
Effective Multi-Robot Spatial Task Allocation using
Model Approximations

Okan Aşık and H. Levent Akın

Department of Computer Engineering, Boğaziçi University, 34342, Istanbul
{okan.asik, akin}@boun.edu.tr

Abstract. Real-world multi-agent planning problems cannot be solved using
decision-theoretic planning methods due to the exponential complexity. We ap-
proximate firefighting in rescue simulation as a spatially distributed task and
model with multi-agent Markov decision process. We use recent approximation
methods for spatial task problems to reduce the model complexity. Our approx-
imations are single-agent, static task, shortest path pruning, dynamic planning
horizon, and task clustering. We create scenarios from RoboCup Rescue Simu-
lation maps and evaluate our methods on these graph worlds. The results show
that our approach is faster and better than comparable methods and has negligible
performance loss compared to the optimal policy. We also show that our method
has a similar performance as DCOP methods on example RCRS scenarios.

1 Introduction

Real-world multi-agent planning problems have a high complexity due to the curse
of dimensionality. The number of agents also increases the complexity exponentially.
Multi-agent planning can be defined as the coordination of a set of agents to get the
highest possible reward from the environment they act in. Multi-agent planning has
different categories, but in this work we consider only the centralized control of coop-
erative agents.

The spatial task allocation problem (SPATAP) is a subclass of multi-agent planning
problems. In the SPATAP, a group of agents try to do the tasks which are spatially dis-
tributed to the environment. From the multi-agent planning perspective, the SPATAP
has two important features; task interdependency, and agent interdependency. The tasks
appear in the environment independently. Agents move in the environment without af-
fecting each other. Despite these features, the SPATAP is still a complex multi-agent
planning problem and cannot be solved using optimal algorithms as shown by Claes et.
al [1].

SPATAP is formalized as a Multi-agent Markov Decision Process (MMDP). The
state space is defined by the agent and the task positions. The agents either move in the
environment (such as grid world) or take the action to do the task at the current loca-
tion. The reward is defined according to the total task completion. The complexity of a
SPATAP is determined by the state space and the action space. The optimal MMDP al-
gorithm cannot solve SPATAP problems having non-trivial number of locations, agents,

behnke
Schreibmaschine
20th RoboCup International Symposium, Leipzig, Germany, July 2016.



tasks and actions. There are two basic approaches to solve such complex MMDP prob-
lems; using approximate algorithms or approximate models. In this paper, we propose
model approximations which are tailored for the SPATAPs.

The model approximation approach simplifies the given model and finds a solution
for the simplified model as a proxy for the actual problem. The approximations aim to
reduce the state space and action space of the actual problem. Claes et. al [1] propose
a series of approximations for SPATAP planning. At every time step of the decision
process, the method gets the current state of the actual problem and constructs a simpler
model using the approximations. The algorithm calculates a policy for the simple model
and the agents act on the actual decision process using the policy.

The approximations proposed by Claes et. al are subjective approximation, and
phase approximation. The agent calculates the possible future positions of the agents
by the assumption that they are the only agents in the environment. Then the agent can
discount its own future reward according to the possibility of another agent being on
that position. This removes the exponential complexity due to the number of agents in
the state space. The agent assumes that a new task will not appear in the future. This
also reduces the state space complexity due to the future tasks.

We extend the online planning framework of Claes et. al [1]. We first cluster tasks
based on the distance between the tasks. Then, we first calculate the best cluster to go
using the approximate model. Then, every agent plans only for the task in the assigned
clusters. In these two levels of the planning, we apply subjective approximation and
shortest-path pruning which removes the locations which are not on the shortest path
between the agent and the tasks. We use Value Iteration [10] algorithm to calculate the
best action, but we choose the planning horizon according to the time step required to
reach k tasks.

We also generalize the SPATAP model from grid world to graph world where loca-
tions are represented by the vertices of a graph. We define Rescue Spatial Task Alloca-
tion Problem (Rescue-SPATAP) as an extension of SPATAP, and solve using SPATAP
approximations. We show that the comparison with the optimal value not as good as
pure SPATAP problems, but our method performs better than other algorithms including
the SPATAP algorithm [1]. Finally, we apply our SPATAP approximations to RoboCup
Rescue Simuation (RCRS) scenarios and have similar performance to Distributed Con-
straint Optimization (DCOP) methods of RMASBench [5].

