
ROBOCUP RESCUE 2016 TDP COLLECTION 1

RoboCup Rescue 2016 Team Description Paper
RoManSa (South Korea)

Yi Taek Kim, Han Soul Kim, Su Yeon Lee, Hyeon Seok Lee, Dong Hoon Baek, Hyun Gon Kim,
Tae Min Hwang and Ju Hoon Back (advisor)

 Info
Team Name: RoManSa
Team Institution: Kwang Woon University
Team Leader: Yi Taek Kim
Team URL: None

Abstract. To begin with, robot that we developed has
rubber track on both side. Sub-rubber tracks are designed to
help robot to easily go ramp terrain and hazardous
environments. In addition, installation of rubber sponge on
each rubber track increases friction which can help to run well.
Therefore, ROSA can pass the harsh environment and stairs
through enough motor’s torque and friction between robot and
ground. Besides, ROSA’s two middle rubber tracks are able to
easily separate into four parts, and these modules have
advantages which can adjust size of robot in different disaster
situations. To be more specific, by the free movement of six
robot arms of ROSA can help robot to find victims. ROSA is
able to find way using SLAM (Simultaneous Localization and
Mapping) and navigation function. Finally, ROSA’s all
firmware operates based on the ROS. We will present how we
accomplished this tasks.

I. INTRODUCTION

isaster has happened all the time in the world. Almost
all of disaster claimed many people’s lives and

depressed many people. Nuclear accident occurred at March,
2011, in Fukushima. The sinking of the Sewol ferry occurred
at April, 2014 in my country, South Korea. We could not do
anything for disaster’s victims.

So, the team which only consists of undergraduate students
at the Kwang Woon University in South Korea started project
for humanity as participating competition which held in South
Korea. The competition was called Mini DRC. We had to
pass harsh missions which were made up with obstacle,
hurdle, ladder, opening door, closing valve, lifesaving and
going down the stairs. Unfortunately, they passed only two
missions (obstacle, hurdle). Our robot failed at third mission,
climbing the ladder. But we solved network problem which
was only solved by two teams of ten teams. In addition, we
transmitted video using compressed image to guarantee real
time operation. As a result, we had a second place in this
competition. Please see the Figure 1. We cannot help but stop
making rescue robot because many people are dying all over
the world due to various disasters right now. Therefore, we
had decided to participate ROBOCUP-RESCUE for
humanity. In this paper, we will present our robot ‘ROSA'.

The RoboCup Rescue competition requires a lot of abilities
which can overcome unknown environments. So, we used
‘Turtlebot’ open platform which was made by Yujin Robot
company in South Korea. First, we connected our robot to
‘Turtlebot’ electronically so that ROSA and ‘Turtlebot’ could
operate together. In addition, we made our robot’s main
driving part with four modules which make it possible to
separate each other easily. Second, we designed the free
movement of six robot arm which can help operator to find
victim. 6DOF manipulator was made up of eight ‘Dynamixel’
which generates continuous torque (5.3Nm). Third, we used
motor’s revolutions, depth camera (‘Kinect’) and LIDAR in
order to implement SLAM (Simultaneous Localization and
Mapping) for our robot. Lastly, our team used CCD camera
module upon 6DOF-arm to recognize QR code and victim
Therefore, most of all, we are going to participate in yellow,
orange and red arena. Additionally, we will try to accomplish
blue and black arena.

Fig. 1. Photo of Mini DRC (10/31/2015)

Fig. 2. Photo of ROSA

D

ROBOCUP RESCUE 2016 TDP COLLECTION 2

II. SYSTEM DESCRIPTION

A. Hardware

z Locomotion

Basic ROSA’s movement operates by rubber track based
vehicle. ROSA’s main body consists of two parts. One part is
middle rubber tracks and the other part is sub-rubber tracks.
Please see the Figure 2.

