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Abstract. In this paper, we propose a new method to classify strategies
of an opponent used in the RoboCup soccer small size league. It is based
on a sequence of basic actions, where the basic action is a kick action,
a mark action and so on. This method greatly improves our previous
method[9] in the following two points: it frees a restriction that the pre-
vious method can mainly be applicable to set plays, and it reduces the
computing time. Evaluating the classification result by the Rand Index,
we got the value 0.877 or more for classification of our team’s strategies,
considering our team as the opponent team, in 3 out of 4 games and the
value 0.840 or more for 4 opponent teams (1 game for each opponent
team), which achieved a high performance.

1 Introduction

In recent years, the strategies used in the RoboCup Small Size League (SSL)
have been highly developed in order for each team’s robots to take action to
predict an opponent’s behavior. This means that it has become increasingly
necessary to learn more about an opponent’s behavior. There are some studies
of learning an opponent’s strategies in SSL[9,2]. However, these are applicable
mainly to the set plays since they use the trajectory data of robots and need
longer computation time.

In this paper, to overcome the above problems, we propose a new method
to classify the opponent’s strategies. We focus on a sequence of basic actions, or
simply a sequence of actions, where the basic action is a 4-tuple <action name,
a start position, an end position, duration>. Typical action is a kick action, a
pass action, a shoot action and so on. Sequences of actions are clustered into
several groups in which each group would have the sequences of actions derived
from a strategy. The advantage of the method is an easiness of predicting the
next action to come, so that it can be possible to take counter actions easily.

In the following sections, we describe an extraction method of robot actions,
then clustering method by defining a dissimilarity measure of a sequence of
actions. Finally, we show an experimental results and discuss the availability of
the method.
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2 Related work

Erdogan et al.[2] proposed a method to classify opponent’s behaviors in SSL
and classified attacking behaviors in set plays in real SSL games. Expressing the
opponent’s behavior as the trajectories of offensive robots, they make a cluster
analysis by computing the similarity of behaviors. Yasui et al.[9] also proposed
a classification method of opponent’s behaviors in a similar way to Erdogan.
Yasui et al. apply their method to the on-line real time learning of an opponent’s
behaviors in set plays, and experimentally shows that an opponent’s behavior
can be classifiable about 2 seconds before the ball actuation. These studies show
the effectiveness of learning an opponent’s behaviors, however, these methods
are mainly applied to set plays and they need too much computation time.

Trevizan et al.[6] proposed a method to compare the strategies of two teams in
SSL. They divide a time series representing a game into non-overlapping intervals
which they call episodes. They use 23 variables, such as the distance between a
robot and the ball and the distance between a robot and the defense goal, to
characterize the episode, however, they use the mean and standard deviation of
each variable over an episode to reduce data size. Therefore, n episodes with f
variables can be represented by the matrix of the size 2f × n. They compute
a matrix norm of two episode matrices for team A and B and evaluate the
similarity of the strategies between team A and B. Their method compares how
similar two teams’ strategies are. Their study’s objective is different from the
issues of this paper.

Visser et al.[7] proposed a classification method of an opponent’s behaviors
based on the decision tree in the RoboCup simulation league. Using the time se-
ries data consisting of ball - keeper distance, ball speed, the number of defenders
in the penalty area, etc., they made a decision tree to analyze the goalkeeper’s
movements — GK stays in goal, GK leaves goal, GK returned to goal — for
several games. The learning based on the decision tree is a supervised learning.
We would propose an unsupervised learning, as we are aimed at on-line learning.

3 Robots’ action detection

In this paper, we use logged data which had logged in previous RoboCup com-
petitions. The logged data is a time series data consisting of positions and ori-
entations of robots, position of the ball, referee command and so on, which is
logged every 1/60 seconds.

To classify the strategies, we define the following 8 actions: passer robot
mark, shooter robot mark, ball keeping robot mark, pass wait, kick ball, kick
shoot, kick pass, and kick clear. A time series of logged data is converted to
a sequence of these actions, so that it is an input for our classifying process.
(NA (not available) action is suitably inserted if a part of the time series cannot
convert to any of 8 available actions.)