2 Background

2.1 Multi-agent Markov Decision Process

A multi-agent Markov Decision Process (MMDP) is a mathematical formalization for
the multi-agent planning in observable, but uncertain action environments.

Multiagent MDP is 5-tuple 〈D,S,A, T,R〉 where

– D is the set of agents,
– S is the finite set of states,
– A is the finite set of joint actions (A1 ×A2 × ..×An),



– T is the transition function which assigns probabilities for transitioning from one
state to another given a joint action,

– R is the immediate reward function.

We can solve an MMDP using the standard offline MDP planning algorithms such as
value iteration [10]. The value iteration algorithm iteratively improves the estimation of
the expected value of a state with the following Bellmann equation:

Q(s, a) = R(s, a) + γ
∑
s′∈S

T (s, a, s′)V (s′) (1)

V (s) = max
a∈A

Q(s, a) (2)

s stands for a state, a stands for a joint action and γ stands for the discount value to
determine how valuable future rewards are.

2.2 Rescue Spatial Task Allocation Problem

Spatial Task Allocation Problem (SPATAP) is introduced by Claes and et al. [1]. SPATAP
is defined on a location set where a set of different tasks appear on different locations.
Agents have movement actions (to move from one location to another) and also task
actions (required to carry out a specific task). We can think of a grid world where there
are two or more cleaning robots. Cleaning tasks appear at different cells on the grid
world. Agents are supposed to act for cleaning tasks as efficiently as possible. Although
the allocation of agents to their closest tasks would seem to be the optimal, the authors
prove that SPATAP is as hard as MMDP.

The original SPATAP formulation models tasks as independent. Emergence of a
task at a location is independent of other locations. We introduce the Rescue Spatial
Task Allocation Problem (Rescue-SPATAP) where tasks are defined as fires and depen-
dent on their neighbors, which makes Rescue-SPATAP harder than SPATAP. In Rescue-
SPATAP, the location of initial tasks/fires are fixed at the start of the process and new
tasks only appear based on the vicinity of the current tasks. In the SPATAP formula-
tion, every task has the same reward, but in Rescue-SPATAP, if the agent extinguishes
a fire, it gets a reward proportional to the size of the building. We show that the online
approximations proposed for SPATAPs are also applicable for Rescue-SPATAPs.

The RoboCup Rescue Simulator (RCRS) has four mobile agents: fire brigades, po-
lice forces, ambulances, and civilians. There are also three stationary center agents
which provide a communication channel for fire brigades, polices, and ambulances.
There are three types of tasks: rescuing the civilians, firefighting, and removing the
blockades on the road. In this study, we target the firefighting problem, but our ap-
proach is also applicable for all RCRS tasks because they can be defined as spatial task
allocation problem. The simulator uses a map of the city. The map defines buildings and
roads. The simulator creates a disaster scenario by defining fire ignition points. Since
only buildings are flammable, the dynamic tasks emerge as the buildings are catching
fire. The ultimate aim is to develop an algorithm to effectively allocate agents to the
buildings which are on fire.



We define a Rescue-SPATAP based on the RCRS. The problem is defined on a graph
world. The graph world has two types of vertices; buildings and roads as already defined
in the RCRS. In the RCRS, buildings have fire levels: no fire, heating, burning, burnt,
extinguished. However, to reduce the complexity, we define only two states: no fire, and
burning. We map the RCRS fire states to the graph world fire states as follows:

– no fire← { no fire, burnt, extinguished }
– burning← { heating, burning }

Since the fire simulator of the RCRS is quite complex to model [7], we model fire
spreading as independent events where the building on fire affects the neighbor build-
ings’ fire state. Every neighbor building in the vicinity of dmeters will add p probability
to change the state from no fire to burning. The agents move on the graph by choosing
the neighbors of the vertex where the agent is on (same as RCRS). Also, the building
the agent is on stays in no fire state. In RCRS, agents extinguish fires based on the size
of the building and the water the agent has in its tank. However, we simplify the fire
extinguishing behavior by that an agent extinguishes the fire of the building which the
agent is on, regardless of other factors. The reward is defined as the ratio of the sum of
the area of the buildings which are in no fire state to the area of all buildings.