First, we will explain middle rubber track. Most of tracked
vehicle has disadvantage which can’t change robot size
because robot’s size is decided by track’s length and width.
We thought robot’s size has to change easily because there are
many circumstances according to the size of disaster area and
situations. So, ROSA’s main driving part was designed to
change robot’s size. To be more specific, our robot’s body is
made up with four modules which include motor and
Dynamixel individually. Motor provides torque to rubber
track, and Dynamixel is designed to adjust sub-rubber track’s
angle. One module is combined with motor, Dynamixel, shaft
and aluminum gears which provide power to middle track and
sub-track. Please see the Figure 3.

Fig. 3. Photo of robot’s main driving part (one module)

Second, we will present four sub-rubber tracks. Four sub-
rubber tracks help robot to get through uneven terrain (orange
and red arena). Sub - rubber tracks were designed to work
efficiently when climbing stairs or getting through from
obstacles. Four sub - rubber tracks are attached at outside of
each middle rubber track. If robot is needs to get through the
obstacles, sub - rubber tracks helps to adjust the angle of robot
to get through the obstacles. Furthermore, if robot needs to
climb the stairs, the robot adjusts to proper size for climbing
the stairs. We use Dynamixel (XM-430) which was made by
ROBOTIS, South Korea, which isn’t released yet. Dynamixel
can adjust four sub-rubber track’s angle very sensitively. In
addition, we use mechanical gear ratio (4:1) which is made up
with two pulleys between sub-rubber track’s frame and
Dynamixel. There is long hole in front of sub -rubber track's
frame. This hole can adjust tension of sub- rubber track.
Please see the Figure 4.

Fig. 4. Photo of robot’s sub-rubber track

z Body

ROSA’s body frame can be changed by various disaster
situation because ROSA is composed of four operation
modules. In other words, ROSA’s body frame is not fixed and
the size and design can always be changed by the distance of
the four modules. We will present photo to understand easily.
Please see the Figure 5.

Fig. 5. Photo of ROSA’s body frame construction

z Robot Arm

Manipulating objects, finding and checking the victim's
condition are the most important tasks in rescue missions. To
understand victim's condition very well, Robot must have the
degree of freedom. More we have, more we can deal with. In
addition, most of the victims are in the box which has a small
hole. It is difficult for robot to approach the box deliberately.
For these reasons, we designed robot arm which has 6 DOF
(Degree of freedom). We referred to the good manipulator like
PUMA560. It gave us some tips about how to design the
robot arm easily and completely

z Robot arm Hardware

Our robot arm consists of eight motors, 3D printer cylinder,
aluminum links and gripper. We used the Dynamixel motors

ROBOCUP RESCUE 2016 TDP COLLECTION 3

because it can be connected to each motor easily by using
cable. It also has enough power torque for its size to lift the
rigid structure. Our robot arm is able to reach 100cm height.
So it can observe and touch victims very well. Please see the
Figure 6.

The link1 has to tolerate the largest weight and power, so
we used two motors to there and one motor used to each
remaining joints. The main links can rotate with 55rpm (12V)
without considering destruction. And end effector of robot
arm is attached to 3DOF which provides the manipulator with
a free motion.

Our robot arm's design is very simple because it is designed
for considering economy and minimum power to use. We also
used 3D printer which can make a complicated frame strong
and easily.

We will change the design of robot arm a little bit. To get
more power and transmit, we will use a timing belt or another
motor in second link and attach other frame for 2D camera.
By using the 2D camera, we can examine the rescue
circumstance in detail. We used the Raspberrypi2 before but
we'll change it to ASUS (VivoPC) and it will become a main
board of our team. The OpenCM 9.04C can be connected to
Asus board by USB port. The reason why we used
Raspberrypi2 before is that we would like to control each part
of system comfortably, and Raspberrypi2 is good for
examining the robot arm system. Lastly, we'll attach many
kind of sensor in robot arm near the end effector so that it'll be
able to observe the victim completely.

