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Abstract. Having a good estimation of the robot-players positions is 
becoming imperative to accomplish high level tasks in any RoboCup League. 
Classical approaches use a vector representation of the robot positions and 
Bayesian filters to propagate them over time. However, these approaches have 
data association problems in real game situations. In order to tackle this issue, 
this paper presents a new method for building robot maps using Random Finite 
Sets (RFS). The method is applied to the problem of estimating the position of 
the teammates and opponents in the SPL league. Considering the computational 
capabilities of Nao robots, the GM-PHD implementation of RFS is used. In this 
implementation, the estimations of the robot positions and the robot 
observations are represented using Mixture of Gaussians, but instead of 
associating a robot or an observation to a given Gaussian, the weight of each 
Gaussian maintains an estimation of the number of robots that it represents. The 
proposed method is validated in several real game situations and compared with 
a classical EKF based approach. The proposed GM-PHD method shows a much 
better performance, being able to deal with most of the data association 
problems, even being able to manage complex situations such as robot 
kidnappings. 

Keywords: World Modeling, Multi-target tracking, Robot position 
estimation, Random Finite Sets 

1 Introduction 

As RoboCup progresses over the years, high-level skills become necessary to 
maintain a competitive level. Such skills are no longer restricted to the detection of 
field objects or to the self-localization of the robot players, but include team’s skills 
based on the tracking (position estimation) of teammates and opponents. Examples of 
these skills are ball passing, adversaries’ tracking and team’s formation.  

When the observability of the game and the players is not an issue to address, as in 
the case of the Small-size league, high- levels skills based on the tracking of the robot 
players have been already implemented (e.g. reactive coordination [1], and the 
analysis and learning of the opponent’s strategies [2][3]). 

The situation in the Standard Platform League (SPL) is more complex given the 

behnke
Schreibmaschine
20th RoboCup International Symposium, Leipzig, Germany, July 2016.



restricted field of view of the robot´s camera and the low computational resources of 
the Nao robots; in this league the detection of other robots is not robust and the 
construction of a good map of obstacles/players is a difficult process. Current 
standard robot tracking systems maintain/update the robot estimations using Kalman 
filters (e.g. [4][5]). However, in this tracking paradigm there is no clear solution of 
the data association problem, and several heuristics need to be used in order to 
eliminate and merge hypotheses.  

In this context the main goal of this paper is to propose a new methodology for the 
robust tracking (position estimation) of multiple soccer robots using the Random 
Finite Sets (RFS) framework, which allows to overcome the drawbacks of current 
approaches. The proposed methodology is inspired in [6] where the term Probability 
Hypothesis Density (PHD) was introduced as the first moment of a point process. 
Then, the PHD filter is presented in [7] as a way to maintain hypotheses of multiple 
objects using sets instead of vectors to describe the object’s states. 

There are several works that use this new framework in the literature, concerning 
all kind of problems and subjects [8]. Principally, it is used in highly complex 
environments to track large amounts of features, which makes it very expensive 
computationally. But, in the SPL problem the number of features (robots) to detect 
rises to 10 in the worst case, which make it computationally tractable for a Nao 
robot’s CPU. 

The paper is organized as follows: in Section 2 the problem to resolve is 
described. Section 3 presents a brief introduction to RFS. Section 4 shows the 
implementation used in this work, and Section 5 the experimental results. Finally, 
conclusions are drawn in Section 6. 

2 Problem Description: Data Association when Tracking 
Multiple Players in Robot Soccer 

As already mentioned, knowing the position of the other robots in the field is 
relevant for implementing high-level soccer behaviors. In this work we will call map 
of obstacles to a map that a given player builds, and which includes the positions on 
the field of every other robot player, teammate or opponent (see Figure 1). We will 
denote observations to the detections of these robots, and obstacles to the estimated 
position of these robots in the map. 