3 Related Work

The teams in RoboCup Rescue Agent Simulation (RCRS) generally uses state-based
strategies in behavioral agent frameworks 1. The teams prefer agent frameworks which
enable them to exploit typical scenarios. These agent frameworks let the teams fine
tune their behaviors according to the cases arising over the trial-error periods. In a
recent study, Parker et al. report the performance of decentralized coalition formation
approach for RCRS [8]. The agents use a greedy algorithm with a utility function which
is designed for different tasks. They compare static and dynamic coalition formation
with heterogeneous agents. Due to the different characteristics of every RCRS scenario,
they found that different approaches may work well for different scenarios.

In the literature, the RCRS problem is also modeled as a task allocation problem.
The tasks constitute rescuing a civilian, firefighting, and clearing the blockades. The
tasks are discovered over time and agents do not know all the tasks of the current
state. This distributed dynamic task allocation problem is modeled as the distributed
constraint optimization problem (DCOP) [11] and solved using state of the art DCOP
algorithms such as MaxSum [3], and DSA [4]. Pujol-Gonzalez et al. improve the com-
putational efficiency of MaxSum by introducing Binary MaxSum for RCRS [9]. They
also introduce a method to integrate team coordination to DCOPs. The authors show
that, by defining coordination variables for police forces and fire brigades, they are able
to improve the performance. Although these approaches have reasonable performances,
they require a lot of domain knowledge to design good utility functions with inter-team
coordination variables. Our approach has inherent capacity to represent different agent
types without changing the problem definition.

1 http://roborescue.sourceforge.net/blog/2015/08/
team-description-papers-tdps/

http://roborescue.sourceforge.net/blog/2015/08/team-description-papers-tdps/
http://roborescue.sourceforge.net/blog/2015/08/team-description-papers-tdps/


There are also attempts to solve fire task allocation problem with biologically-
inspired methods [2]. They propose a new algorithm, called eXtreme-Ants, where agents
are modeled as insects which have response thresholds for tasks that are modeled as
stimulus. They show that the performance of the algorithm is comparable to DCOP
methods.

RMASBench is an effort to provide a software repository to easily model RCRS as
a DCOP and benchmark the different algorithms [5]. However, the current implemen-
tation requires the full state information of the simulation at every time step and the
communication among DCOP agents isolated from RCRS. This hinders the application
of the DCOP methods for RCRS. Also, modeling RCRS as task allocation problem ne-
glects the dynamic nature of the problem and introduces the issue of designing good
utility functions.

4 Methods

We model the firefighting task of the RoboCup Rescue Simulation (RCRS) as a Multi-
agent Markov Decision Process(MMDP). We create an approximate MMDP model
with single-agent, static task, shortest path pruning, task clustering, and online plan-
ning horizon approximations in our online planning framework.

The online planning framework gets the current state from the simulator (either
Rescue-SPATAP simulator or RoboCup Rescue Simulator) and creates a new problem
by clustering the near tasks together. Then, the approximations are applied to the clus-
tered model to have less complex model. The policy for the approximated model is
calculated using the Value Iteration [10] algorithm. We calculate the target of every
agent by following the policies greedily to assign a cluster to every agent. Since we
assigned a cluster to every agent, the model approximation and policy calculation is
carried out considering only the tasks of the assigned clusters.

4.1 Hierarchical Planning by Task Clustering

Before applying any approximations to the actual model of the problem, we create
clusters to further reduce the complexity. Since fires propagate from the initial ignition
points, tasks appear as a cluster. Therefore, we introduce a distance based task clustering
algorithm. The tasks which are closer to each other more than d meters belong to the
same cluster. We assign a cluster for every agent by model approximations and value
iteration algorithm. After every agent is assigned to a cluster, we plan only for the tasks
which belongs to the agent’s cluster.

To create a cluster, we iterate over all the burning buildings and compare the distance
between the building and the buildings in a cluster. If the building is closer than dmeters
to one of the buildings which is in a cluster, the building is added to the cluster. The
clustered buildings and their neighbors are removed. A new building for every cluster
is created with the area equal to the sum of the area of the buildings in the cluster.
Neighbors of the clustered buildings are also recreated as the neighbors of the cluster
as seen in Figure 1.