In this section, we describe how robots’ actions are detected from the logged
data. The basic method is the one we proposed in [1]. We extend the method in
this section.



3.1 Mark actions

In [1], mark actions consist of three actions, — “passer mark”, “shooter mark”
and “ball keeping robot mark”. We improved the detection algorithms described
in [1] a bit and describe some of them in the following subsections.

passer mark Asano doesn’t consider, in his passer mark algorithm, whether a
passing robot surely exists. In his algorithm, the passer mark is detected even if
a robot simply runs after the ball. We correct the fault as follows.

[Definition of symbols]
−−→
Ti,f : the position of the teammate robot Ti at time f .
−−→
Oj,f : the position of the opponent robot Oj at time f .
−→
Bf : the position of the ball at time f .
−−→
TS,f : the position of the teammate robot that has the shortest distance to the

line connecting the ball
−→
Bf and the robot

−−→
Ti,f . We consider TS,f as the receiver

robot.
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Fig. 1. Passer mark

We compute a distance Dj,i,f between Oj,f and the line connecting Ti,f

and TS,f as shown in Figure 1. If either or both of inner products
−→
V1 ·

−→
V2 and

−→
V4 ·

−→
V5 is/are negative, γp is added to Dj,i,f , where γp is a given constant, since

we would exclude the non-mark case. (See Eq.(1).) Averaging Dj,i,f s over the
interval [f, f +n− 1] gives the following equation, and with it we judge whether
Oj marks a passer robot or not. (When MarkPassj,i,f variable is 1, Oj marks
the passer Ti at time f .)

MarkPassj,i,f =


1, if 1

n

f+n−1∑
k=f

Dj,i,k ≤ THp

0, otherwise

(1)



where THp is a given threshold and n is a given constant1.

The detection algorithm is given below.

/*Passer mark*/
1 for(f = 0; f < fend; f ++)
2 for(j = 0; j < 6; j ++)
3 for(i = 0; i < 6; i++) {
4 compute Dj,i,f and MarkPassj,i,f
5 memorize MarkPassj,i,f }

Shooter mark and ball keeping robot mark

A shooter mark is often carried out near the goal area and a mark robot
usually stands a bit far from a shooter. So we use, as an evaluation metric,
a distance between a (mark) robot and a line connecting the shooter and the
center of the goal mouth. Then, we compute MarkShootj,i,f variable by using
the similar equation 2 as Eq. (1). (When MarkShootj,i,f variable is 1, Oj marks
the shooter Ti at time f .)

A ball keeping robot mark is the mark other than the passer mark and the
shooter mark. We use, as an evaluation metric, weighted sum of two distances,
i.e. a distance D1j,i,f between the ball keeping robot Ti and a (mark) robot Oj

and a distance D2j,i,f between a (mark) robot Oj and a line connecting the ball
keeping robot Ti and the ball.

Dj,i,f = αD1j,i,f + βD2j,i,f (2)

Then, we compute MarkBallj,i,f variable by using the similar equation 3 as Eq.
(1). (When MarkBallj,i,f variable is 1, Oj marks the ball keeping robot Ti at
time f .)

3.2 Pass Waiting action

Pass waiting action is not discussed in [1]. We newly define it here.

Let Ob be a opponent robot that is nearest to the ball. It is reasonable to say
that a candidate robot waiting to receive a pass is the one stood to the left side
of Ob in Figure 2. Oj in Fig. 2 is one of the candidates. For such opponent robots,
compute an angle θj that is a shootable angle. If there is an opponent robot which
has a shootable angle greater than given threshold, we define the opponent is

1 We used THp = 400mm and n = 3 for our experiment.
2 In the equation, threshold is denoted by THs and we used THs = 400mm in our
experiment.

3 In the equation, threshold is denoted by THb and we used THb = 800mm in our
experiment. Also, for both α and β in Eq. (2), we used the value 0.5 .



