits of the x-axis are rejected. Figure
3 (left) shows the process of the top grasps approach.

Horizontal side grasp strategy: According to this grasp strategy, the object is ap-
proached in the horizontal plane, along the y-axis while negative y is used as approach
direction and the gripper closing direction is aligned with the x-axis. In this case, the
proper grasp position along z-axis should be found. To do that, first, object points are
projected onto the xz-plane, then multiple grasp candidates are generated by sampling
along the z-axis with equal interval size. Using a strategy similar to the one described
for top grasps, the grasp candidates are analysed and one of them is selected. The grasp
candidates located in the limits of the z-axis are also rejected. The process of the grasp
selection using the horizontal side strategy is depicted in figure 3(center).

Vertical side grasp strategy: In this strategy, the object is approached in the vertical
plane along the y-axis. The approach direction is negative y and the gripper closing di-
rection is aligned with the z-axis. This grasp strategy is designed to be used in grasping
flat objects such as plates. In this strategy, the proper grasp position along x-axis should
be inferred. To do that, first, the object’s points are projected onto the xz-plane, then
multiple grasp candidates are extracted by sampling along the y-axis with equal inter-
val size. Like above strategies, the centered grasp candidate is selected if it fits inside
the gripper. Otherwise, other grasp candidates are ranked as in the top grasp strategy.

Algorithm 1 rule of grasp strategy selection
if |z-axis| > |x-axis| and |z-axis| > |y-axis| then

perform top grasp
else if |x-axis| > |z-axis| and |y-axis| > |z-axis| then

perform vertical side grasp
else

perform horizontal side grasp
end if

1

The grasp candidates located in
the limits of the x-axis are also
rejected. Figure 3 (right) shows
the grasp selection process us-
ing vertical side grasp strategy.
In our grasp methodology, first,
one of the proposed grasp strate-
gies is selected based on the size

of the bounding box of the object. To do that the following rules are presented in al-
gorithm 1. where |.| returns the size of object along an specific axis. Finally, the JACO
arm robot is commanded to perform actions based on the selected grasp position and
strategy. Inverse kinematic integrated from the JACO arm driver is used to control the
end-effector pose goal. In a grasping scenario, first the robot is commanded to go to a
pre-grasp position that is 0.2 cm behind the grasp pose along with the grasp orientation.
The grasp orientation is given by grasp strategy. When the pre-grasp pose is reached,
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the robot approaches the grasp point and then closes the gripper. Afterwards, the height
of the robot’s end-effector in the arm-frame is recorded by the robot in working mem-
ory to be used as the desired height for placing the grasped object. Whenever the object
is grasped, the robot picks up the object and navigates it to the predefined placing pose.

8 Experimental Results
Four types of experiments were performed to evaluate the proposed approach.

8.1 Off-Line Evaluation of the Object Learning Approach
To examine the performance of different configurations of the proposed object learn-
ing approach (section 6), a 10-fold cross validation scheme has been followed. For this
purpose, an object dataset namely Restaurant Object Dataset [7] has been used which
contains 339 views of 10 categories of objects. A total of 120 experiments were per-
formed for different values of four parameters of the system, namely the voxel size (VS)
which is related to number of keypoints extracted from each object view, the dictionary
size (DS), the image width (IW) and support length (SL) of spin images. Results are
presented in Table 1. The combination of parameters that obtained the best average F1
score was selected as the default system parameters. They are the following: VS=0.01,
DS=90, IW=4 and SL=0.05. The results presented in sections 8.2 and 8.4 are computed
using this configuration.

8.2 Open-Ended Evaluation
The off-line evaluation methodologies (e.g k-fold cross validation, leave- one-out, etc.)
are not well suited to evaluate open-ended learning systems, because they do not abide
to the simultaneous nature of learning and recognition and those methodologies imply
that the number of categories must be predefined. An evaluation protocol for open-
ended learning systems was proposed in [2]. A simulated teacher was developed to
follow the teaching protocol and autonomously interact with the system using three
basic actions namely teach, used for teaching a new object category, ask, used to ask
the system what is the category of an object view and correct, used for providing the
system corrective feedback in case of misclassification. The idea is that, for each newly
taught category, the simulated teacher repeatedly picks unseen object views of the cur-
rently known categories from a dataset and presents them to the system. It progressively
estimates recognition performance of the system and, in case this performance exceeds
a given threshold (CT=0.67), introduces an additional object category. In this way, the
system is trained and tested at the same time. Experiments were running the largest
publicly available dataset namely RGB-D Object Dataset consisting of 250,000 views
of 300 common household objects, organized into 49 categories [8].