In the SPATAP, the actions are taken according to the calculated value function, but
our approach calculates a priority order of tasks for every agent using the depth-first
graph traversal algorithm on the value function(taking the agent position as the root).

Cluster 1

Cluster 2

Cluster 3

The original graph

Cluster 1

Cluster 2

Cluster 3

The clustered graph

Fig. 1: The illustration of the task clustering. The initial graph(left) results in a clustered
task graph(right).

4.2 Single-Agent Approximation

The state space of multi-agent planning has exponential complexity due to the number
of agents. To reduce this complexity, we plan as a single agent by using other agents’
positions as an indication of their policies. We calculate a policy for all agents as if
they are the only agent in the environment. Then, for every agent we calculate the other
agents’ total effect which is called presence mass [1]. Presence mass is the probability
distribution of other agents’ positions on the graph world.

The presence mass can be calculated only if we know the policy of the agents. We
calculate a policy for every agent based on their positions on the graph by assuming that
they are the only agent on the world. We use this policy to have an idea about the most
desirable action from the perspective of that agent. To reflect the uncertainty, we use
this policy to calculate a Boltzmann distribution over actions for every state. We define
a Boltzmann distribution over the state-action values (the expected cumulative reward
when an action is taken in a state). This distribution defines the probability of choosing
an action in a state.

The best response of the agent based on the presence mass of other agents can be
computed by changing the discount factor(γ) of the Bellman equation (see Equation
1). By changing the discount factor value, we can punish the actions resulting on a
position where other agents have high presence mass. Therefore, we discount the future
expected reward according to presence mass as proposed by [1]:

Qi(si, ai) = R(si, ai) +
∑
s′i∈Si

T (si, ai, s
′
i)

[
(1− fi pmi(s

′
i))Vi(s

′
i)

]
(3)

pmi(s
′
i) =

∑
j 6=i

Pr(sj = s′i|s)

Vi(si) = max
ai

Qi(si, ai)



Qi denotes the expected total reward for the agent i if it is in state si, and takes
the action ai. Vi denotes the expected total reward for the agent i from the state s′i. pm
defines the presence mass of the other agents. The parameter fi which is used to scale
the future value is calculated as the ratio of maximum reward to the maximum value as
suggested by [1].

4.3 Static Task Approximation

We also aim to reduce the exponential complexity due to the fire levels of buildings.
Therefore, we use the approximation proposed by [1] and redefine the state space to
include only the buildings that are in burning state. Claes and et al. [1] propose this
approximation for spatially distributed tasks where the occurrence of new tasks are
independent. In the firefighting problem, there is the effect of neighbor buildings on
the occurrence of new tasks. However, the propagation of fire on RCRS is slow such
that we can plan considering only the buildings that are on fire without calculating their
effects on their neighbors.

The deterministic actions and static task approximations on a graph world for a
single agent MDP results in the following Bellman equation:

V (s) = max
s′∈N(s)

R(s′) + γV (s′) (4)

s denotes the current state, s′ the next state, N the neighbor function, γ is the dis-
count factor and V stands for the value function. Since the actions are deterministic,
reward function is only depended on the next state, s′, and transition function (T ) is
removed (i.e the action uniquely identifies the next state). Note that, we changed (s, a)
term with s′ since actions are deterministic. Every (s, a) term defines an s′ (i.e. every
action results in a single next state). N function defines the set of neighbor vertices of
the given vertex (or state). This recursive equation will be calculated for h times with
the initial values V (s) = 0 for h-horizon planning.

4.4 The Shortest Path Approximation

The tractability of the Bellman equation depends on the state space and the transition
function (i.e. neighbors). If the agent does not move to the vertex which is in burning
state, the state can only be identified by the position of the agent. If we remove the
neighbors which will not be visited by the agent, we achieve to reduce the state space
and also branching factor of the transition function. The value iteration algorithm prop-
agates rewards from the goal state, in our case this is one of the vertices which is in the
burning state.

