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Abstract. We investigate the learning of a flexible humanoid robot kick con-
troller, i.e., the controller should be applicable for multiple contexts, such as dif-
ferent kick distances, initial robot position with respect to the ball or both. Current
approaches typically tune or optimise the parameters of the biped kick controller
for a single context, such as a kick with longest distance or a kick with a spe-
cific distance. Hence our research question is that, how can we obtain a flexible
kick controller that controls the robot (near) optimally for a continuous range of
kick distances? The goal is to find a parametric function that given a desired kick
distance, outputs the (near) optimal controller parameters. We achieve the de-
sired flexibility of the controller by applying a contextual policy search method.
With such a contextual policy search algorithm, we can generalize the robot kick
controller for different distances, where the desired distance is described by a
real-valued vector. We will also show that the optimal parameters of the kick
controller is a non-linear function of the desired distances and a linear function
will fail to properly generalize the kick controller over desired kick distances.

Keywords: Contextual Policy Search - Motor Learning - Humanoid Robot -
Non-linear Policies

1 Introduction

Designing optimal controllers for robotic systems is one of the major tasks in the
robotics research field. Hence, it is desirable to have a controller that can control the
robot for different tasks or contexts in real time, for example a soccer robot should be
able to kick the ball for any desired kick distance which can be chosen from a con-
tinuous range of kick distances. We define a task as a context. Context is a vector of
variables that do not change during a task’s execution, but might change from task to
task. In this paper for example, the context is the distance the ball travels after being
kicked and can be chosen by the agent. The kick task is one of the most important skills
in the context of robotic soccer[1]. Typically the kick controllers are only applicable for
a discretized number of desired distances. For example three sets of parameters for the
kick controller is obtained which are applicable for long, mid and short distance kicks.
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Such a controller limits the robot to properly pass the ball to its teammates. Control-
ling the robot to kick the ball (near)optimally for different distances, allows the agents
have a lot more control and options regarding their next decision, which could affects
the game’s outcome. Our goal is to find a parametric function that given a desired kick
distance, outputs the (near) optimal controller parameters. In the other word we would
like to obtain a policy π(θ|s) that sets the parameters θ of a robot kick controller given
a context s which is the desired kick distance. In order to optimize the robot controller
parameters given an objective function, there are many algorithms proposed by the
scientific community [2–9]. However, many of these algorithms usually optimize a pa-
rameter set for a single context, such as optimizing a kick for the longest distance or
the highest accuracy [10]. In other words, these algorithms fail to generalize the op-
timized movement for a context to different contexts. In order to generalize the kick
motion to, for example, different kicking distances, typically the parameters are opti-
mized for several target contexts independently. Afterwards, to generalize movements
to new unseen contexts and to obtain a continuous policy π(θ|s), regression methods are
commonly used [11, 12]. Although such approaches have been successfully used, they
are time consuming and inefficient regarding the number of needed training samples.
In such a method, data-points obtained from optimizing the kick controller for context
s cannot be re-used to improve and accelerate the optimisation for context s′. This is
due to the fact that optimizing the controller parameters and generalizing them are two
independent processes and the correlation between different contexts is ignored during
the optimisation. Therefore in this paper we propose to use contextual relative entropy
policy search(CREPS) algorithm which searches for the optimal parameters of the pol-
icy π(θ|s) in one run optimisation process a. In the other word in CREPS, optimizing
the controller parameters and generalizing them happens simultaneously and therfore
the correlation between different contexts can be exploited in order to accelerate the
optimisation. CREPS, however, has a major drawback related to its search distribution
update. The distribution might collapse prematurely to a point-estimate, resulting in
premature convergence. On the other hand, the CMA-ES algorithm [2] which is not a
contextual algorithm has shown to be able to avoid premature convergence. Therefore
we combine the update rules of CREPS and CMA-ES resulting to the contextual relative
entropy policy search with covariance matrix adaptation(CREPS-CMA). We will show
that CREPS-CMA avoids premature convergence. Hence we will use CREPS-CMA for
optimising the kick controller. We will also show that a non-linear function of desired
kick distance clearly outperforms a linear one. This effect has been also observed for
the humanoid walking task [13]. Now our robot is able to kick the ball for a continuous
range of desire kick distances. This is in contrast with our previous approach where we
had 3 sets of parameters for short, mid and long distance kicks.