Most of the existing methods used for estimating the map of obstacles employ a 
classical approach with a vector representation of the obstacles (robots), which are 
propagated over time using a Bayesian filter (e.g. an EKF filter). However, it has been 
demonstrated that the use of a vector representation of the obstacles has numerous 
drawbacks, mainly related to the data association between new and past observations 
(obstacles) [9]. Some examples of those problems are illustrated in Figure 2: Fig. 2(a) 
shows a trivial case where the data association between two new observations (red 
crosses) and two obstacles (black crosses) is trivial. However, the data associations 
are not trivial in the cases illustrated in Figs. 2(b) and 2(c). First, Fig. 2(b) shows the 
case when two new measurements have a similar distance to the obstacle, in addition 
to be not very close to the obstacle (see the covariance of the obstacle representation). 
So, depending of the implemented data association strategy, this could end in one, 
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two or three obstacles in the map. Fig. 2(c) show a case where two obstacles are very 
close, so the new measurement could be associated with any of them, and leave the 
other with no update for that frame. For these cases, most of methods use heuristics to 
associate new measurements to the obstacles, or to create new obstacles if no 
association is made. But, in a highly dynamic environment as a robot soccer match, 
these methods may produce several bad associations or missed detections. 

  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 1. Example of a map of obstacles. The white rectangle represents the robot which is 
building the map. The black crosses represent the robots/obstacles positions and the yellow 
circles the corresponding covariance of each representation. The lighted zone represents the 
Field of View of the camera. 

Fig. 2. The red crosses represent measurements of the sensor, black crosses represent the 
robots/obstacles positions and the yellow circles the corresponding covariance of each 



 
Finally, Fig. 2 (d) describes a situation where no measurement is obtained for an 

obstacle inside the Field of View (FoV). For the classical approach, this is not 
different from an obstacle outside the FoV, and its only consequence is that the 
obstacles’ covariance grows. So, depending of the speed of the covariance’s growing 
(which maintain the obstacles outside the FoV), the obstacles inside the FoV will be 
maintained the same time that the others, although they do not receive any 
measurements.  

3 Multi-target tracking with Random Finite Sets 

The main idea of the proposed methodology is to use finite sets instead of vectors 
for representing both observations and obstacles, which can encapsulate positions and 
quantity uncertainty. As has been widely demonstrated [7][10][9], the first moment of 
RFS, known as Probability Hypothesis Density (PHD), can be used to construct a 
filter which propagates the PHD of the map posterior instead of the map posterior 
itself. 

 
3.1 PHD Filter 

The PHD function 𝑣 at a point represents the density of the expected number of 
obstacles occurring at that point of the state space (map). Therefore, a property of the 
PHD is that for any given region S of the map 

𝔼 𝑀 ∩ 𝑆 = 𝑣(𝑚)𝑑𝑚
𝑺

	 (1) 

where 𝑀 represents the map RFS and | ∙ | denotes the cardinality of a set. This means 
that, by integrating the PHD on any region S of the map, we obtain the expected 
number of obstacles in S [7].  

The PHD filter considers the following two steps [7]: 

• Prediction: 

𝑣/|/01(𝑚) = 𝑣/01(𝑚) + 𝑏/(𝑚)	 (2) 
where 𝑏/(𝑚) represents the PHD of the new obstacles in time 𝑘. 

• Update: 

𝑣/(𝑚) = 𝑣/|/01(𝑚) 1 − 𝑃8(𝑚) +
𝑃8(𝑚)𝑔/(𝑧|𝑚))

𝑐/ 𝑧 + ∫ 𝑃8 𝜉 𝑔/ 𝑧 𝜉 𝑣/|/01 𝜉 𝑑𝜉		>∈@A

	 (3) 

where PC(𝑚) represents the probability of detecting an obstacle at 𝑚, 𝑔/(𝑧|𝑚) 
represents the likelihood that 𝑧 is generated by an obstacle at 𝑚 at time 𝑘 (i.e. the 

representation. (a) represents an easy case of data association, while (b) and (c) show more 
complex cases. (d) represents a case when an obstacle that should be detected by the robot is 
not sensed.  
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measurement likelihood) and 𝑐/(𝑧) is the clutter intensity at time 𝑘. 
 

