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Abstract. This paper describes the research focus and ideas incorporated in the

UT Austin Villa Standard Platform league team entering the RoboCup competi-

tion in 2016. UT Austin Villa is a team representing the Department of Computer

Science at The University of Texas at Austin.

1 Introduction

The UT Austin Villa Standard Platform Team has participated in every RoboCup com-

petition since RoboCup 2003 in Padua (at which time it was still called the Four-Legged

league). The team development began in mid-January of 2003 without any prior famil-

iarity with the robots (AIBOs, at the time). After entering a fairly non-competitive team

in RoboCup 2003, the team made several important advances. By the July 2004 com-

petition that took place in Lisbon, Portugal, it was one of the top few teams, and it has

continued to be competitive ever since, including a quarter-final appearance in 2007. In

2008 the team made the quarter-final of the Nao league and finished 4th in the AIBO

league. In May 2009, the team placed 1st at the US Open in the Standard Platform

League and placed 4th in the SPL at RoboCup 2009. In 2010, the team repeated as

champions at the US Open and took 3rd place at RoboCup 2010. In 2012, the team won

the US Open for a 3rd time and captured 1st place in the SPL at Robocup 2012 in Mex-

ico City. In 2013, the team took 3rd place at RoboCup 2013. In 2015, the team returned

to the quarter-final round. Throughout, we have placed extensive focus on identifying

and developing the core research contributions from our team.

The technical details of our past Nao and four-legged teams are available in our se-

ries of technical reports [24–27, 8, 10, 1, 3], as well as in the inaugural book in the Mor-

ganClaypool Synthesis Lecture Series on Artificial Intelligence and Machine Learn-

ing [23]. This book presents a roadmap for getting started on any vision-based and/or

legged-based robot, using the Aibo as a case study. Additionally, the technical details of

our 2012 Standard Platform Championship team can be found in our champions paper

that was published in the RoboCup-2012: Robot Soccer World Cup XVI book [2].
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2 Research Contributions

Our research on the robots, all of which has been based on the UT Austin Villa code

base, has led to more than 25 published research papers. Full details are available on

our team website: www.cs.utexas.edu/˜AustinVilla. This section summa-

rizes some of our recent research contributions using the Nao robots, as well as some

interesting older contributions made while using the Aibo robots.

2.1 Drop-in Player Competition

The Standard Platform League (SPL) and the 3D simulation league have both recently

started holding Drop-in Player Competitions. In the Drop-in Player Competitions, each

team contributes a player that must play as a team with other players from various

teams using a limited communication protocol. Austin Villa has been involved in these

competitions both as competitors and as organizers. Members of our team have also

worked to document these competitions. We documented the competition across the

SPL, 3D simulation, and 2D simulation leagues in 2013 [15] and in 2015 we contributed

to a paper that tracked the progress of the SPL competition over three years [6].

2.2 Reinforcement Learning on the Nao

Reinforcement learning (RL) algorithms have long been promising methods for en-

abling an autonomous robot to improve its behavior on sequential decision-making

tasks. The obvious enticement is that the robot should be able to improve its own be-

havior without the need for detailed step-by-step programming. In this work [9], we

presented an algorithm, Reinforcement Learning with Decision Trees (RL-DT), that

uses decision trees to learn the model by generalizing the relative effect of actions across

states. The agent explores the environment until it believes it has a reasonable policy. We

tested RL-DT on an Aldebaran Nao humanoid robot scoring goals in a penalty kick sce-

nario. More details and video of the robot learning to kick are available online:http:

//www.cs.utexas.edu/˜AustinVilla/?p=research/rl_kick.

2.3 Ground Truth Detection System

Ground truth detection systems can be a crucial step in evaluating and improving al-

gorithms for self-localization on mobile robots. Selecting a ground truth system de-

pends on its cost, as well as on the detail and accuracy of the information it pro-

vides. In this work [13], we present a low cost, portable and real-time solution con-

structed using the Microsoft Kinect RGB-D Sensor. We use this system to find the

location of robots and the orange ball in the SPL environment in the RoboCup com-

petition. This system is fairly easy to calibrate, and does not require any special iden-

tifiers on the robots. We also provide a detailed experimental analysis to measure the

accuracy of the data provided by this system. Although presented for the SPL, this

system can be adapted for use with any indoor structured environment where ground

truth information is required. Details on using this system are available online:http:

//www.cs.utexas.edu/˜AustinVilla/?p=research/kinect.
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2.4 Grounded Simulation Learning

Simulation is often used in research and industry as a low cost, high efficiency alterna-

tive to real model testing. Simulation has also been used to develop and test powerful

learning algorithms. However, parameters learned in simulation often do not translate

directly to the application, especially because heavy optimization in simulation has

been observed to exploit the inevitable simulator simplifications, thus creating a gap

between simulation and application that reduces the utility of learning in simulation.