2 The Approach

We used a simulated Nao robot shown in Figure 1 for our experiments. Our movement
pipeline is composed of two main parts: a kick controller, which receives parameters
θ and converts them into joint commands for the robot’s servos; and a policy function,
which maps a given context s for a specific kick distance into the corresponding param-
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Fig. 1. The initial (left) and final (right) positions of an exemplary kick movement.

Fig. 2. The pipeline of our contextual kick movement.

eter vector θ. The pipeline for the kick task, whose context is the kick distance s with a
straight kick direction with respect to the torso, is shown in Figure 2.

2.1 Kick Controller

We have a kick controller which is a simple keyframe-based [10] linear model and we
also have stability module as in [1] that stabilize the robot during performing the kick
movement. A keyframe, as defined in [10], is a complete description of joint angles,
either absolute or relative to the previous keyframe. Our keyframe based controller is
defined by the following parameters:

– The initial keyframe, represented as a vector α of joint angles with dimension l,
– The final keyframe, also represented as a vector β of joint angles with dimension l.
– The action time t that is the amount of time the robot takes to move from the initial

to the final keyframe. The joint angles are linearly interpolated across t to create
the corresponding movement.

During performing kick only the legs joints move and remaining joints (arms and head
joints) are kept constant. As each leg has 6 joints, α and β are 12-dimensional vectors.
Therefore considering the action time t, our kick controller has 25 parameters to set.
The controller receives a 25-dimensional parameter vector θ, which is then interpolated
and coded into motor commands. Figure 1 shows the initial and final positions of an
exemplary kick. The stability module has its constant parameters which doesn’t change
from task to task, please see [1] for more details of our stability module. Now we need
to find a policy function of kick distance s that sets our controller parameters with the
proper parameters θ for any given desired kick distance.
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2.2 Policy Function

Our goal is to find a function in form of

µ(s) = ATϕ(s),

that given a context vector s with dimension ds, outputs a optimal parameter vector θ
with dimension dθ such that it maximise our objective functionR(θ, s) : {Rds ,Rdθ} →
R. Where ϕ(s) is an arbitrary feature function of context s that outputs a feature
vector with dimension dϕ and the gain matrix Aπ is a dθ × dϕ matrix. Typically
ϕ(s[i]) = [1 s[i]], which results in linear generalization over contexts. In order to
achieve non-linear generalization over contexts, we can use normalized radial basis
features (RBF) as a feature function:

ϕ(s[i]) =
ψj(s

[i])∑K
j=1 ψj(s

[i])
, ψj(s

[i]) = exp(− (s[i] − cj)2

2σ2
),

where K is the number of RBFs and centres {cj}j=1...K are equally spaced in the
range of s, based on the desired number of RBFs K, and σ2 is the bandwidth of the
RBF. The bandwidth represents how related contexts are. A large bandwidth means that
contexts are very similar and therefore the relationship is (near)linear. A bandwidth of
0 is an extreme case where movements are not generalizable at all, and each context
has its independent optimal parameters. Both K and σ2 are hand-tuned parameters.
RBF features have been shown to enable algorithms to learn non-linear policies which
greatly outperform their linear counterparts on non-linear tasks, such as walking [13],
so we expected a performance increase. Now the task is to learn the optimal gain matrix
A. As we don’t have the labelled data to fit A, we need to use a reinforcement learning
method.