θj

Ob

Oj

Ti1

Ti2

B

Opponent sideTeammate side

Fig. 2. Pass waiting action

in a pass waiting action. To reduce the influence of noise, the shootable angle is
averaged over some interval. The variable WaitPassj,f is given by

WaitPassj,f =


1 if 1

n

f+n−1∑
k=f

θj,k ≥ THw

0 Otherwise

(3)

where θj,k is a shootable angle of robot Oj at time k. As the threshold value of
THw we used 8 degree (= 0.14rad) and the length of the interval n is 3 in our
experiment.

3.3 Kick actions

In RoboCup Soccer, the kick actions are important as well as the mark actions.
We proposed a detection algorithm of kick action from logged data in [1] and its
modification in [8]. We use the algorithm basically for kick detection. However,
for the purpose of this paper, we would classify kick actions according to the
kick purpose, i.e. kick for shoot, for pass and for clear. The kick action not
belonging to these three purposes is also considered. In this section, we describe
kick actions detection algorithm.

[Definition of symbols]
Kick actions = {KickShoot, KickPass, KickClear, KickBall}. KickBall is a kick
action other than first three actions.
Lb : a line segment that begins from the kick point Ps and ends at the last point

Pe that the ball goes straight, and let
−→
Pb be its vector form.−→

Poi : a vector beginning from the kick point and ending in opponent robot Oi

Pgl, Pgr : edge points of teammate goal mouth

Following algorithm decides the kick action based on the location of the end
point of Lb.



/*Kick action classification*/
1 if Lb crosses side line then kick is KickClear
2 else if Lb crosses teammate goal line then kick is KickShoot

3 else if
∣∣∣−→Poi ×

−→
Pb

∣∣∣ < D1 then kick is KickPass

4 else if Pe is in △PsPglPgr then kick is KickShoot
5 otherwise kick is KikBall

In line 3 of the above algorithm,
∣∣∣−→Poi ×

−→
Pb

∣∣∣ < D1 computes how close Poi is to

the line segment Lb.

Finally, an action which is not any of above 8 actions is expediently classified
as NA action.

4 Action decision algorithm

In the previous section, we described the action detection algorithm. Next, for
each opponent robot, a sequence of actions is calculated. Generally, multiple
actions may be detected at the same time for the robot. In that case we select
one action according to the priority of action, where the priority of kick action
is highest, then pass waiting action, and mark action is lowest. As a result, a
time series of logged data is converted to a time series of actions4 and finally is
converted to a sequence of actions:

AP [n] =



actionn1−−→psn1−−→pen1
framen1

 , · · · ,


actionni−−→psi1−−→peni
frameni

 , · · · ,


actionnt−−→psnt−−→pent
frament


 (4)

where AP [n] is a sequence of actions for robot n, −−→psi1 and −−→peni are a start and an
end time of actionni, respectively, and frameni is a duration of actionni. The
ith element of a sequence of actions is denoted by

AP [n][i] =


actionni−−→psni−−→peni
frameni

 (5)

A note on a time series of actions
A time series of actions usually contain false actions. To remove such actions,

a preprocessing is necessary.

4 This is a series of actions given every time frame.



– An action which only continues for a couple of frames should deal with false
action, and as a result will be replaced by the succeeding action. However, a
kick action is an exception since a short kick action may happen at the edge
of the field.

– If an action breaks into two actions by a false action, they should be unified
into one action.

– If false action cannot be replaced by any of 8 actions, NA action is padded.

5 Dissimilarity of action sequence

We define a dissimilarity metric of two sequences of actions given by Eq. (4). To
do so, firstly, we define a dissimilarity metric d0 of two actions AP1 [n1][t1] and
AP2 [n2][t2] as follows,

d0 ( AP1 [n1][t1], AP2 [n2][t2]) =

α · frame diff + β · p distance + γ · diff size cost

if actionn1t1 = actionn2t2

α · 2.0 + β · p distance + γ · diff size cost

if (actionn1t1 ∈ Kick, actionn2t2 ̸∈ Kick) or

(actionn1t1 ̸∈ Kick, actionn2t2 ∈ Kick)

α · 1.0 + β · p distance + γ · diff size cost

otherwise

(6)

where α, β, γ are weights, and frame diff, p distance and diff size cost are ex-
plained in the following paragraph.

