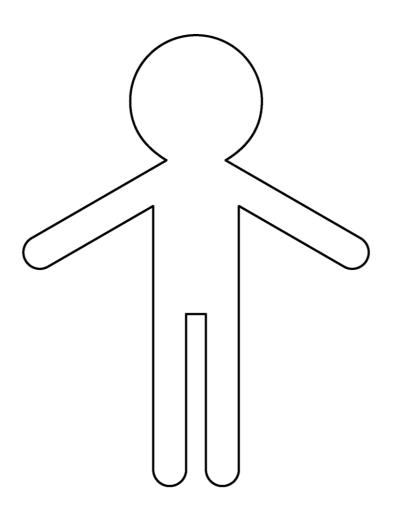


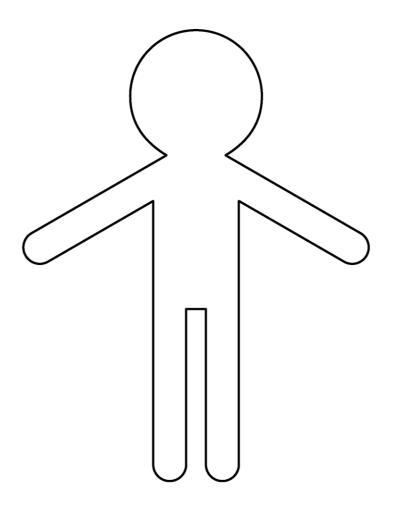
INDIVIDUALISED HUMAN MODELS FOR CYBERPHYSICAL INTERACTIONS

RUZENA BAJCSY 2016.05.12

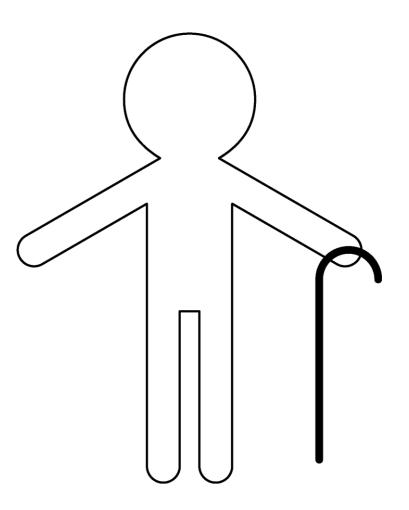


People are unique.

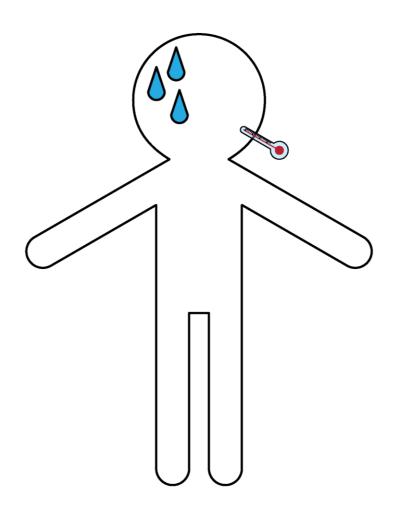
• Genetic variation



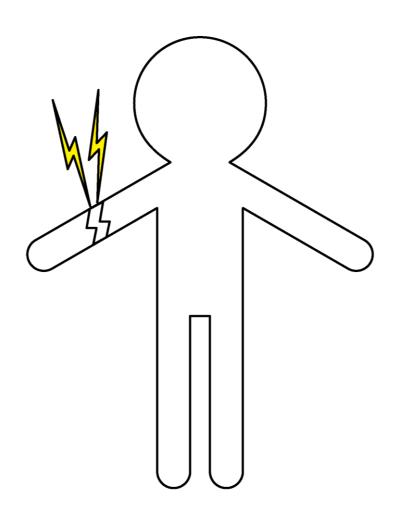
- Genetic variation
- Age



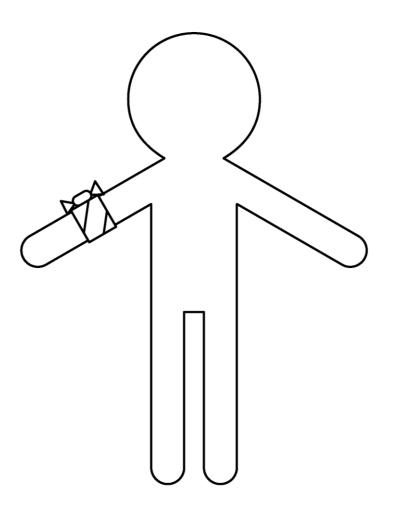
- Genetic variation
- Age
- Illness



- Genetic variation
- Age
- Illness
- Injury

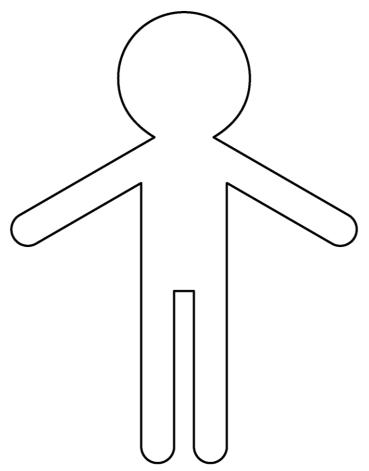


- Genetic variation
- Age
- Illness
- Injury
- Treatment



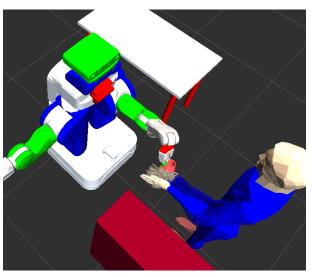
Large variations between individuals

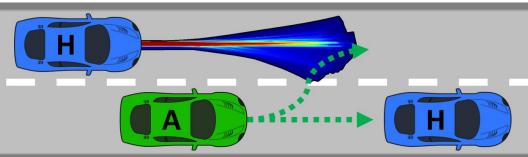
- Genetic variation
- Age
- Illness
- Injury
- Treatment