We calculate the shortest path between the agent and the vertices that are in burning
state, and also all possible burning vertex pairs. Since the actions are deterministic and
tasks are static, the optimal policy will result in a movement of the agent on the shortest
path from its own position to the one of the tasks.



4.5 Online Dynamic Planning Horizon

The running time of the value iteration algorithm for the finite horizon problems also
depends on the planning horizon which determines the number of iterations of the al-
gorithm. If we consider Rescue-SPATAP, we should plan according to the current time
step of RCRS for the optimal performance. The RCRS simulation runs for 300 time
steps. For example, if we are in 30th time step, we should construct our approximate
model and plan with the value iteration for 300− 30 = 270 time steps. However, since
we already approximated the problem, it might not increase the performance after a
certain horizon. Therefore, we propose to determine the planning horizon based on the
reachability of the vertices that are in burning state.

As shown by Claes et al. [1], if the agents plan only for the k closest tasks, the
algorithm still has reasonable performance. In the value iteration algorithm, the reward
propagates from the vertex that is in burning state since the agent gets higher reward
when it can change the state of the vertex from burning to no fire. For example, we
can consider a graph world with the initial state shown in Figure 2. There are five
vertices where the agent is located on the vertex 1 and the vertex 5 is in burning state.
The agent should choose an action based on the values of the vertices 2 and 3. The
three iterations of the value iteration algorithm for the example graph world can be seen
in Figure 2. The values of the vertices correspond to the states where the agent is on

1.0

0.8
0.8

0.8

0.8

First Iteration

2.0

2.0
1.6

1.6

1.6

Second Iteration

3.0

3.0
2.8

2.8

2.8

Third IterationInitial state

A1

A2

Agent

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

Fig. 2: Three iterations of the value iteration algorithm on a graph world.

that vertex location. After the first and the second iterations of the algorithm, the agent
cannot differentiate between the actions A1 and A2. However, after the third iteration
of the algorithm, the agent can differentiate two vertices based on the value propagated
to the vertex 2 and 3. In our small graph, three iterations of the algorithm is enough
to differentiate two actions, but as the distance of the vertices that are in burning state
increases, the minimum number of iteration of the algorithm will increase.

To calculate the planning horizon (i.e. the minimum number of iterations), we use
the breath first graph traversal algorithm. We set the vertex of the agent as the root of
the graph, and traverse the graph. When we find k numbers of burning vertices, we end
the traversal and choose the last level of the tree as our planning horizon and remove
the vertices which are not visited from our graph world.

5 Experiments and Results

We evaluate the effectiveness of our approach on the sampled graphs from RCRS maps.
All the experiments are implemented using the BURLAP [6] library.



5.1 Comparison with The Optimal Policy

To measure the feasibility of our approach, we developed a Rescue-SPATAP simulator.
We create 10 random scenarios having 8 buildings from five city graphs of RoboCup
Rescue Simulation (RCRS), namely Istanbul, Berlin, Eindhoven, Joao Pessoa, and
Kobe. The graph sampling can be seen as the random extraction of districts from a
city map (see Figure 3).

We define three random ignition points and two agents which are positioned on
random locations. In the initial state, ignition buildings are in the burning state. The
distance of the building to propagate the fire is d = 50 meters and burning buildings add
p = 0.05 probability to their neighbors’ fire ignition. For example, if a building has 2
neighbor burning buildings, the probability of changing the state from no fire to burning
will be (0.05 + 0.05) = 0.1. During all the experiments, we use the nearest burning
building parameter as k = 3. Since we calculate the optimal policy for these simple
graph worlds, we model agents’ actions as deterministic to reduce the complexity. This
assumption also complies with the RCRS in that the movement noise of agents is almost
negligible, if we neglect the congestion of the roads.

Fig. 3: Example sample graphs from Istanbul(left) and Kobe(right) maps having eight
buildings (blue) and also road(gray) vertices. The yellow vertices denote the ignition
points and the green vertices denotes the position of the agents.

