
INDIVIDUALISED HUMAN 
MODELS FOR CYBERPHYSICAL 

INTERACTIONS 
RUZENA BAJCSY 

2016.05.12 



MOTIVATION 
People are unique. 

2/12 



MOTIVATION 
People are unique. 

• Genetic variation 

2/12 



MOTIVATION 
People are unique. 

• Genetic variation 
• Age 

2/12 



MOTIVATION 
People are unique. 

• Genetic variation 
• Age 
• Illness 

2/12 



MOTIVATION 
People are unique. 

• Genetic variation 
• Age 
• Illness 
• Injury 

2/12 



MOTIVATION 
People are unique. 

• Genetic variation 
• Age 
• Illness 
• Injury 
• Treatment 

2/12 



MOTIVATION 
Large variations between individuals 

• Genetic variation 
• Age 
• Illness 
• Injury 
• Treatment 

8/38 



MOTIVATION 
Large variations between individuals 

• Genetic variation 
• Age 
• Illness 
• Injury 
• Treatment 

, and tasks 

9/38 



LAB GOALS: 

Individual System 

Interaction 
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KINEMATIC MODELLING 

Kinematics- Motion capture 

• Kinect 1, 2, Phasespace Impulse X2 
• Adafruit 9DoF IMU 
• Recovery via rigid skeletonisation, 

inverse kinematics 
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KINEMATIC EVALUATION OF HUMAN MOTION 

(a) 0⁰

(f) 60⁰

(b) 30⁰

(d) 0⁰

(c) 60⁰

(e) 30⁰

 Goal: Evaluation of low-cost methods for 
capturing human motion kinematics 

 We compared Kinect v1 and v2 with 
motion capture to determine the error 
distributions for different joints 

 Outlier exclusion: using a mixed Gaussian 
(on-track motion data) and uniform 
(random motion data due to tracking loss) 
distribution to model the overall motion 
data 

 

 
Kinect 2Kinect 1

Gregorij Kurillo 
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ACTION SEGMENTAION 
 Goal: Develop a robust unsupervised 

method for segmenting repetitive 
actions based on the human kinematics 

 We use unscented Kalman filter (UKF) to 
extract kinematics and reduce effect of 
noise 

 We apply frequency analysis to 
determine most representative kinematic 
parameters 

 We developed robust method for 
segmentation using zero-velocity crossing 
with based k-means classification to 
determine motion phases 

 Applications: Physical rehabilitation, 
exercise coaching, robotic manipulation 

I II III

Qifei Wang 
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APPLICATION: DIAGNOSTICS 

 Goal: Development of new upper-
extremity outcome measure for functional 
evaluation in muscular dystrophy and 
other disorders. 

 Reachable workspace obtained from 
kinematic measurements from 3D vision 
camera (MS Kinect) is used as a proxy of 
upper-limb function. 

 Validation of reachable workspace outcome 
measure using standardized clinical tests 
(over 200 controls & patients). 

 Applications: Physical therapy, testing of 
drug effectiveness, remote health care, 
assistive devices, ergonomics. 

Gregorij Kurillo 
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DYNAMIC MODELLING 

Dynamics- Force sensing 

• AMTI Force platform  
• ATI Force sensors 
• UR5 Robot manipulator 
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DYNAMIC MODELLING 

• Given motion capture data 
and contact force data, can 
we recover the masses, and 
skeleton of the user? 
 

• Can we predict contact 
forces from just this model 
and motion capture? 

Investigation into standing 

Robert Matthew 
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DYNAMIC MODELLING 

Measure 
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DYNAMIC MODELLING 
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DYNAMIC MODELLING 

Measure 
contact forces 

Validate recovered 
forces 

Recover Dynamic 
Parameters 

Robert Matthew 
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DYNAMIC MODELLING 

Poor 
Recovery 

Good 
Recovery 

• Presence of two 
hybrid modes: 
• In contact with chair,  

• Not in contact with 
chair 

 

Robert Matthew 
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MUSCLE MODELLING 

Muscle sensing 

• Electromyography 
• Near Infrared Sensing 
• Ultrasound 

Laura Hallock 
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MUSCLE MODELLING 

Laura Hallock 

• Estimation of muscle force 
from is an open problem 

• Hill model used extensively 

• Highly parameter 
sensitive- tendon length  

• Typically EMG driven- 
highly noisy 

 

 

 

Hill Muscle Model 
Hill, A. V. "The heat of shortening and the dynamic constants of muscle." Proceedings of the Royal Society 
of London B: Biological Sciences 126.843 (1938): 136-195. 