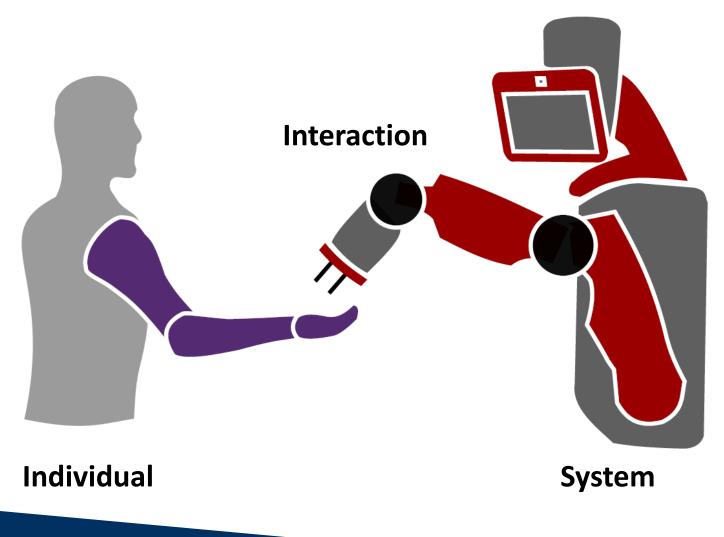
Large variations between individuals, and tasks

- Genetic variation
- Age
- Illness
- Injury
- Treatment





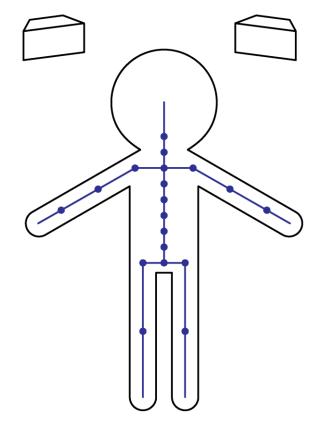
LAB GOALS:



KINEMATIC MODELLING

Kinematics- Motion capture

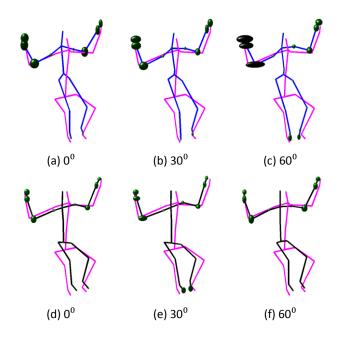
- Kinect 1, 2, Phasespace Impulse X2
- Adafruit 9DoF IMU
- Recovery via rigid skeletonisation, inverse kinematics

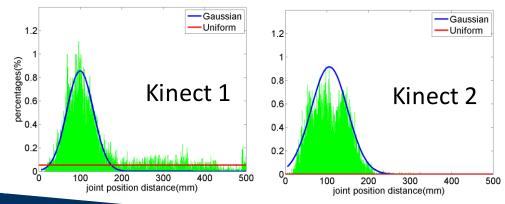


KINEMATIC EVALUATION OF HUMAN MOTION

Gregorij Kurillo

- Goal: Evaluation of low-cost methods for capturing human motion kinematics
- We compared Kinect v1 and v2 with motion capture to determine the error distributions for different joints
- Outlier exclusion: using a mixed Gaussian (on-track motion data) and uniform (random motion data due to tracking loss) distribution to model the overall motion data



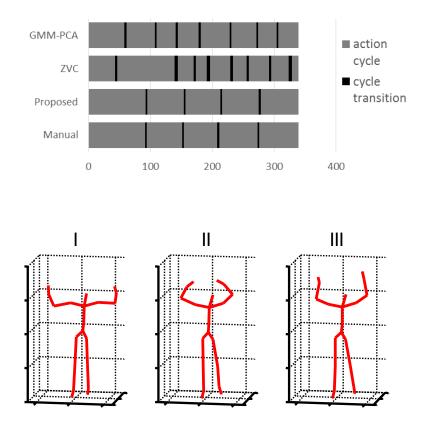


$$p(\theta) = \rho \times N(\mu, \sigma) + (1 - \rho) \times U(x_1, x_2)$$

Rerke

ACTION SEGMENTAION

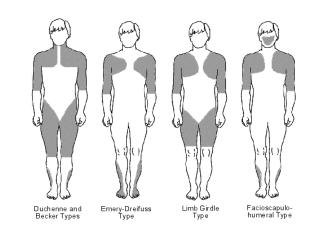
- Goal: Develop a robust unsupervised method for segmenting repetitive actions based on the human kinematics
- We use unscented Kalman filter (UKF) to extract kinematics and reduce effect of noise
- We apply frequency analysis to determine most representative kinematic parameters
- We developed robust method for segmentation using zero-velocity crossing with based k-means classification to determine motion phases
- Applications: Physical rehabilitation, exercise coaching, robotic manipulation



Qifei Wang

APPLICATION: DIAGNOSTICS

- Goal: Development of new upperextremity outcome measure for functional evaluation in muscular dystrophy and other disorders.
- Reachable workspace obtained from kinematic measurements from 3D vision camera (MS Kinect) is used as a proxy of upper-limb function.
- Validation of reachable workspace outcome measure using standardized clinical tests (over 200 controls & patients).
- Applications: Physical therapy, testing of drug effectiveness, remote health care, assistive devices, ergonomics.