Fig. 6. Photo of 6-DOF robot arm

z Power Battery

We will use battery that can generate 36V of voltage and
4.4A of current to motor’s power input. In addition, we will
use extra battery which can provide energy to the main
computer and microcontroller. Therefore, two batteries will be
used to ROSA because total system can be shut down by
motor overload.

z Hardware and Software

- Driving part

We used ‘Turtlebot’ main board to connect Turtlebot with
ROSA because Turtlebot’s open platform is convenient to
apply to ROSA. Tutlebot’s open platform includes various
open source, especially SLAM and mapping. We applied this
open source to ROSA with a slight change. We electrically
replaced Turtlebot’s motor driver with our motor driver which

can control ROSA’s motor. In addition, we changed digital
input which enters in Turtlebot to ROSA’s motor driver digital
input. So, we could control efficiently about robot’s
locomotion. In other words, Turtlebot and ROSA are
connected completely.

 In the future, we will use different main board, ASUS
VivoPC which is installed Ubuntu 14.04 LTS, and we will
control Arduino Uno R3 microcontroller through main
board’s order. Then, microcontroller controls ROSA’s motor
driver digital input, PWM (Pulse Width Modulation) input,
and motor driver can control ROSA’s main operation motors
(four Maxon motors). We will use remote control for moving
ROSA. Then, we will develop autonomous driving function
to ROSA gradually. Therefore, ROSA has two functions
which are made up with autonomous control and remote
teleoperation control. Please see the Figure 7 (Red part).

- Robot Arm

Robot arm should be connected to other main systems such
as main board, camera, and main wheel. So we used the ROS
(robot operating system) program which is able to combine
each projects by node and master. To do this, at first, we
installed the Ubuntu 14.04 in Raspberrypi2 (B) because its
compatibility is better than any other OS. We used the
Qtcreator to program our own source. We combined
Raspberrypi2 and OpenCM 9.04 to control the Dynamixel.
Please see the Figure 7 (Blue part).

In the ROS, there are so many packages and information
about the Dynamixel, so we were able to use them usefully.

Fig. 7. Photo of all system design

B. Software

z SLAM
SLAM (Simultaneous Localization and Mapping) means

that robot is to estimate robot's location using an attached
sensor. At the same time, it creates a map of an unknown
environment. Therefore, SLAM is absolutely necessary in
Robocup-Rescue League (yellow and black arena). Typically,
sensor that is used on robot to locate estimation is motor’s
encoder, IMU sensor and LIDAR.

Our team measures the encoder value of the driving
attached to the ‘Turtlebot’ main board by the revolution of the
wheels. The reason why we used the Turtlebot and
Kobuki_node package is to bring up the base launch file of the
Turtlebot. So, position of the robot is calculated as

ROBOCUP RESCUE 2016 TDP COLLECTION 4

approximation through dead reckoning. Dead reckoning can
obtain a moving object's location and direction through
Encoder value and speed-o-meter without the external sensor.
But errors of the calculation are pretty occurred. So, it corrects
the position based on information of the environment obtained
by the distance sensor or camera. Also, we used
openni_launch package to operate the Kinect. To increase
speed on Kinect mapping at the rviz, we proceed the TF
process which converts 3D screen printed out by the Kinect
into 2D map. We used a depthimage_to_laserscan package to
convert the distance information data of the Kinect into the
image. There are various location estimation method. For
example, there are Kalman filter, Markov localization,
Particle filter, etc. Kalman filter has disadvantage of that it
applies only to the linear system. But particle filter is applied
to a nonlinear system. In the real world, most of the robots and
the sensors are non-linear system. So, we'll use the latter
algorithm. Finally, we used the rviz package to confirm the
SLAM result. SLAM through Kinect and Encoder values has
disadvantages of slow processing speed because there is a lot
of data to process. In addition, the robot tracks the position by
itself, but accuracy is low.

Therefore, we also used LIDAR Hokuyo URG-04LX and
IMU sensors to implement SLAM. Using two sensors have
advantages. First, Lidar gets image to a 2D screen. So, amount
of data processing decreases. If the robot position is estimated
by using only the encoder value, the considerable error occurs
because slope of robot center is not verified. To overcome this
weakness, we used IMU sensor which includes acceleration
and gyro sensor. So, it can estimate a more exact location.
Finally, we tested our SLAM function using two sensors.
Please see the Figure 8.