This paper [5] introduces Grounded Simulation Learning (GSL), an iterative optimiza-

tion framework for speeding up robot learning using an imperfect simulator. In GSL,

a behavior is developed on a robot and then repeatedly: 1) the behavior is optimized

in simulation; 2) the resulting behavior is tested on the real robot and compared to the

expected results from simulation, and 3) the simulator is modified, using a machine-

learning approach to come closer in line with reality. This approach is fully imple-

mented and validated on the task of learning to walk using an Aldebaran Nao humanoid

robot. Starting from a set of stable, hand-coded walk parameters, four iterations of this

three-step optimization loop led to more than a 25% increase in the robot’s walking

speed.

2.5 Using Gaussian Fitness Scores for Vision Improvements

In RoboCup, although the fields are standardized and color coded, the area outside the

fields often contains many objects of various colors. Sometimes objects off the field may

look very similar to balls, robots, or other objects normally found on the soccer field.

Robots must detect all of these objects, and then differentiate between the true positives

and false positives. This paper [16] presents a new method using Gaussian fitness scores

to differentiate between true positives and false positives for balls, robots, and penalty

crosses. We also present some other improvements in our code base following our 2012

championship, such as our usage of a virtual base for forward kinematics calculations,

our ability to flexibly transition player roles given dynamic numbers of teammates, and

our ability to quickly integrate new kicks of varying speeds into our strategy. With these

improvements, our UT Austin Villa team finished third in the Standard Platform League

at RoboCup 2013.

2.6 Controlled Kicking under Uncertainty

In RoboCup, robots must make quick decisions under uncertainty. To this end, we de-

veloped a new approach to enable humanoid soccer robots to execute kicks quickly

and ensure that they move the ball down field. We developed a kick engine capable of

kicking at a variety of distances and angles and then a novel kick decision method for

selecting from among a large set of possible kicks. This method prunes and orders the

kicks according to a metric and then chooses the first possible kick that ensures that our

field position is improved [4].
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2.7 Vision Calibration and Processing

The Aldebaran Nao, has two cameras for visual input, of which only one has been

typically used. The integration of both cameras presents a new opportunity but also a

challenge. While it is possible to obtain better information using both cameras, more

cameras require more work to calibrate. We developed a novel camera calibration al-

gorithm which automatically tuned a camera such that its color perceptions matched

those of another camera. Additionally, recent vision challenges introduced in RoboCup

have necessitated the use of higher resolution images. We built on existing work in

color based segmentation and presented novel extensions to facilitate the move to higher

resolution images, including memory optimizations, fast line and curve detection, and

differentiation via robot pose based transformations [12].

2.8 Generalized Planned Color Learning

In previous work [19], we had enabled the robot to learn the colors on the robot soccer

field, modeling colors as 3D Gaussians, using a pre-defined motion sequence. In this

work, we extended the approach in two significant ways. The color learning works

both in the controlled lab setting and in un-engineered indoor corridors by proposing a

hybrid color model. We also enabled the robot to plan a motion sequence appropriate

for learning colors, using the known model of its color-coded world. The algorithm

is described in [20] and detailed experimental results can be found online:www.cs.

utexas.edu/users/AustinVilla/?p=research/gen_color.

2.9 Adapting to Changing Illumination Conditions

In previous work [18], we had shown that if the robot is provided suitable color maps

and image statistics for different illumination conditions, it can transition smoothly be-

tween the color maps based on a comparison of the image characteristics. We aim to

have the entire color learning algorithm to execute autonomously under changing illu-

mination conditions. We extended our approach by enabling the robot to detect changes

in illumination conditions automatically. If an illumination change is detected, the robot

automatically adapts to the change by revising its color knowledge be re-learning the

colors. Complete details, including the algorithm and experimental results, are available

in [21] and supporting images are available for viewing online:www.cs.utexas.

edu/users/AustinVilla/?p=research/illuminvar_colorlearn.