We show the average expected reward per time step over a horizon of 20 steps in
Table 1. We present the results for random agent, single-agent approximation, greedy
agent, SPATAP and SPATAP-Ext agents for 50 randomly generated scenarios and 100
samples for every scenario. Single-agent algorithm plans using the value iteration al-
gorithm as if they were the only agent in the world and act this way. Greedy agent
chooses to go to the closest vertex that is in burning state. Random agents choose ran-
dom actions. SPATAP denotes the online approximations proposed by Claes et al. [1].
The online approximations proposed in this study as an extension to SPATAP is shown
as SPATAP-Ext. For single-agent and SPATAP algorithms, we coordinate the selection
of vertices when two agents are at the same position so that two agents do not choose
the same best action. For greedy algorithm and SPATAP-Ext, we coordinate the choice
of the target so that two agents do not go to the same target. We show that our approach
is better than other algorithms. All the competing algorithms achieve 87% of optimal
average reward, but the SPATAP-Ext achieves 92%.



Table 1: The average reward per time step and its percentage with respect to the average
optimal value

Random SA Greedy SPATAP SPATAP-Ext Optimal
0.365
± 0.154

0.623
± 0.176

0.625
± 0.189

0.621
± 0.170

0.654
± 0.176

0.712
± 0.147

51.423% 87.56% 87.75% 87.15% 91.88% 100%

5.2 Scalability

In Figure 4a, we show the average reward per time step for scenarios having different
number of buildings. These scenarios have five agents and three random ignition points.
The values are averaged over 50 runs and every run is set for 50 horizon. We can see that
SPATAP-Ext performs better or equal compared to Greedy algorithm. Depending on
the ignition points, agents’ positions and graph, the difference between two algorithms
might increase or decrease.

1015202530354045 50 60 70 80 90 100
The number of vertices

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Th
e 

av
er

ag
e 

re
w

ar
d 

pe
r 

tim
e 

st
ep

Greedy
SPATAP-Ext

(a) The average reward per time step versus
the number of vertices

(b) The average size of the state versus the
time step

Due to the approximations, we are able to have linear running time increases when
the number of agents or the number buildings increases. The shortest path pruning and
the dynamic planning horizon approximations result in further reduction in the size of
the state space. We show the effect of these extensions in terms of the state space in
Figure 4b. Our approach reduces the state space by thousandfold compared to SPATAP
only approximations. We use 10 runs of a sample scenario having 10 buildings and 2
agents.

5.3 RoboCup Rescue RMASBench

To benchmark SPATAP-Ext, we created 10 scenarios on the test map (having 37 build-
ings) of the RCRS. All of the scenarios 2 have five to ten ignition points, 8 agents

2 Test scenarios: https://github.com/okanasik/spatial_task_allocation

https://github.com/okanasik/spatial_task_allocation


in random positions and 100 horizon 3. The agents do not act before the 20th time
step of the simulation to ensure the propagation of the fire. The score of the RCRS at
the end of the simulation is shown in Table 2. Since the fire propagation behavior is
not randomized, we report results over a single run. This score represents the percent-
age of the damage on the city. We compare the performance of the SPATAP-Ext with
DCOP algorithms (Greedy, DSA, BinaryMaxSum) of the RMASBench [5]. Although
DCOP methods generally perform better than SPATAP-Ext, they have the advantage
of well-tuned utility function. Another important factor affecting the performance of
SPATAP-Ext is the assumption that a single agent can extinguish a fire in a single time
step irrespective of the size of the building. This results in the distinct targets for every
agent and increases the chances of the propagation of the fire. In RCRS, if more agents
act to extinguish a fire, the faster the fire will be extinguished. When we analyze the
results, we see that even DCOP greedy agent performs better than other methods, this
suggest that reflex behavior is more important for such small maps.

Table 2: The comparison of the algorithms for 10 randomly created scenarios on the
test map of RCRS.

Scenario SPATAP-Ext Greedy DSA BMS
1 0.875 0.866 0.878 0.866
2 0.796 0.814 0.805 0.801
3 0.821 0.844 0.844 0.844
4 0.776 0.798 0.798 0.810
5 0.746 0.814 0.816 0.816
6 0.840 0.868 0.865 0.867
7 0.872 0.885 0.874 0.874
8 0.729 0.738 0.731 0.745
9 0.896 0.890 0.890 0.890

10 0.881 0.881 0.884 0.881

To increase the performance of SPATAP-Ext agents on RCRS, we also create a set of
buildings in unit sizes to enable more agents to extinguish the same building. Although
this improved the performance, we see that agents are more likely to choose the closer
buildings.