The frame diff is given by following equation,

frame diff =

∣∣∣∣ framen1t1

frame playn1t1

− framen2t2

frame playn2t2

∣∣∣∣ (7)

where frame play is a duration of a sequence of play AP [n]. Frame diff takes a
value between 0 and 1.

The p distance is given by following equation,

p distance = min

{
|(−−−→psn1t1 −−−−→psn2t2)|
FieldLength

, 1.0

}
+min

{
|(−−−→pen1t1 −−−−→pen2t2)|
FieldLength

, 1.0

}
(8)

where FieldLength is the length of the side line of the field. P distance takes a
value between 0 and 2.

The diff size cost is given by following equation,

diff size cost = min

{
1

3

(
long size

short size
− 1.0

)
, 2.0

}
(9)



where long size= max(framen1t1 , framen2t2) and short size= min(framen1t1 ,
framen2t2). Diff size cost takes a value between 0 and 2.

Next, we define a dissimilarity d1(Ap1[n1], Ap2[n2]) between two sequences of
actions AP1 [n1] and AP2 [n2] of robots n1 and n2.

Since action sequences are not always have the same length, we define the
dissimilarity as how much the shorter sequence of actions coincides with the
longer sequence of actions. Computation algorithm is given below.

Step1 Let short be shorter sequence, and long be longer sequence. Let the
length of short and long be short size and long size, respectively. Let
kick num be the number of kick actions in the long. Let i and j be counter
variables with initial value 1. Let start j and limit j be the start of search
pointer and the end of search pointer with initial value 1. Initialize d1 to 0.

Step2 For ith action in short sequence, decide the search range in the long
sequence as follows,

ls = long size/short size

limit j1 = i+ ls

limit j2 = min(start j + ls, long size)

limit j = max(limit j1, limit j2)

(10)

For ith action in short sequence, search coincident action in the rage start j
and limit j of long sequence.

Step3 If coincident action is found, compute

d1 = d1 + d0(AP1 [n1][i], AP2 [n2][j]),

and start j = j + 1. If such action isn’t found, compute

d1 = d1 + d0(AP1 [n1][i], AP2 [n2][i]).

If i < short size, then i = i+ 1 and go to Step2, otherwise go to Step4.
Step4 Out of kick num kick actions in long sequence, remove actions that

matched with the kick action in short sequence. Let the number of remaining
kick actions be kick unused. Add kick unused to d1 as an additional cost,

d1 = d1 + kick unused

Finally, we define a dissimilarity d2 between plays. A play has six robots’
action sequences, so we must consider correspondence between any 2 sequences.
The dissimilarity d2 is defined by,

d2(AP1 , AP2) = min
σ∈S6

{Tr(FPσ)} (11)

F = [fij ] (12)

fij = {d1(AP1 [i], AP2 [j])} (13)

where Pσ is a permutation matrix and Tr(A) is a trace of matrix A.
To classify team’s behavior, we use the group average method[3] to cluster

the sequences of actions under the dissimilarity metric d2.



6 Decision of the number of clusters

To decide the number of clusters is important. If the range of the number of
clusters is given in advance, we can use Davies-Bouldin index[4]. On the contrary,
Yasui et al. proposed a method to decide the number of clusters not depending
on the range[10]. It is given by the following procedure. First, compute

W (K) =
K∑
i=1

∑
Xk∈Ci

∑
Xl∈Ci

d2(APk
, APl

). (14)

This equation adds up the sum of the distance of two elements in a cluster
for all clusters, assuming that the number of clusters is K. Then, using W (K),
compute,

W ′(K) = W (K)/W (1) (15)

and
arg max
1≤K≤N

(W ′(K) ≤ h). (16)

where h is a threshold value given in advance. The number of clusters is decided
by Eq. (16).