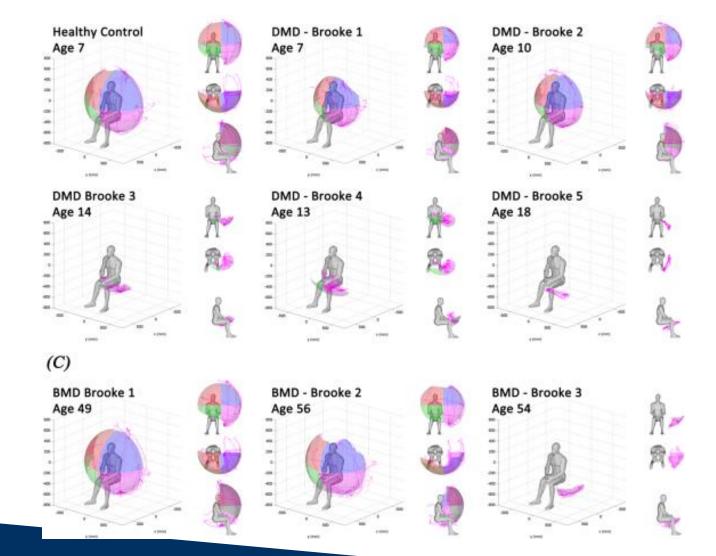


Parent Project Muscular Dystrophy

National Institutes of Health

Gregorij Kurillo

APPLICATION: DIAGNOSTICS

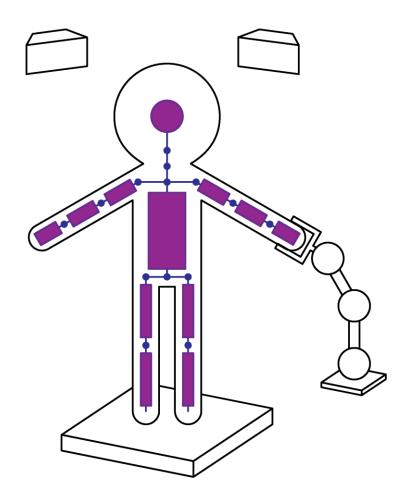


Gregorij Kurillo

DYNAMIC MODELLING

Dynamics- Force sensing

- AMTI Force platform
- ATI Force sensors
- UR5 Robot manipulator



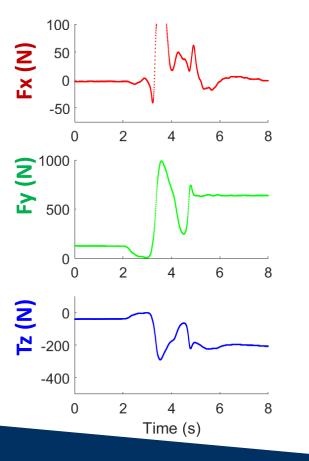
DYNAMIC MODELLING

Investigation into standing

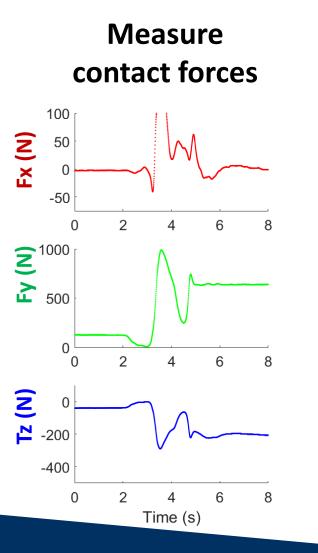
- Given motion capture data and contact force data, can we recover the masses, and skeleton of the user?
- Can we predict contact forces from just this model and motion capture?