When an experiment is carried out, learning performance is evaluated using several
measures, including: (i) The number of learned categories at the end of an experiment
(TLC), an indicator of how much the system is capable of learning; (ii) The number
of question / correction iterations (QCI) required to learn those categories and the aver-
age number of stored instances per category (AIC), indicators of time and memory re-
sources required for learning; (iii) Global classification accuracy (GCA), an F-measure

Table 1. Average object recognition performance (F1 measure) for different parameters

Parameters VS DS IW SL
Values 0.01 0.02 0.03 50 60 70 80 90 4 8 0.02 0.03 0.04 0.05

Average F1 0.76 0.74 0.71 0.72 0.73 0.74 0.74 0.75 0.75 0.72 0.63 0.74 0.78 0.79
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computed using all predictions in a complete experiment, and the average classification
accuracy (ACA), indicators of how well the system learns.

Table 2. Summary of experiments.
EXP# #QCI #TLC #AIC GCA (%) ACA (%)

1 1257 49 8.16 79 83
2 1238 49 7.83 80 84
3 1227 49 7.65 81 84
4 1240 49 9.08 75 78
5 1236 49 7.95 80 83
6 1346 49 9.46 76 79
7 1293 49 9.02 77 81
8 1330 49 9.79 74 79
9 1336 49 9.55 75 78
10 1225 49 8.30 78 82

Since the order of introduction of new cat-
egories may have an effect on the per-
formance of the system, ten experiments
were carried out in which categories were
introduced in random sequences. In the
additional nine experiments, these cate-
gories were used again with different in-
troduction sequences, which are reported
in Table 2. By comparing all experiments,
it is visible that in the third experiment,
the system learned all categories faster
than other experiments. In the case of ex-
periment 9, the number of iterations required to learn 49 object categories was greater
than other experiments.

Figure 4 (left) shows the global classification accuracy as a function of the number
of learned categories. In this figure we can see that the global classification accuracy
decreases as more categories are learned. This is expected since the number of cate-
gories known by the system makes the classification task more difficult. Finally, Fig. 4
(right) shows the number of learned categories as a function of the protocol iterations.
This gives a measure of how fast the learning occurred in each of the experiments.

8.3 Grasp Evaluation

In order to evaluate the quality of the proposed grasp approach, a grasp scenario has
been designed. In the grasp scenario, the JACO robot is instructed to pick-up an object
using the proposed grasp methodology. After picking up the object, the robot carries the
object to the placing position to see if the object slips due to bad grasp or not. A partic-
ular grasp is considered as success if the robot performed the scenario successfully. We
analyzed the performance of our approach to grasp the household objects by evaluating
the success rate. In our designed scenarios, 21 household objects were used which can
be seen in figure 5.

As a testing scenario, the objects were placed in different orientations. In each ex-
periment, an object was first put in the orientation shown by the object view in the figure
5 and robot tried to grasp it. Afterwards, we rotated the object about 60 degrees for six
times and repeated the scenario to test all viewpoints of the object. Therefore, each ob-
ject was tested to be grasped by the robot 6 times, and 126 grasp trials were performed
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Fig. 5. The objects used as a test set to evaluate the proposed grasp approach.

to complete the whole experiments. In these experiments, the robot could perform 111
successful grasps meaning that the overall success rate was about 88 percent. It was
observed that the robot could grasp all objects by using the proposed strategies.

8.4 System Demonstration
A serve a meal scenario has been designed to show all functionalities of the object
recognition and grasping. In this demonstration, the system works in a scenario where
a table is in front of the robot and a user interacts with the system. Note that, when
the system starts, the set of categories known to the system is empty. In the session,
a user presents objects to the system and provides the respective category labels. The
user then instructs the robot to perform a serve a meal task (i.e. puts different restaurant
objects on the table in front of the user). To achieve this task, the robot must be able to
detect and recognize different objects and transport the objects to the predefined areas
and completely serve a meal. For this purpose, the robot retrieves the world model
information from the Working Memory including label and position of all active objects.
The robot then chooses the object that is nearest to the arm’s base and serves it to
the user. A video of this session is available at: https://youtu.be/GtXBiejdccw. This small
demonstration shows that the developed system is capable of detecting new objects,
tracking and recognizing as well as manipulating objects in various positions.

9 Conclusion
In this paper, we presented an architecture designed to support a coupling between per-
ception and manipulation for service robots. In particular, an interactive open-ended
learning approach for acquiring 3D object categories and a data driven approach for
object grasping have been presented, which enable robots to adapt to different environ-
ments and reason out how to behave in response to a complex task such as serve a meal.
This paper also proposes unsupervised object exploration to construct the visual word
dictionary and an incremental Bayesian learning approach for object category learning.

We have also tried to make the proposed architecture easy to integrate on other
robotic systems. Our approach to object perception has been successfully tested on
a JACO arm, showing the importance of having a tight coupling between perception
and manipulation. For future work, we would like to investigate the possibility of im-
proving performance of object grasping based on kinesthetic teaching and improving
performance of object recognition using topic modelling.
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Robotics, IEEE Transactions on 30(2), 289–309 (2014)

2. Chauhan, A., Lopes, L.S.: Using spoken words to guide open-ended category formation.
Cognitive processing 12(4), 341–354 (2011)

3. Ciocarlie, M., Hsiao, K., Jones, E.G., Chitta, S., Rusu, R.B., Şucan, I.A.: Towards reliable
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