2.3 Learning Policy Function

In order to learn the policy function µ(s) we use a contextual policy search algorithm
called CREPS-CMA. CREPS-CMA is an extension of contextual REPS [14, 8] which
is capable of multi-task learning. The goal of CREPS-CMA is to find a function µ(s)
that given a context s, it outputs a parameter vector θ such that {s,θ} maximises the
objective function R(s, θ). The only accessible information on the objective function
R(s, θ) are evaluations {Rk}k=1...k of samples {sk,θk}k=1...k, where k is the index
of the sample, ranging from 1 to the number of samples N . CREPS-CMA maintains a
stochastic search distribution π(θ|s) over the parameter space θ of the objective func-
tion which is used to generate samples θ given s. The search distribution π(θ|s) is
modelled as a linear Gaussian policy, i.e.,

π(θ|s) = N
(
θ|ATϕ(s), Σπ

)
,

where the mean of the distribution is our policy function µ(s) we are searching for and
covariance matrixΣπ controls the exploration of the algorithm. CREPS-CMA is an iter-
ative algorithm. First it initializes the search distribution π(θ|s) by defining matrix and
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covariance matrixΣπ with arbitrary values1. Afterwards in each iteration, given context
samples2 {sk}k=1...k, the current search distribution q(θ|s) is used to create samples
{θk}k=1...k of the parameter vector θ. Subsequently, the evaluation {Rk}k=1...k of
samples {sk,θk}k=1...k is obtained by querying the objective function R(s,θ). And
dataset {sk,θk, Rk}k=1...k is used to compute a weight {dk}k=1...k for all samples.
Each weight is a pseudo-probability for the corresponding sample. Subsequently, using
{sk,θk, dk}k=1...k, a new Gaussian search distribution π(θ|s) is estimated by estimat-
ing a new A matrix and covariance matrix Σπ . The new search distribution will give
more probabilities to the samples {sk,θk}k=1...k with better returns {Rk}k=1...k. This
process runs iteratively until the algorithm converges to a solution. After all we are
interested in the matrix A to construct our policy function µ(s). Algorithm 1 shows
a compact representation of contextual stochastic search methods. Now we briefly ex-

Algorithm 1 Contextual stochastic search algorithm
Initialize π(θ|s)
Repeat

Set q(θ|s) to π(θ|s)
Use a uniform distribution to generate context samples {sk}k=1...N

Sample parameters {θk}k=1...N from current search distribution q(θ|s) given context
samples {sk}k=1...N

Evaluate the reward Rk of each sample in the sample set {sk, θk}k=1...N

Use the data set {θk, sk, Rk}k=1...N to compute a weight dk for each sample
Use the data set {sk, θk, dk}k=1...N to update the new search distribution π(θ|s)

Until search distribution π(θ|s) converges.

plain how CREPS-CMA computes weights and what are the update rules of the search
policy.

2.4 CREPS-CMA

The key idea behind contextual REPS [8] is to ensure a smooth and stable learning
process by bounding the relative entropy between the old search distribution q(θ|s) and
the newly estimated policy π(θ|s) while maximising the expected return. This results
in a weight

dk = exp ((Rsθ − V (s))/η)

for each sample [sk,θk], which we can use to estimate a new search distribution π(θ|s).
Rsθ denotes the expected performance when evaluating parameter vector θ in context

1 With initializing we can define the region of the space that we would like the algorithm starts
searching

2 Please note that the way we sample contexts sk depends on the task. Throughout this paper we
use a uniform distribution to sample contexts sk which is desired kick distance. The intuition
behind it is that all the kick distances have same importance for us.



6 Humanoid Kick with Controlled Distance

s and V (s) = ϕ(s)Tw is a context dependent baseline which is subtracted from the
returnRsθ. The parametersw and η are Lagrangian multipliers that can be obtained by
minimising the dual function, given as

min
η,w

g(η,w) = ηε+ ϕ̂Tw + η log

(
N∑
K=1

1

N
exp

(
R[k] −ϕ(s[k])Tw

η

))
.

Where ϕ̂ =
∑N
K=1ϕ(s

[k]) is the expected feature vector for the given context sam-
ples. We optimize this convex dual function by gradient decent. Now given dataset
{sk,θk, dk}k=1...N and the old Gaussian search distribution

q(θ|s) = N
(
θ|AT

q ϕ(s), Σq

)
,

we want to find the new search distribution π(θ|s) by findingAπ andΣπ . Therefore we
need two update rules, one for updating the context-dependent policy function µπ(s)
of the search distribution and another one for updating the covariance matrix Σπ of the
distribution.