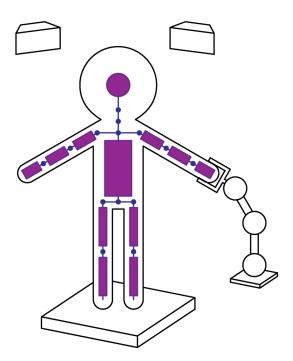
Dynamic Modelling

Measure contact forces



Dynamic Modelling

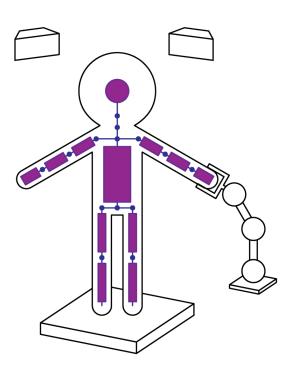




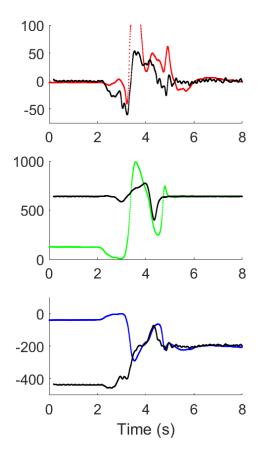
DYNAMIC MODELLING



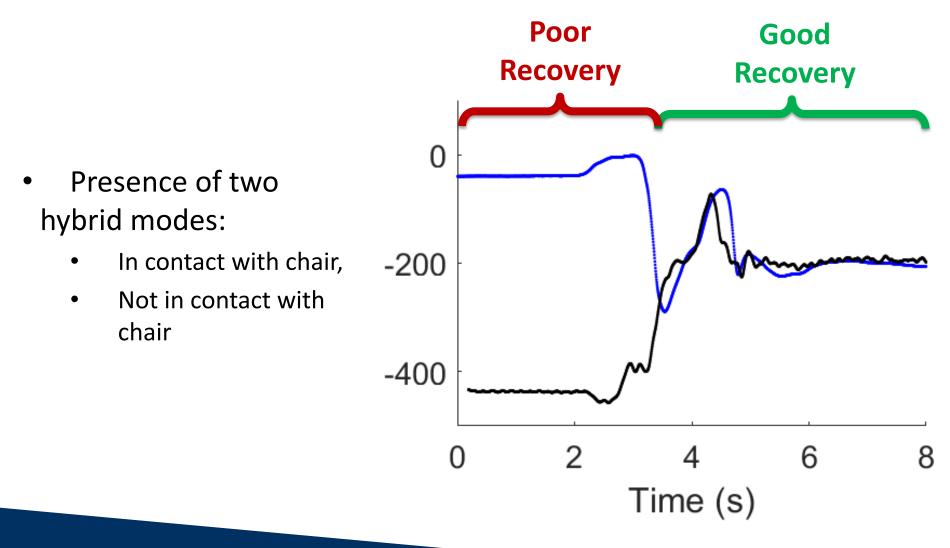
Recover Dynamic Parameters



Validate recovered forces



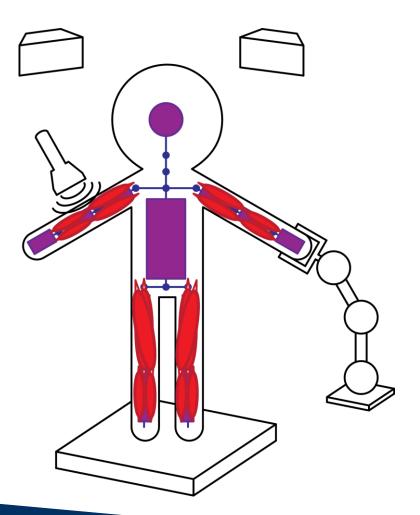
DYNAMIC MODELLING



MUSCLE MODELLING

Muscle sensing

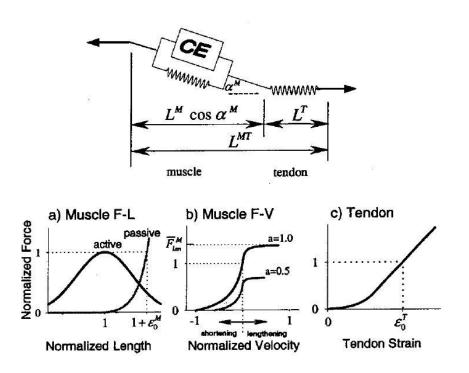
- Electromyography
- Near Infrared Sensing
- Ultrasound



Laura Hallock

MUSCLE MODELLING

- Estimation of muscle force from is an open problem
- Hill model used extensively
 - Highly parameter sensitive- tendon length
 - Typically EMG drivenhighly noisy



Hill Muscle Model

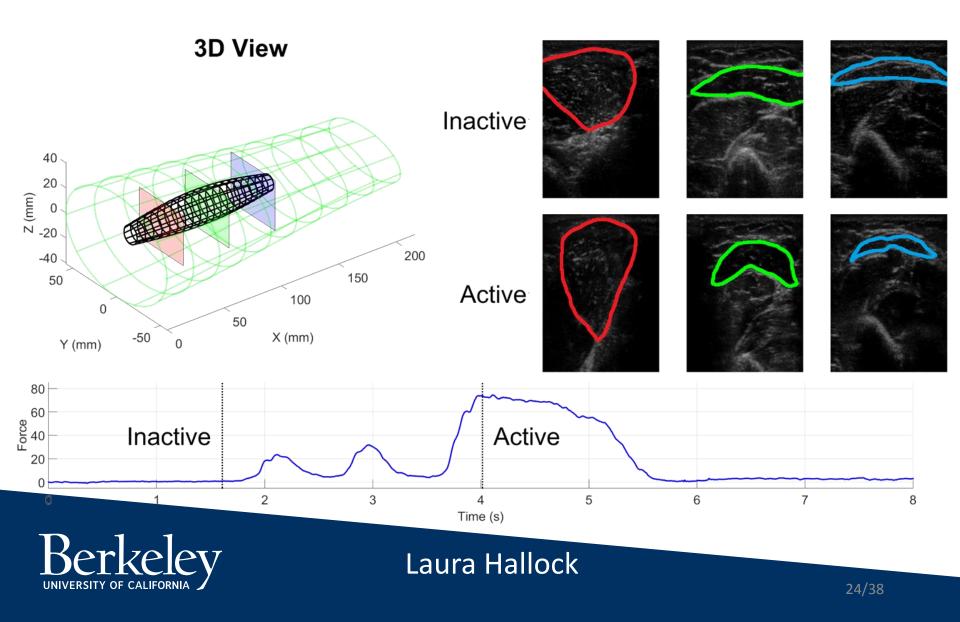
Hill, A. V. "The heat of shortening and the dynamic constants of muscle." Proceedings of the Royal Society of London B: Biological Sciences 126.843 (1938): 136-195.