Wheel Encoder – ROSA is equipped with driving module

attached to the ‘Turtlebot’ main board. Therefore, we get the encoder
value through the amount of rotation of the wheels. Odometry data is
used for speed control. Also, the slam is based on the encoder value.

RGB-D Camera - We use the Microsoft Kinect sensor. RGB-D
camera is mainly used for victim detection and seeing the picture.
This camera is mounted on the top of robot.

IMU - The accelerations and angular rate are measured through a
9DOF inertial sensor EBIMU-9DOFV2. The sensor is useful to
implementing a slam.

Laser Scanner - ROSA is equipped with the Hokuyo URG-
04LX LIDAR. We draw the 2D map using this sensor. URG-04LX
is attached at the front of robot. Process speed of data is fast because
this laser scanner deals with 2D Axes.

Fig. 8. Photo of SLAM test

z Navigation

In real disaster situation, we will require the robots to find their
own way because we don’t know what it looks like in real disaster
circumstance. Accordingly, we need four essential functions for
making navigation. Which are knowing the location of robot, making
map, optimized path, and avoiding obstacles.

Our robot, ROSA has measurement functions to know its

location. Measurement functions will be calculated by dead
reckoning that approximates position. And then we need a
sensor to make 2D map. First, we used a Kincet sensor to
receive information about x, y, z axis value and then we
changed those value into x, y of it. However, this method has
the sort of disadvantages. Some of them have low accuracy
and speed. So, we decided to use Kinect sensor as looking for
victim and added LRF sensor (HOKUYO’s URG-04LX). It
is one of the greatest way to measure the distance of objects.
By using them, we could make detailed 2D map.

To complete autonomous robot, we have to make path

searching and planning robot’s destination. It assumes the
localization where the robot is at now. In this situation, there
are many kind of methods for assuming localization of robot.
Among the many methods, we decided to use a variant of
MCL (Monte Carlo Localization) called AMCL (Adaptive
Monte Carlo Localization). The path planning produces a
movement path plan (trajectory) from the current location to
target point on the map. We will make robot’s movement
divided into two path planning. One is a global path planning
of the entire map and the other is a local path planning of
some areas around a robot.

During sensing, estimation of location, and migration route
planning, there will be a lot of obstacles. To avoid obstacle, we
are planning to use the package of migration route plan such
as Ros’s Move_base, Nav_core, etc. which are based on
Dynamic Window. Finally, we tested navigation using only
LIDAR sensor. Please see the Figure 9.

Fig. 9. Photo of navigation test

(Yellow: Destination / Red line: Path Planning)

ROBOCUP RESCUE 2016 TDP COLLECTION 5

z QR code

In real disaster circumstance, there are not hints about
victims or surrounding environment. However, in
RoboCupRescue, there are a lot of QR codes. These QR
codes include lots of information about victim's location and
environment. So, if robot recognizes them, we have enormous
amount of information. Due to enormous amount of
information, it is necessary to recognize QR code fast and
accurately.

First of all, QR codes have regular patterns. They have
three big patterns and one small square pattern. So, if these
patterns are used with very good algorithm, regardless of any
orientation of QR codes, robot can recognize QR codes with
right orientation. Thus, we made vision recognition algorithm
as following.

First robot browses the surrounding. In this behavior, if
robot finds a QR code, robot will recognize the QR code with
normal orientation. Then it can recognize 4 patterns of the QR
code. After this process (gray conversion, binary code
conversion, decoding), robot can recognize the QR code as
digital code including 1s and 0s. With these series of data
processing, robot can give the information to controller. With
that information, our robot can find victims and knowing
about surrounding environments.