Context-Dependent Mean-Function Update Rule The matrix A can be obtained by
the weighted maximum likelihood, i.e.,

A = (ΦTDΦ+ λI)
−1
ΦTDU , (1)

whereΦT = [ϕ[1], ..., ϕ[N ]] contains the feature vector for all context samples {sk}k=1...N ,
U = [θ[1], ..., θ[N ]] contains all the sample parameters,D is the diagonal weighting ma-
trix containing the weightings {.k}k=1...N and λI is a regularization term. λ is a very
small number such as 1e− 8.

Covariance Matrix Update Rule Standard contextual REPS directly uses the weighted
sample covariance matrix asΣπ which is obtained by

S =

∑N
k=1 dk

(
θk −ATϕ(sk)

)(
θk −AT

πϕ(sk)
)T

Z
, (2)

Z =
(
∑N
k=1 dk)

2 −
∑N
k=1(dk)

2∑N
k=1(dk)

.

It has been shown that the sample covariance matrix from Equation 2 is not a good es-
timate of the true covariance matrix [15], since it biases the search distribution towards
a specific region of the search space. In other words, the search distribution loses its
exploration entropy along many dimensions of the parameter space, which causes pre-
mature convergence. This is a highly unwanted effect in policy search. To alleviate this
problem, inspired by rank-µ update rule of CMA-ES [2], which is not a contextual al-
gorithm, we combine the old covariance matrix and the sample covariance matrix from
Equation 2, i.e.,

Σπ = (1− λ)Σq + λS.
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There are different ways to determine the interpolation factor λ ∈ [0, 1] between the
sample covariance matrixS and the old covariance matrixΣq . For example, in [15], the
factor λ ∈ [0, 1] is chosen in such a way that the entropy of the new search distribution
is reduced by a certain amount, while also being scaled with the number of effective
samples. We will extended REPS by using the rank-µ covariance matrix adaptation
method of CMA-ES algorithm [2] which has been shown to be effective for avoiding
premature convergence, i.e.,

λ = min

(
1,
φeff

d2θ

)
, φeff =

1∑N
k=1(d

[k])2

where φeff is the number of effective samples and dθ is the dimension of the parameter
space θ.

3 Experiments

3 In this section, first we evaluate CREPS-CMA algorithm. Hence we use standard op-
timization test functions [16], such as the Sphere, the Rosenbrock and the Rastrigin
(multi-modal) functions. We extend these functions to be applicable for the contextual
setting. The task is to find the optimum 15 dimensional parameter vector θ for a given
1 dimensional context s. We will show that CREPS-CMA performs favourably. After-
wards, We use CREPS-CMA to optimize our kick controller for different desired kick
distances for a simulated Nao robot4 and will show our accuracy results, with both lin-
ear and non-linear policies. According to the results non-linear policy outperforms the
linear one.

3.1 Standard Optimization Test Functions

We chose three standard optimization functions, which are the Sphere function

f(s, θ) =

p∑
i=1

x2
i ,

the Rosenbrock function

f(s, θ) =

p−1∑
i=1

[100(xi+1 − x2
i )

2 + (1− xi)2],

and also a multi-modal function, known as the Rastgirin function

f(s, θ) = 10p+

p∑
i=1

[x2
i − 10 cos(2πxi)],

3 Matlab source-code of CREPS-CMA algorithm is available on-line at https://dl.
dropboxusercontent.com/u/16387578/ContextualREPSCMA.zip

4 https://www.ald.softbankrobotics.com/en
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Fig. 3. The performance comparison of CREPS and CREPS-CMA for optimising contextual ver-
sions of standard functions (a) Sphere, (b) Rosenbrock and (c) Rastrigin. The results show that
CREPS-CMA clearly outperforms CREPS in all three benchmarks while CREPS suffers from
premature convergence.

where p is the number of dimensions of θ and x = θ+As. The matrix A is a constant
matrix that was chosen randomly. In our case, because the context s is 1 dimensional,
A is a p × 1 dimensional vector. Our definition for x means the optimum θ for these
functions is linearly dependent on the given context s. The initial search area of θ for all
experiments is restricted to the hypercube −5 ≤ θi ≤ 5, i = 1, . . . , p and contexts are
uniformly sampled from the interval 0 ≤ si ≤ 3, i = 1, . . . , z where z is the dimension
of the context space s. In our experiments, the mean of the initial distributions has
been chosen randomly in the defined search area. We compared CREPS-CMA with the
standard Contextual REPS. In each iteration, we generated 50 new samples. The results
in Figure 3 show that CREPS-CMA could successfully learn the contextual tasks while
standard Contextual REPS suffers from premature convergence.
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Fig. 4. The 15 RBFs setup used for generating features.