Zajac, Felix E. "Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control." Critical reviews in biomedical engineering 17.4 (1988): 359-411.

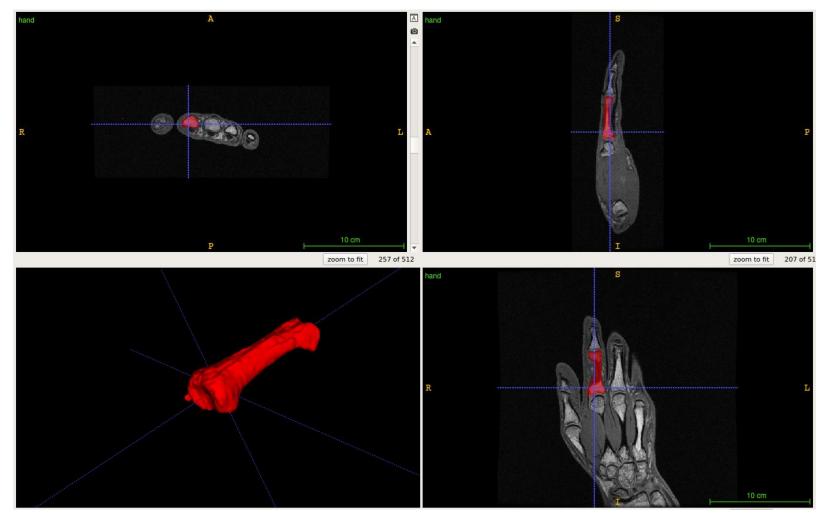
Berkeley

Laura Hallock

MUSCLE MODELLING



VERIFICATION: MRI

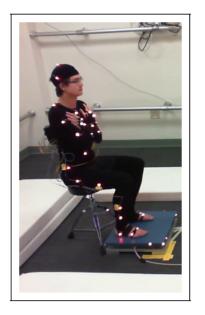


Laura Hallock

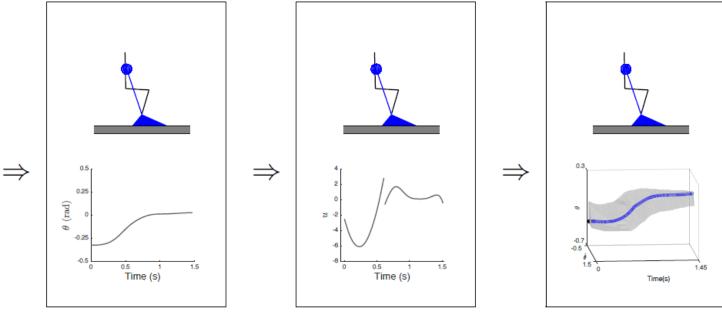
Falling

- 2.5 million ED visits per year
- Cause over 95% of hip fractures
- Annual cost ~\$34 billion

- Multiple causes for falls
- Can fall while walking
- Can fill while trying to stand
- Focusing work on Sit-to-Stand (STS) stability