We will execute this QR code's algorithm on Linux
OS(Ubuntu) and Source code is consisted of C language. The
source code includes 'opencv'(opencv.org) and 'zxing' library.
'opencv' library is consisted of C language, but 'zxing' library
is consisted of Java language. So our team converts the 'zxing'
library to C language. Lastly, we tested our algorithm which
can recognize QRcode. Please see the Figure 10.

Fig. 10. Photo of QR code detection and decoding

- Victim detection

According to the last year contest material, victims had bio-
rhythm signals (sound, thermal ...) of their own. Also, many

sensors could detect these signals. However, only one camera
could detect victims. So, we decided to use one camera to find
victim. This doesn't mean that our team will use the only one
camera for victims. Although we uses many sensors, we'll
make ROSA to detect victims with only one camera. In short,
various sensors used on ROSA are subsidiary role of detecting
victims. Camera is major role of detecting victims. If the sight
is clear, camera is very good sensor for detecting the victims.
We will use the camera model 'USBFHD01M'. This model is
very simple USB-camera. We will use the vision of this
camera to find victims with vision processing.

USBFHD01M Camera – We use the USB-camera to

detect QRcode. We'll load a surrounding image through this
camera and decode the code in real-time.

- Vision Process

Vision from the camera has information about surrounding
circumstance. Human can recognize the circumstance and
find the victims. Robot also can see the circumstance but, it
can't recognize what victims are at. So we made the algorithm
to find the victims as following:

First, robot takes 6 frames of images per 1 second for its
surrounding environment. If there is a victim needs to be
rescued in the image, robot will stop taking the images and
calculate from the previous image. With our vision algorithm,
our robot will distinguish singular points of doll's eyes, nose
and mouth. Then robot can recognize that there is a victim.
After finding the victim, robot can move its arm to the victim's
coordinate calculating according to the inverse-kinematics.
Then it will transfer the victim's information to operator.
Adding to camera's recognition, our robot will find the victims
with other sensors (sound-detecting sensor, CO2 sensor,
thermal sensor). That sensors are ancillary equipment to find
the victims. Therefore, our robot will detect the victims very
effectively.

- Moving Process

After recognizing the victim, robot can investigate the
victim in detail. To do so, information of victim's coordinate
what vision process gives is calculated by the inverse-
kinematics, and DH-arm's (our team robot arm name) end
effector will go to the victim's location. Then it will execute to
the next action.

- Autonomous

If our robot detects the victims in autonomous mode, it can
know victim's location by Cartesian Coordinates(x, y). For
solving the inverse-kinematics completely, we must know 3
parameters' values. Although our robot can't know the other
parameter's value, we can solve this problem. What our robot
can do instead of using complete inverse-kinematics is
following :

First, with only x, y value (no z value), robot can locate its
end-effector in air, in this step its end-effector is in straight line
with victim. Then robot moves its arm to victim, keeping it in
straight line. Finally Arm's camera recognizes victim's size.
Once it recognizes fixed size of victim, robot knows that its
arm is near victim. And robot stops its end-effector.

- Manual

If our robot detects victims in manual mode, it will instruct

ROBOCUP RESCUE 2016 TDP COLLECTION 6

to the operator that it has detects victims. Then operator must
switch the robot's arm in manual mode. We will use 'AVATAR'
controller. 'AVATAR' will be made up of 6 MX-28
(ROBOTIS in South Korea). These motors are a kind of servo
motor. These motors can measure the angles itself. If operator
handles the controller, controller's MCU communicates with
main PC. And it will control value of each motor's angle
values. Then main PC will drive the robot arm's each motor
and the shape of the robot's arm. After this process, shape of
the robot’s arm will become just as same as 'AVATAR'
controller.

In this way, our team will operate the robot to detect victims
concretely.

C. Communication

We will use ipTIME A604, Wi-Fi adapter in Robocup
Rescue League. It operates on the 2.4GHz and 5GHz. Our
team uses 5GHz – 802.11 a frequency to teleoperate between
our robot and operator via Wi-Fi adapter. The wireless LAN is
used for both autonomous mode and teleoperation mode.