3.2 Considerations 

To adopt this framework to the presented problem, some considerations must be 
done. As presented before, 𝑃8 𝑚  represents the probability of detecting an obstacle 
at 𝑚, but it does not take into account the capability of the robot to sense at 𝑚. So the 
real probability is represented by	𝑃8 𝑚 𝑋/  where 𝑋/ represent the position of the 
robot in time 𝑘. The same occurs with 𝑔/, 𝑐/ and 𝑏/, because they also depend of the 
robot position.  

4 Implementation 

There are many implementations of RFS in the literature, but most of them are 
time consuming, especially for Nao robots with limited computational capabilities 
[11][12]. Hence we use the Mixture of Gaussian implementation (GM-PHD) [13], 
because it is very time efficient and it allows to easily get the positions of the 
obstacles from the PHD. 

4.1 GM-PHD implementation 

The main idea is to represent any RFS as a mixture of Gaussians. Therefore, both 
obstacles and detections are represented by Gaussians. But, to represent the position 
and number uncertainty of the obstacles present in the field, it is necessary to add a 
weight to every Gaussian. In this way their positions represent the multitude of 
location of obstacles in the map while their weights represent the number of obstacles 
in that given region. So, a PHD map is a Gaussian Mixture of the form, 

𝑣/01 𝑚 𝑋/01 = 𝜔/01
G 𝒩 𝑚; 𝜇/01

G , 𝑃/01
G

KALM

GN1

	 (4) 

which is a mixture of 𝐽/01 Gaussians, with 𝜔/01
(G) , 𝜇/01

G  and 𝑃/01
(G)  being their 

corresponding prior weights, means and covariances, respectively. The same form is 
used to represent the new obstacles at time 𝑘, 𝑏/(𝑚|𝑍/01, 𝑋/01), as 

𝑏/ 𝑚 𝑍/01, 𝑋/01 = 𝜔/|/01
G 𝒩 𝑚; 𝜇/|/01

G , 𝑃/|/01
G

KQ,A	

G01

	 (5) 

where 𝐽R,/ is the number of Gaussians in the new PHD at time 𝑘, 𝑍/01 is the vector  
of measurements at time 𝑘 − 1 and 𝜔/|/01

(G) , 𝜇/|/01
G  and 𝑃/|/01

G  determine the shape of 
the PHD of new obstacles. Therefore, the predicted PHD of the map, shown in (2) is 
also a Gaussian mixture 

𝑣/|/01 𝑚 𝑋/ = 𝜔/|/01
G 𝒩 𝑚; 𝜇/|/01

G , 𝑃/|/01
G

KA|ALM

GN1

	 (6) 

where 𝐽/|/01 = 	 𝐽/01 + 𝐽R,/ are the number of Gaussians representing the union of the 



prior map PHD 𝑣/01 𝑚 𝑋/01 , and the new obstacles PHD at time 𝑘. 𝜔/|/01
(G) , 𝜇/|/01

G  
and 𝑃/|/01

G  represents the shape and form of the Gaussians of the prior map PHD if 
𝑗 < 𝐽/01 and the shape and form of the Gaussians of the new observations PHD 
otherwise. 

So, the posterior PHD shown in (3) is also a Gaussian mixture of the form 

𝑣/ 𝑚 𝑋/ = 𝑣/|/01 𝑚 𝑋/ 1 − 𝑃8 𝑚 𝑋/ + 𝑣U,/
G

KA|ALM

GN1

𝑧,𝑚 𝑋/
>∈@A

	 (7) 

where 𝑣U,/
G  corresponds, according to the general PHD Filter update equation, to 

𝑣U,/
G 𝑧,𝑚 𝑋/ = 𝜔/

G 𝑧|𝑋/ 𝒩 𝑚; 𝜇/|/
G , 𝑃/|/

G 	 (8) 