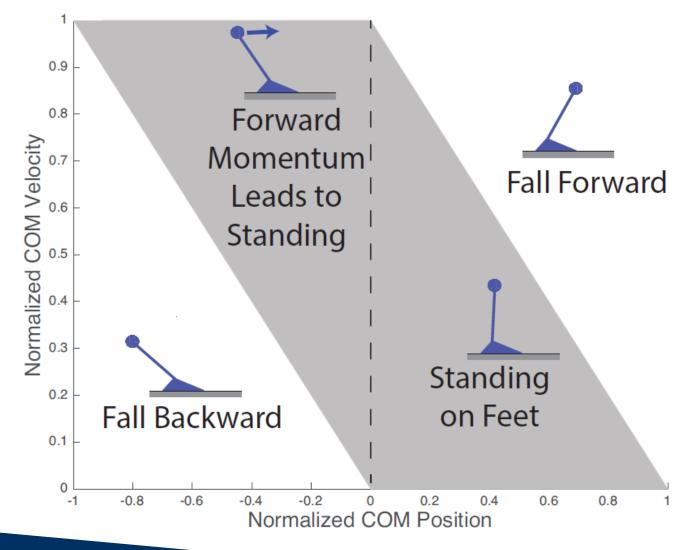
Data Collection

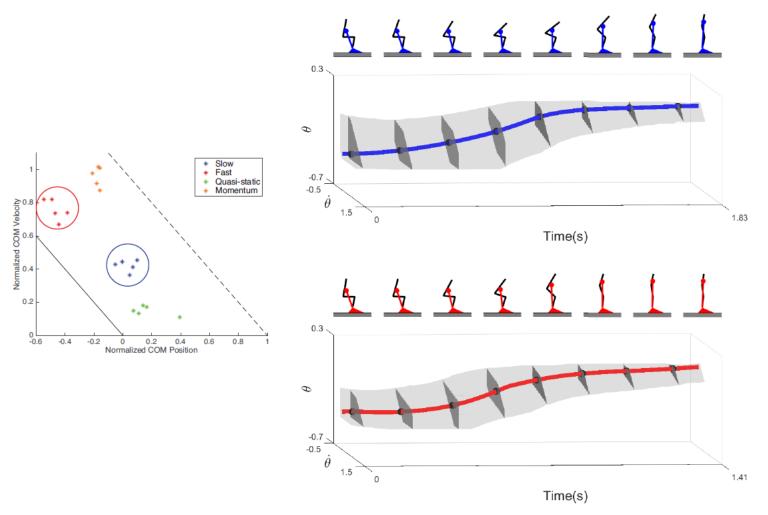


Modeling

Input ID

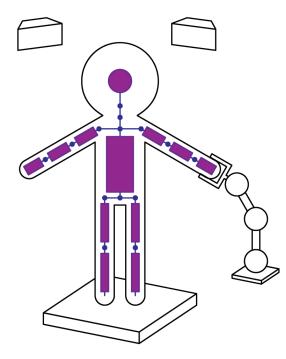
Compute BOS





MEASUREMENT

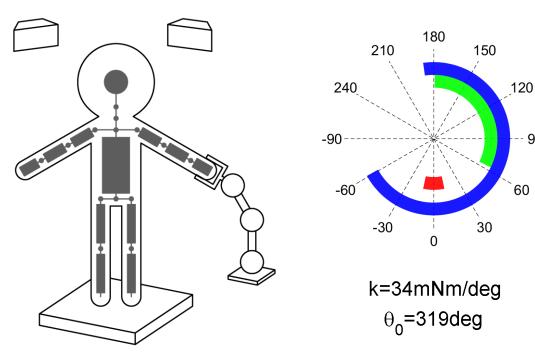
- Kinematics
- Dynamics



- Kinematics
- Customise assistance

90

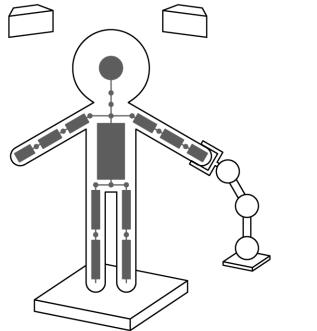
Dynamics

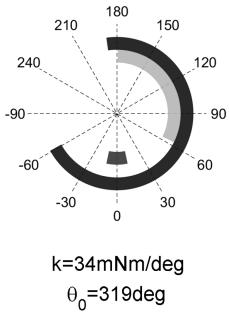


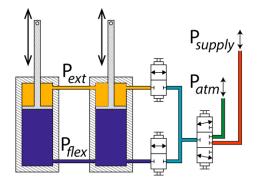
MEASUREMENT >> PRESCRIPTION >> INTERVENTION

- Kinematics
- Customise assistance
 Optimise actuation

• Dynamics





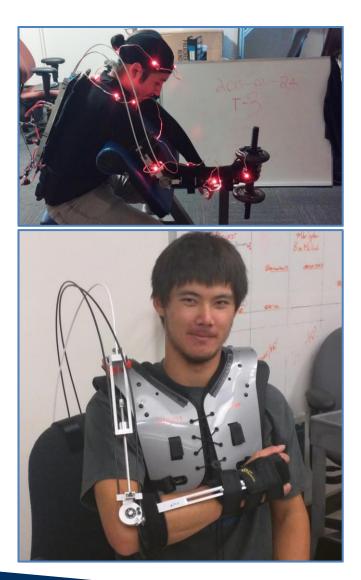


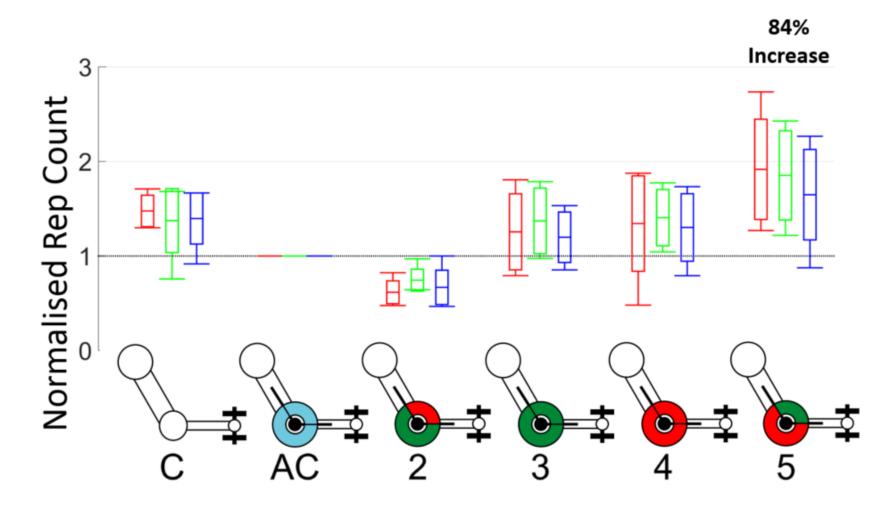
Variable stiffness actuation

Berkeley

• Implement optimal device

- Novel, low-power actuators
- Variable device stiffness
- Stiffness passively maintained: energy only required to actively change stiffness