Zajac, Felix E. "Muscle and tendon: properties, models, scaling, and application to biomechanics and 
motor control." Critical reviews in biomedical engineering 17.4 (1988): 359-411. 
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MUSCLE MODELLING 

Laura Hallock 
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VERIFICATION: MRI 

Laura Hallock 
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STABILITY OF THE INDIVIDUAL 

Victor Shia 

• 2.5 million ED visits per year 
• Cause over 95% of hip 

fractures 
• Annual cost ~$34 billion 

Falling 
• Multiple causes for falls 
• Can fall while walking 
• Can fill while trying to stand 
• Focusing work on Sit-to-

Stand (STS) stability 
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PRESCRIPTION OF ASSISTIVE DEVICES 

Robert Matthew 

MEASUREMENT 

• Kinematics 
• Dynamics 
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PRESCRIPTION OF ASSISTIVE DEVICES 

Robert Matthew 

MEASUREMENT PRESCRIPTION INTERVENTION 

• Kinematics 
• Dynamics 

• Customise assistance 
 

• Optimise actuation 

Variable stiffness 
actuation 
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PRESCRIPTION OF ASSISTIVE DEVICES 

Robert Matthew 

• Implement optimal device 
• Novel, low-power actuators 
• Variable device stiffness 
• Stiffness passively maintained: 

energy only required to 
actively change stiffness 
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PRESCRIPTION OF ASSISTIVE DEVICES 

Robert Matthew 

• Low mass 
• 2.54kg total 
• 0.39kg on arm 

• Low power 
• 12g CO2 

• 9V Battery 
• no energy required during 

operation 

• Low cost 
• <$1,000 
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ROBOTS: HUMAN-ROBOT INTERACTIONS 

Aaron Bestick 

𝑻𝐡𝐚𝐧𝐝𝐨𝐟𝐟? 

C(𝑞handoff) 

Existing Work: Static handoff pose planning 
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ROBOTS: HUMAN-ROBOT INTERACTIONS 

Aaron Bestick 

What about post handoff? 

𝐂(𝒒𝐠𝐨𝐚𝐥) 

𝐂(𝒒 𝒕 ) 

Problem: Human grasp affects 
task ergonomics post-handoff 

Insight: Optimize handoff pose 
w.r.t. C(𝑞goal) and C(𝑞 𝑡 ) in 

addition to C(𝑞handoff) 

𝑇goal 
𝑇start 

C(𝑞handoff) 

Idea: Optimize the robot’s motion with respect to the human’s ergonomic cost function 
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ROBOTS: HUMAN-ROBOT INTERACTIONS 

Aaron Bestick 

𝐺𝐻 

𝐺𝑅 

Step 1: Sample Start/End Goals 
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ROBOTS: HUMAN-ROBOT INTERACTIONS 

Aaron Bestick 

𝐻(𝑔𝑅 , 𝑇handoff
𝑤 ) 

Compute H  
∀ 𝑔𝑅 ∈ 𝐺𝑅 ,  
∀ 𝑇handoff

𝑤  ∈ 𝑆𝐸(3) 

Step 2: Find feasible human grasps 
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ROBOTS: HUMAN-ROBOT INTERACTIONS 

Aaron Bestick 

Choose the optimal 𝑔𝑟  and 𝑇handoff
𝑤  

according to: 
 
 
1)max  𝐻(𝑔𝑅 , 𝑇handoff

𝑤 )   𝑠. 𝑡.  ℎ∗ ∈ 𝐻    
 
 
2) min 𝐻(𝑔𝑅 , 𝑇handoff

𝑤 )   𝑠. 𝑡.  ℎ∗ ∈ 𝐻  
 
 

3) max 𝐻(𝑔𝑅 , 𝑇handoff
𝑤 )  

 
 

4) min 
 𝐶 ℎ
ℎ ∈ 𝐻 𝑔𝑅,𝑇handoff

𝑤  
𝐻 𝑔𝑅,𝑇handoff

𝑤  

(most options and allows ergonomically 
optimal choice) 

(least options and allows ergonomically 
optimal choice) 

(most options) 

(minimum average ergonomic cost) 

Step 3: Find optimal handoff pose 
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DRIVING: HUMAN IN THE LOOP INTERVENTION 

Katie Driggs-Campbell 

Control Scheme 

Environment Model Vehicle Model 

Human Model Driver Prediction 
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DRIVING: PREDICTING BEHAVIOR 

Katie Driggs-Campbell 

Distracted 

Attentive 

Lane 
Changing 

Lane 
Keeping 

About to 
Lane Change 

Potential Human Models 
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DRIVING: AGENT INTERACTIONS 

Katie Driggs-Campbell 

Lane Keeping Want to Change 

Execute Lane Change 

Communication 

argminΔ⊂ℝ𝑛  Δ𝐻  
subject to      𝑃 𝑋𝐻 𝑘 − 𝑥𝐻 0 ⊂ Δ𝐻 𝒪, ℐ |𝑠𝐴 ≥ 𝛼 
                         ∀𝑘 ∈ 0,… ,𝑁  

s1 s2 

s3 
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THANK YOU 
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