𝜔/
G 𝑧 𝑋/ =

𝑃8 𝑚 𝑋/ 𝜔/|/01
G 𝑞 G 𝑧|𝑋/

𝑐/ 𝑧 + 𝑃8 𝑚 𝑋/
KA|ALM
WN1 𝜔/|/01

W 𝑞 W (𝑧|𝑋/)
	 (9) 

where 𝑞 W 𝑧|𝑋/ = 𝒩 𝑧;𝐻/𝜇/|/01
W , 𝑆/  is the measurement likelihood. The 

components  𝜇/|/
W  and 𝑃/|/

W  can be obtained from the standard EKF update equations, 

𝑆/
W = 𝑅/ + 𝛻𝐻/𝑃/|/

W 𝛻𝐻/[	 (10) 

𝐾/
W = 𝑃/|/

W 𝛻𝐻/[ 𝑆/
W 01

	 (11) 

𝜇/|/
W = 𝜇/|/01

W + 𝐾/
W 𝑧 − 𝐻/ 𝜇/|/01

W 	 (12) 

𝑃/|/
W = 𝐼 − 𝐾/

W 𝛻𝐻/ 𝑃/|/01
W 	 (13) 

with 𝛻𝐻/ being the Jacobian of the measurement equation with respect to the 
obstacles estimated location. 

4.2 Algorithm 

In order to use the presented framework, it is necessary to create Gaussians 
according to the measurements of the robot’s sensors. Therefore 𝑏/(𝑚|𝑍/01, 𝑋/01) is 
obtained from the measurements 𝑍/01 and the previous robot position 𝑋/01	. The 
components of this Gaussians are determined according to  

𝜔R,/
G = 0.01,								𝜇R,/

G = ℎ01 𝑧/01
G , 𝑋/01 , 

𝑃R,/
G = ℎ′ 𝜇 G , 𝑋/01	 𝑅 ℎ′ 𝜇 G , 𝑋/01	

[	

where ℎ01 is the inverse measurement equation, 𝑅 is the measurement noise 
covariance and ℎ′ 𝜇 G , 𝑋/01	  is the Jacobian of the measurement model function 
with respect to the Gaussian state, 𝑗. Therefore, the implementation initially considers 
all detections at time 𝑘 − 1 to be potential new features at time 𝑘. 

Then, as every Gaussian is combined with every measurement to generate a new 
Gaussian, the numbers of Gaussians grow exponentially in every frame. That is why 
pruning and merging operations are necessary. Gaussians which are determined 
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sufficiently close (through a Mahalanobis distance threshold) are merged into a single 
Gaussian. But this does not represent an elimination of an obstacle because one 
Gaussian can represent more than one obstacle by its weight; these values are added 
when two or more Gaussians are merged. 

Figure 3 shows the pseudo code of the complete algorithm. 

//prediction step 
// the parameters of the Map’s MoG model (𝑣/01 𝑚|𝑋/01 )	are	modified	 
for 𝑖 = 1 to 𝐽/01 do 
    //the obstacles may move -> covariance is increased 
    𝜇/|/01

W = 𝜇/01
W , 𝑃/|/01

W = 𝑃/01
W + 𝑄, 𝜔/|/01

W = 𝜔	/01
W  

end for 
//birth; new obstacles are added 
generateNewGausians 𝑍/01	, 𝑋/01  // equation (5) 

𝑣/|/01 𝑚|𝑋/ = 𝜇/|/01
W , 𝑃/|/01

W , 𝜔/|/01
W

WN1

KA|ALM	
  

//update step 
for 𝑖 = 1 to 𝐽/|/01 do 
    calculate 𝑃8

W  
    𝜔/

W = 1 − 𝑃/
W 𝜔/|/01

W  
end for 
𝑁 = 1  
for each 𝑧 in 𝑍/  
    for 𝑖 = 1 to 𝐽/|/01 do 
        calculate 𝐻, 𝑆/