3.2 Kick Task Results

We use a Nao humanoid robot simulated in RoboCup 3D simulation environment which
is based on SimSpark 5: a generic physical multiagent system simulator. The robot has
22 degrees of freedom, six in each leg, four in each arm, and two in the neck. We
use CREPS-CMA to train a simulated NAO robot by optimising the kick controller
explained in section 2 using both linear policies, i.e., ϕ(s[i]) = [1 s[i]] and a RBF
based non-linear policy. The desired kick distance s varies from 2.5m to 12.5m. For the
non-linear policy, we choose K = 15 normalized RBFs and σ2 is set to 0.5. Both K
and the σ2 parameters were chosen by trial and error to maximize the results accuracy.
Figure 4 shows the setup of the used RBFs over the context range.

We maximize a context dependent objective function

R(s, θ) = −(x− s)2 − y2,

where s is the desired kick distance, and x and y are the ball distances travelled along
the x- and y-axes using the kick controller with the given parameter set θ. We initial-
ize the search distribution π with a hand tuned kick policy, which was able to kick the
ball over 15m. We optimized the kick with 1000 iterations. Each iteration generates
20 new samples where the contexts were sampled uniformly. Each sample was evalu-
ated 5 times, and was averaged to smooth out the noisy returns. In order to simulate
competition conditions, for evaluating each sample, we placed the robot in 5 different
positions around the ball and it had to perceive the ball, move towards it, position itself
in place and then kick it towards the target goal using the kick controller. We com-
pared the performance of the linear policy with non-linear one. Figure 6 shows that the
non-linear policy clearly outperforms the linear one and the accuracy of the non-linear
policy is considerable. 6 The average error of the linear policy was 0.82± 0.10m while

5 http://simspark.sourceforge.net/
6 Demonstration video of the non-linear kick controller using the magma challenge tool[17]

is available on-line at https://www.dropbox.com/sh/0iimyykf6xejj6g/
AADg9iCNJZAbu3Voe2UKsmQza?dl=0.
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Fig. 5. The learned linear (left) and non-linear (right) policies for kick distances of 2.5 to 12.5
meters. The y-axis represents the controller parameter values for a given desired kick distance,
and the x-axis represents the desired kick distance.

we achieved an average error of 0.34±0.11m using the non-linear policy. As expected,
using a non-linear policy improves the accuracy of the results with order of magnitude.
In fact, the average error is more than halved. This also demonstrates the non-linearity
nature of robotic tasks such as kick task and the usefulness of using RBF functions to
capture this non-linearity. Figure 5 shows the learned linear and non-linear policies for
generalizing the 25 parameter kick controller for different kick distances.We can see
that the learned linear policy is a linear approximation of its corresponding non-linear
policy.
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Fig. 6. The performance of the learned linear (blue) and non-linear (red) policies. The x-axis
represents the desired kick distance, in meters, while the y-axis represents the error with respect
to desired kick distance, also in meters.

4 Conclusion

We used a recently proposed contextual policy search algorithm to generalize a robot
kick controller for different desired kick distances, where a context is described by
a real-valued vector of distances. We have modified the algorithm, naming it CREPS-
CMA. Using CREPS-CMA, we have successfully learned linear and non-linear policies
over the context of kick distances. The non-linear policy outperforms its linear coun-
terpart, and allows a humanoid robot to kick a ball with flexible distances and with
satisfactory accuracy results, which could leads to a better control and coordination in
a robotic soccer match. In this research, we also demonstrated the non-linearity of a
kick task. In future we will use more complex kick controllers such as dynamic motor
primitives.
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