2.10 Learning a More Stable Walk

A fast gait is an essential component of any successful team in the RoboCup 4-legged

league. However, quickly moving quadruped robots, including those with learned gaits,

often move in such a way so as to cause unsteady camera motions which degrade the

robot’s visual capabilities. In previous research, we presented a method for automat-

ically learning a fast gait [14]. In this work, we presented an implementation of the

policy gradient machine learning algorithm that searches for a parametrized walk while

optimizing for both speed and stability [17]. To the best of our knowledge, previous
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learned walks have all focused exclusively on speed. Our method is fully implemented

and tested on the Sony Aibo ERS-7 robot platform. The resulting gait is reasonably

fast and considerably more stable compared to our previous fast gaits. We demon-

strate that this stability can significantly improve the robot’s visual object recogni-

tion. Videos are available on-line at www.cs.utexas.edu/˜AustinVilla/?p=

research/learned_walk.

2.11 Learning Powerful Kicks

Coordinating complex motion sequences remains a challenging task for robotics. Ma-

chine Learning has aided this process, successfully improving motion sequences such

as walking and grasping [17]. However, to the best of our knowledge, outside of simu-

lation, learning has never been applied to the task of kicking the ball. We apply machine

learning methods to optimize kick power entirely on a real robot. The resulting learned

kick is significantly more powerful than the most powerful hand-coded kick of one of

the most successful RoboCup four-legged league teams, and is learned in a principled

manner which requires very little engineering of the parameter space. Finally, model

inversion is applied to the problem of creating a parametrized kick capable of kick-

ing the ball a specified distance. The associated paper [7] and additional resources can

be found at http://www.cs.utexas.edu/˜AustinVilla/?p=research/

aibo_kick.

2.12 Selective Visual Attention for Object Detection

Autonomous robots can use a variety of sensors, such as sonar, laser range finders, and

bump sensors, to sense their environments. Visual information from an on-board cam-

era can provide particularly rich sensor data. However, processing all the pixels in every

image, even with simple operations, can be computationally taxing for robots equipped

with cameras of reasonable resolution and frame rate. We present a novel method for a

legged robot equipped with a camera to use selective visual attention to efficiently rec-

ognize objects in its environment [29]. The resulting attention-based approach is fully

implemented and validated on an Aibo ERS-7. It effectively processes incoming images

50 times faster than a baseline approach, with no significant difference in the efficacy

of its object detection. More information and a video is available on-line at www.cs.

utexas.edu/˜AustinVilla/?p=research/model-based_vision.

2.13 Autonomous Sensor and Actuator Model Induction

We presented a novel methodology for a robot to autonomously induce models of

its actions and sensors called ASAMI (Autonomous Sensor and Actuator Model In-

duction) [28]. While previous approaches to model learning rely on an independent

source of training data, we show how a robot can induce action and sensor mod-

els without any well-calibrated feedback. Specifically, the only inputs to the ASAMI

learning process are the data the robot would naturally have access to: its raw sen-

sations and knowledge of its own action selections. From the perspective of devel-

opmental robotics, our robot’s goal is to obtain self-consistent internal models, rather
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than to perform any externally defined tasks. Furthermore, the target function of each

model-learning process comes from within the system, namely the most current version

of another internal system model. Concretely realizing this model-learning methodol-

ogy presents a number of challenges, and we introduce a broad class of settings in

which solutions to these challenges are presented. ASAMI is fully implemented and

tested, and empirical results validate our approach in a robotic test-bed domain us-

ing a Sony Aibo ERS-7 robot. Videos of the learning process are available on-line at

www.cs.utexas.edu/˜AustinVilla/?p=research/learned_walk.

2.14 Negative Information and Line Observations for Monte Carlo Localization

In previous work [22], we had developed a robust Monte Carlo Localization algorithm

for use on vision-based legged robots. In this work, we improved upon that algorithm by

incorporating negative information and line observations into our algorithm. Particles

are updating using negative information anytime a landmark is expected but not seen.

In an environment with few landmarks, updating with negative information can be very

useful. Our new algorithm also makes use of observations of field lines, incorporating

them into the algorithm using the distance and heading to the nearest point on the line.

The algorithm has been fully implemented and tested both on a Sony Aibo ERS-7 robot

as well as in simulation. The algorithm and the results are described in [11].

3 Conclusion

We look forward to continuing and expanding our above research in the years to come

as a part of our research motivated by the RoboCup Standard Platform League.
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