6 Conclusion

We show the application of online approximations for one of the challenging multi-
agent planning problems. Our approach extends SPATAP framework with the intro-
duction of the shortest path pruning, dynamic planning horizon and task clustering
approximations for a harder problem Rescue-SPATAP. We show that our approach is
better than Greedy approach and has similar performance to SPATAP, but requires less
computation.

3 An example run can be seen here: https://youtu.be/nuj8s9aFAlg

https://youtu.be/nuj8s9aFAlg


As a future work, we plan to extend this framework for heterogeneous agents to
model whole RCRS problem. By introducing partial observability, communication,
and decentralized planning, we plan to fully implement online planning framework for
RCRS. We will also reduce the complexity by introducing macro-actions.

References

1. Claes, D., Robbel, P., Oliehoek, F.A., Tuyls, K., Hennes, D., van der Hoek, W.: Effective Ap-
proximations for Multi-Robot Coordination in Spatially Distributed Tasks. In: Proceedings
of the 14th International Conference on Autonomous Agents and Multiagent Systems. pp.
881–890 (2015)

2. Dos Santos, F., Bazzan, A.L.: Towards efficient multiagent task allocation in the robocup res-
cue: a biologically-inspired approach. Autonomous Agents and Multi-Agent Systems 22(3),
465–486 (2011)

3. Farinelli, A., Rogers, A., Petcu, A., Jennings, N.R.: Decentralised Coordination of Low-
Power Embedded Devices Using the Max-Sum Algorithm. In: Proceedings of the 7th Inter-
national Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS). pp.
639–646 (2008)

4. Fitzpatrick, S., Meertens, L.: Distributed Coordination through Anarchic Optimization. In:
Distributed Sensor Networks: A Multiagent Perspective, pp. 257–295 (2003)

5. Kleiner, A., Farinelli, A., Ramchurn, S., Shi, B., Maffioletti, F., Reffato, R.: Rmasbench:
Benchmarking dynamic multi-agent coordination in urban search and rescue. In: Proceedings
of the 2013 International Conference on Autonomous Agents and Multi-agent Systems. pp.
1195–1196. AAMAS ’13, International Foundation for Autonomous Agents and Multiagent
Systems, Richland, SC (2013)

6. MacGlashan, J.: Burlap library (2016), http://burlap.cs.brown.edu
7. Nüssle, T.A., Kleiner, A., Brenner, M.: Approaching Urban Disaster Reality : The ResQ

Firesimulator. In: RoboCup 2004: Robot Soccer World Cup VIII. pp. 474–482. Springer
(2005)

8. Parker, J., Nunes, E., Godoy, J., Gini, M.: Exploiting spatial locality and heterogeneity of
agents for search and rescue teamwork. Journal of Field Robotics 7(PART 1), n/a–n/a (2015)

9. Pujol-Gonzalez, M., Cerquides, J., Farinelli, A., Meseguer, P., Rodriguez-Aguilar, J.A.: Ef-
ficient Inter-Team Task Allocation in RoboCup Rescue. In: Proceedings of the 14th Interna-
tional Conference on Autonomous Agents and Multiagent Systems. pp. 413–421 (2015)

10. Puterman, M.L.: Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons (2014)

11. Scerri, P., Farinelli, A., Okamoto, S., Tambe, M.: Allocating tasks in extreme teams. In: Pro-
ceedings of the fourth international joint conference on Autonomous agents and multiagent
systems. pp. 727–734. ACM (2005)

http://burlap.cs.brown.edu

	Effective Multi-Robot Spatial Task Allocation using Model Approximations
	Introduction
	Background
	Multi-agent Markov Decision Process
	Rescue Spatial Task Allocation Problem

	Related Work
	Methods
	Hierarchical Planning by Task Clustering
	Single-Agent Approximation
	Static Task Approximation
	The Shortest Path Approximation
	Online Dynamic Planning Horizon

	Experiments and Results
	Comparison with The Optimal Policy
	Scalability
	RoboCup Rescue RMASBench

	Conclusion