W  and 𝐾/
W  

        𝜇/
mnW = 𝜇/|/01	

W +	  𝐾/
W 𝑧 − 𝜇/|/01	

W  
        𝑃/

mnW = 𝐼 − 𝐾/
W 	𝐻 𝑃/|/01

W  

        𝜏 W = 𝑃8
W 𝜔/|/01

W 2𝜋𝑆/
W 0r.s

× exp 𝑧 − 𝜇/|/01	
W 𝑆/

W 01
𝑧 − 𝜇/|/01	

W [
 

    end for 
    for 𝑖 = 1 to 𝐽/|/01 do 
        𝜔/

mnW = 𝜏 W 𝑐 𝑧 + 𝜏 wKA|ALM
wN1  

    end for 
   𝑁 = 𝑁 + 𝐽/|/01 
end for 
𝐽/ = 𝑁  
//updated map 

𝑣/ 𝑚|𝑋/ = 𝜇/
W , 𝑃/

W , 𝜔/
W

WN1

KA	
	  

prune (𝑣/ 𝑚|𝑋/ ) 

Fig. 3. Pseudo code of the general algorithm that calculates the PHD that represent the map of 



obstacles. 

With this algorithm, the PHD of the map is obtained. Then to get the position of 
the obstacles in the map, it is necessary to evaluate every Gaussian’s weight. If this 
values exceeds a given threshold, then the obstacle position is given by the Gaussian’s 
mean vector, and it’s added to a vector that represent the current map. Figure 4 shows 
this algorithm. 

 

M/ = [	]	  
for 𝑖 = 1 to 𝐽/ do 
    if 𝜔/

W > 𝑡ℎ𝑟𝑙𝑑 then 
        M/ = M/	𝜇/

W 	  
    end if 
end for 

Fig. 4. Pseudo code of the algorithm that drawn obstacles according to the PHD of the map. 

4.3 Application 

Using the proposed methodology, it is obtained a representation of the obstacle 
map for the detection of soccer players (Nao robots) in the SPL league. To do this, the 
methodology is used as follows: 

i. State space: in order to describe the obstacles in the field, the state space is a 
vector 𝑝 = (𝑥, 𝑦) that represents positions on the field according to the center of 
the field as 0,0  of the coordinate system. 

ii. Sensor: the used sensor is the Nao camera. This implies that transformations must 
be done in order to describe the measurements as positions on the field, using the 
camera’s intrinsic and extrinsic parameters, as well as the position of the robot on 
the field. The detections are made with the same robot´s detector provided in the 
B-Human Code Release 2014 [14] 

iii. Probability of detection	𝑃8: Given that the sensor is the camera of the robot, the 
probability of detection is given by the field of view of it and the position of the 
obstacle relative to the robot. This implies that 𝑃8 must be recalculated in every 
frame for all the Gaussians of the map. 

iv. Moving obstacles: The movement of the obstacles is taken into account by 
growing the covariance of the mixture of Gaussians in every frame instead of 
adding a movement model into the prediction step. 

5 Results 

In order to evaluate the proposed methodology several experiments with real Nao 
robots in a real SPL field were carried out. Given that we needed to measure the 
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accuracy of the obstacle’s map (i.e. robots map), a validation system consisting of a 
global vision system (camera over the field) for measuring the Ground Truth was 
implemented. 

First, for very simple initial conditions, we carried out only one experiment in 
which a robot is placed in the center of the field and it observes three other static 
robots. The robot is moving its head all the time, and given its reduced field of view, 
at a given moment it is able to observe just one of the other robots and in some few 
cases two. The proposed GM-PHD based method is compared with a classical EKF 
based method. As expected, given the simplicity of the problem, both systems 
obtained an average error of about 20 cm in the position of the robots. Both methods 
run in real time, being the processing time of the GM-PHD method 0.13 ms, and the 
processing time of the EKF method 0.07 ms. 

Secondly, the proposed GM-PHD based method and the classical EKF based 
method were compared in a set of experiments under a variety of more realistic and 
dynamic conditions, where the observer robot, i.e. the one that builds the map, moves 
as well as some of the observed robots. Figure 6 shows this set of experiments. 