7 Experiment: our team’s strategies classification

In RoboCup 2015, we competed 4 official games and recorded logged data for
the games. Using them, we did the classification experiment assuming our team
as the opponent. In the experiment, we used α = β = γ = 1/3 in Eq. (6) and
h = 0.06 in Eq. (16) 5.

In this section, we classify our team’s strategies by experiment. In the exper-
iment, we used set play data. A set play begins at ball re-placement and ends at
ball interception or ball out of field. For the 4 games, the results of clustering6

are shown in Figures 3 ∼ 6.
Rand index[5] is used to evaluate the classification results. We give the correct

classification for each game which is made by the first author of this paper. Rand
index for each game is shown in Table 1. Rand index shows high value for each
game except No. 2 game. For No. 2 game, by the opponent team’s malfunction,
the detection of mark action didn’t work well so that it lowered the Rand index.
For other games, it happened that a cluster given by human clustering was
divided into two clusters in computer clustering. This lowered Rand index a bit.
However, in practical use, it would not be a serious problem.
5 For the parameter h, we ran the program in the range of 0.03 to 0.07 and h = 0.06
gave the best result.

6 The number of clusters is not known in advance in this experiment, so that k-means
method cannot use. Ward’s method and the group average clustering work under
the unknown number of clusters. In our experiment, they gave similar clustering
results. The computational cost of the group average clustering is lower than the
one of Ward’s method. Therefore, we used the group average clustering.



Fig. 3. Dendrogram for match No.1 Fig. 4. Dendrogram for match No.2

Fig. 5. Dendrogram for match No.3 Fig. 6. Dendrogram for match No.4

Table 1. Rand Index (RoboDragons) (computer clustering vs. human clustering)

No.1 No.2 No.3 No.4

Rand Index 0.892 0.750 0.924 0.877

8 Experiment: opponent team’s classification

For each opponent team in RoboDragons’ official games, we classified the strate-
gies of the team. Figures 7 ∼ 10 show the classification results and Table 2 shows
Rand index. Table 2 shows that the Rand index takes the value between 0.840
and 0.901. Though Erdogan et al. got the value between 0.87 and 0.96, they
used the trajectory data. Our experimental results show that high Rand index
value close to Erdogan’s results is gotten from the action sequences data. In
the experiment, cluster division problem discussed in previous section occurred
again. Future work on improving this problem is necessary.



Fig. 7. Dendrogram for match No.1 (op-
ponent)

Fig. 8. Dendrogram for match No.2 (op-
ponent)

Fig. 9. Dendrogram for match No.3 (op-
ponent)

Fig. 10. Dendrogram for match No.4 (op-
ponent)

Table 2. Rand Index (opponents)

No.1 No.2 No.3 No.4

Rand Index 0.901 0.889 0.874 0.840

9 Computation time

For the game No. 4 in which 35 set plays are executed, we measured the total
computation time of the clustering7. It includes the computation time of the
preprocessing of a time series of actions, the creation of distance matrix and the
clustering by group average method. Table 3 shows the result. From Table 3, it
is clear that the real time computation of clustering is possible.

7 Since the clustering is done incrementally, when i’th set play is executed, i set plays
are clustered.



Table 3. clustering time(AMD A10 7800)

average time(ms) max time(ms)

No.4(35 setplays) 0.67 1.82

10 Concluding remarks

We have proposed a learning (classification) method based on opponent’s actions
in this paper. A sequence of actions is derived from a time series of logged
data of an SSL game. A sequence of actions has less data than logged data so
that faster computation can be expected. Evaluation by Rand index shows that
clustering by the proposed method gives good classification result of opponent
team’s behaviors (strategies in most cases). Computation time is so small that
real time computation is possible enough.

Future work is refinement of the proposed method, extension to any scene
in in-play, generation of counter action using the logged data of past games and
implementation to our RoboDragons system.
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