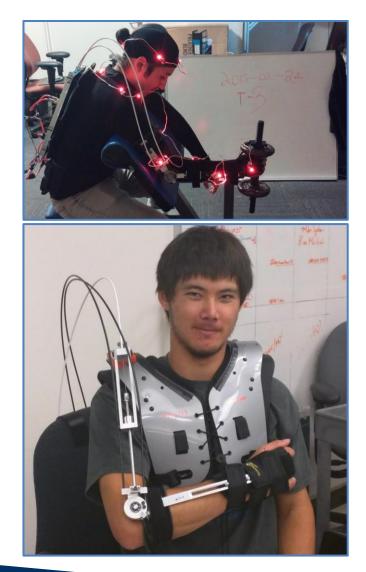


Low mass

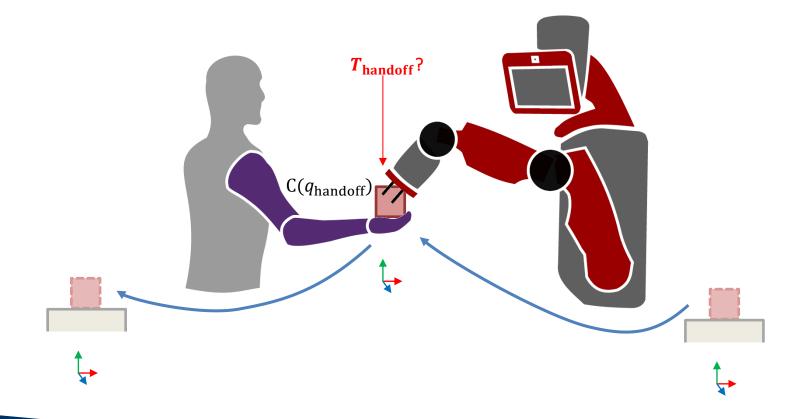
- 2.54kg total
- 0.39kg on arm

Low power

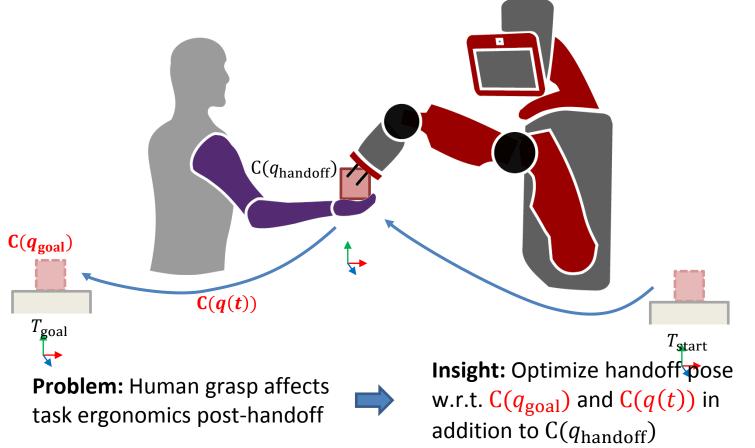
- 12g CO₂
- 9V Battery
- no energy required during operation
- Low cost
 - <\$1,000



Existing Work: Static handoff pose planning

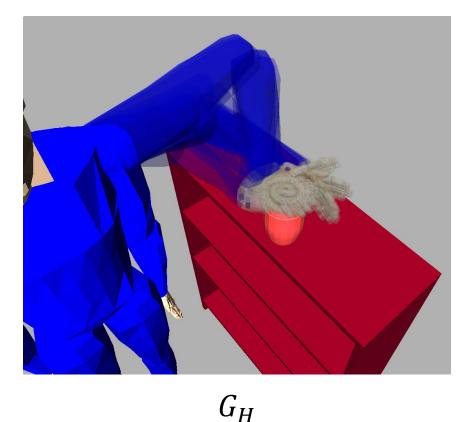


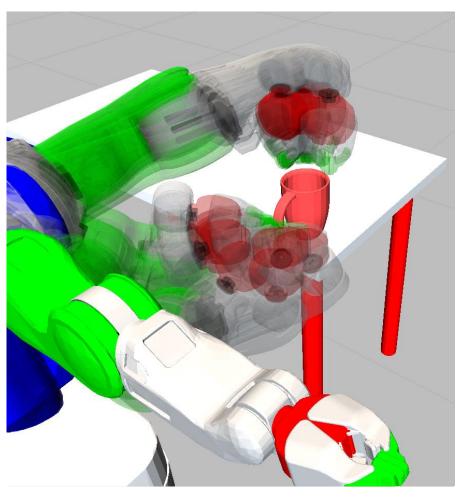
What about post handoff?



Idea: Optimize the robot's motion with respect to the human's ergonomic cost function

Step 1: Sample Start/End Goals

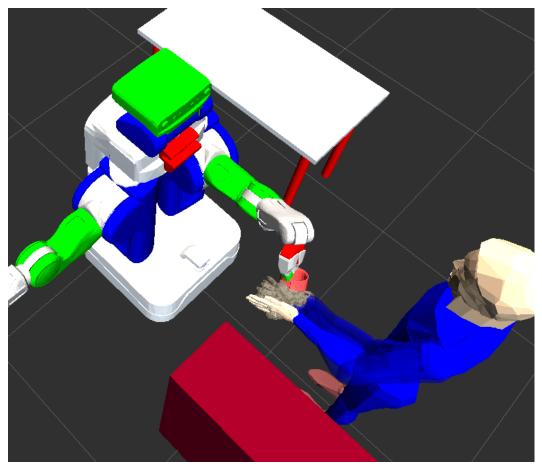




 G_R

Step 2: Find feasible human grasps

Compute H $\forall g_R \in G_R,$ $\forall T^w_{\text{handoff}} \in SE(3)$



 $H(g_R, T_{\text{handoff}}^w)$

Step 3: Find optimal handoff pose

Choose the optimal g_r and $T_{handoff}^w$ according to:

1) max $|H(g_R, T_{handoff}^w)|$ s.t. $h^* \in H$

(most options and allows ergonomically optimal choice)

2) min $|H(g_R, T_{handoff}^w)| s.t. h^* \in H$

(least options and allows ergonomically optimal choice)

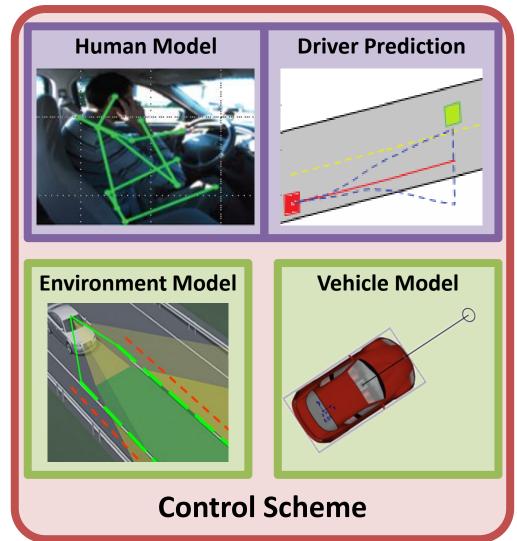
3) max $|H(g_R, T_{handoff}^w)|$

(most options)

4) min
$$\frac{\sum_{h \in H(g_R, T_{handoff}^w)} C(h)}{|H(g_R, T_{handoff}^w)|}$$

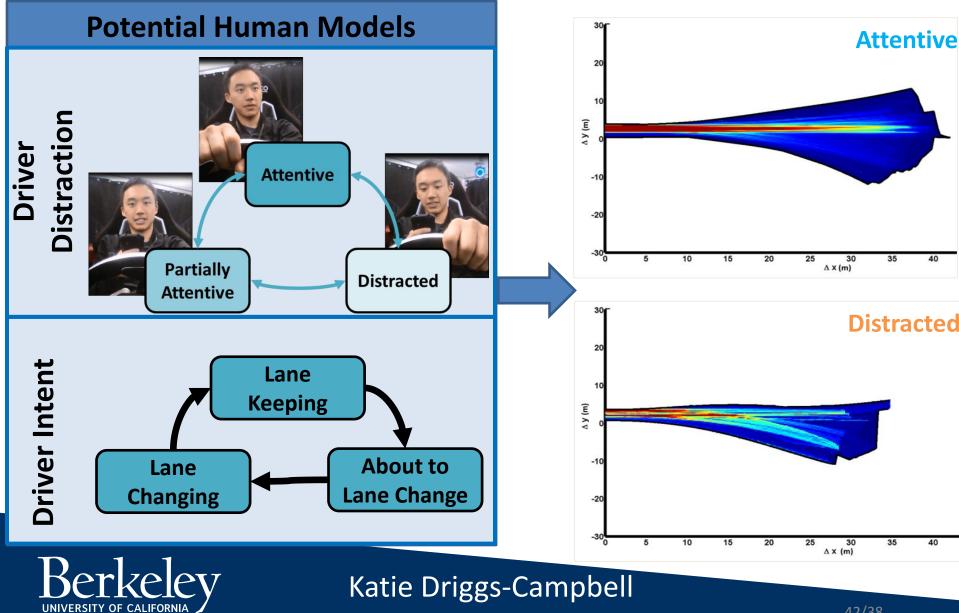
(minimum average ergonomic cost)

DRIVING: HUMAN IN THE LOOP INTERVENTION

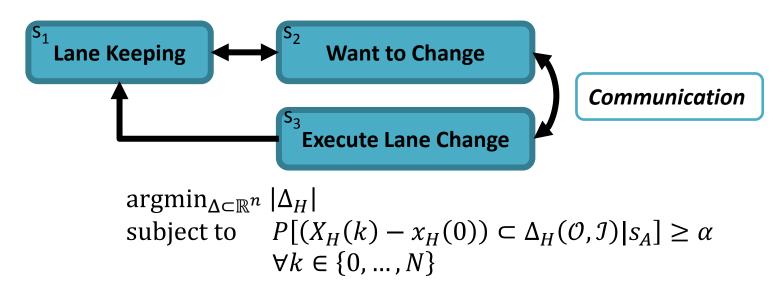


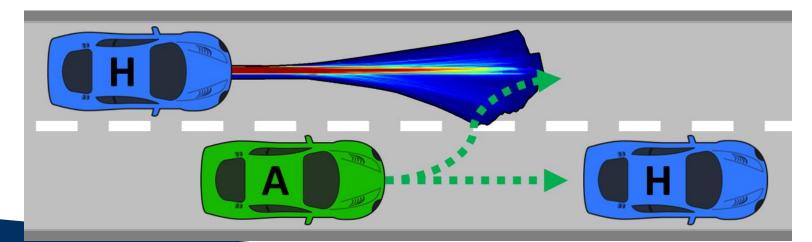
Katie Driggs-Campbell

DRIVING: PREDICTING BEHAVIOR



DRIVING: AGENT INTERACTIONS





Katie Driggs-Campbell

THANK YOU



Human-Assistive Robotic Technologies