For the first experiment of this set, five static robots are placed on the field, and 
the observer robot performs a ready positioning, i.e. the robot walks from its starting 
position to their legal kick-off position. The observer robot moves its head from left to 
right all the time, hence the other robots are not inside the FoV in every frame. As can 
be seen in Fig. 5(a), the differences of the GM-PHD method and the classical EKF 
method, in term of a multi-tracking criteria, are notorious. While the GM-PHD 
approach correctly describes the presence of obstacles in most of the positions of the 
field, the classical one shows an incorrect number of obstacles for each real one. This 
is because the new observations are not correctly associated with the previous ones, 
due to the odometry errors and the non-constant observations; then new hypothesis 
are drawn incorrectly by the EKF method. 

In the second experiment one moving robot observes five other robots; one 
moving robot and four static ones. The observer robot, while moves, observes the 
other moving robot occasionally, because it moves its head from left to right all the 
time. In Fig 5(b) it can be seen that, when using the classical EKF approach, there are 
two wrongly detected robots placed in the previous path of the moving robot, in 
addition to the same error that occurs in the last experiment when more than one 
obstacle in the map is describing each real one. The GM-PHD method correctly 
relates these observations with the same obstacle. In fact, the GM-PHD method 
perfectly estimates the number of robots in the field. In the case of the EKF method, 
bad associations can be corrected by increasing the minimal distance of merging. But 
this can produce another type of errors, where detections from different robots are 
associated to the same one. 

In the third experiment we analyze a typical kidnapping situation. The observer 
robot is placed in the center of the field and three static robot are placed in other field 
positions. The observer robot is looking around when one of the static robots is 
removed from the field (in a real match, this is very common due to robot 
penalizations). As can be seen in Fig. 5(c) and Fig. 5(d), the GM-PHD approach 
deletes very quickly the hypothesis associated with the kidnapped robot, while the 
classical EKF method keeps the track until the covariance reaches a given threshold 
value. This can be fixed for the classical EKF method by calculating a different rate  
 



Fig. 5. Map building experiments under dynamic conditions. Four different situations are 
described in (a), (b), (c) and (e). In these diagrams the black asterisks represent the real position 
of the robots, obtained by the Ground Truth system; Blue crosses represent the robots’ positions 
calculated by a EKF tracking method; The colored ellipses represent the robot estimations of 
the GM-PHD based method, and the associated number represents the weight of each Gaussian. 
The white dashed lines represent the trajectory of moving robots. (d)/(f) shows the estimated 
number of robots corresponding to situation (c)/(e). 

of covariance growing when a hypothesis that should be seen is not seen. But, this 
implies including another heuristic to the process, while the GM-PHD method 
handles this situation naturally. 
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Finally, in the last experiment the observer robot also realizes a ready positioning 
while there are some static robots placed in the field. But two of these robots are very 
close from each other, therefore the perception of these robots is very inaccurate. In 
Fig. 5(e) it can be seen that even when only one Gaussian is representing these robots, 
the GM-PHD method can correctly estimate the number of robots in that place (given 
by the weight of the Gaussian), while the classical EKF approach fails due the 
odometry and perception errors. In Fig. 5(f) the estimated number of robots given by 
each method thought the entire experiment is shown. It should be remembered that 
the estimated number of robots is calculated as the sum of the weight of all Gaussians 
by the GM-PHD method, and as the number of obstacles created by the classical 
method. 

6 Conclusions 

This paper presents a new method for building obstacle maps using a consistent 
mathematically approach, known as Random Finite Sets. The method is applied to the 
problem of estimating the position of the robots, teammates and opponents, in the 
SPL league. Considering the computational capabilities of Nao robots, the GM-PHD 
implementation is used. In this implementation, obstacles and observations are 
represented using Mixture of Gaussians, but instead of associating an obstacle or an 
observation to a given Gaussian, the weight of each Gaussians maintains an 
estimation of the number of robots that it represents. 

The proposed tracking method was validated in several real game situations, with 
moving robots, and compared with a classical EKF based approach. The proposed 
GM-PHD method showed a much better performance, being able to deal with most of 
the data association problems, even being able to manage complex situations such a 
robot kidnapping. Moreover, the method is able to run in real-time in the Nao robots 
(mean processing time is 0.13 ms; worse case processing time 0.3 ms). 
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