D. Human-Robot Interface

To control our team robot, we have to turn on laptop. We
will use for both, laptop’s keyboard and joystick if we need. In
short, our basic controller is laptop’s keyboard and when
manipulator (6DOF-arm) is controlled by operator, we might
use ‘AVATAR’. Our team’s potential user isn’t decided.
However, we will train the operator in various circumstance.
For example, when the robot run in harsh terrain that we make
with our hand, operator doesn’t have to see the robot directly.
Operator must control the robot only depending on laptop
screen.

III. APPLICATION

A. Set-up and Break-Down

When ROSA operates in disaster situation, we will use
laptop computer to remote control and to see robot’s sight. To
start the competition, we will power up our team’s laptop
simply and will do remote access to ROSA’s main board
(ASUS VivoPC VM62) via wireless LAN.

B. Mission Strategy

We will make 2D Map by using SLAM and then move ROSA by
path planning through calculation. Victims will be recognized by
using sensors and image processing. When we detect victim in
location that robot is difficult to reach, ROSA will stretch sub-
rubber tracks and use friction of track's rubber to approach
victim. So it can reach to the difficult location easily. (Yellow
arena)

ROSA will stretch sub rubber tracks so it will be able to go
up easily without affecting by steps. And it will be able to go
up steps, high ramps and obstacles by using friction of rubber.
When ROSA gets stuck by the obstacles, sub rubber tracks
will adjust angle of ROSA. So, it will be able to escape
obstacles by using sub rubber track. (Orange and red arena)
 The Blue arena requires accurate control of robot’s
manipulator. Therefore, we will use ROSA’s 6DOF-arm, DH-
arm to pick and to place various objects.
 Finally, we will aim to accomplish four arena in Robocup

Rescue competition.

C. Experiments

We tested our robot’s various features. First, we checked the
connection between Turtlebot and ROSA through remote
controlling ROSA. The result was successful. Second, we
proceeded with experiment that we tried to set proper motor’s
speed through current control in motor driver. Third, we
attempted to check whether SLAM does work or not through
lots of experiments. We confirmed that map was drawn in rivz,
and we will develop SLAM function gradually in the future.
Finally, we keep trying to improve robot’s arm control
algorithm.

D. Application in the Field

We didn’t try with field experiments yet. However, our
robot is enough so that it can be applied to real scenarios
because ROSA is pretty strong hardware (body thickness
5mm) and has enough motor torque. We will test ROSA’s
driving ability in field which will be made like a real
environment. For example, ROSA will run on messy concrete
bricks, climbing stairs and passing through the obstacles.

IV. CONCLUSION
We will improve ROSA’s various function. First, we will

modify hardware stronger than now as changing part which
will be made into 3D printer with aluminum material. Of
course, we will use those parts if we need. Second, we will
develop software through improving our algorithm. Especially,
for the SLAM, although we implemented SLAM in our robot
using open package, SLAM has a lot of modification because
it requires much time and effort. Finally, to control robot easily,
we are going to construct GUI which makes it able to see
ROSA’s status in operator station.

TABLE I
MANIPULATION SYSTEM

Attribute Value
Name
Locomotion
System Weight
Weight including transportation case
Transportation size
Typical operation size
Unpack and assembly time
Startup time (off to full operation)
Power consumption (idle/ typical/ max)
Battery endurance (idle/ normal/ heavy load)
Maximum speed (flat/ outdoor)
Payload (typical, maximum)
Arm : maximum operation height
Arm : payload at full extend
Arm : degree of freedom
Arm : number of used actuator
Support : set of bat. Chargers total weight
Support : set of bat. Chargers power
Support : Charge time batteries (80%/100%)
Support : Additional set of batteries weight
Cost (Total)

ROSA
Rubber tracked

15kg
20kg

0.7× 1×0.7 m
0.6×0.53×0.35 m

180min
20min

65 / 300 / 500 W
120 / 60 / 30 min

0.5 / - m/s
2/ 4 kg

96cm
500g

6 (6 revolution type)
8 “ Dynamixel” motors

10kg
2500W (100-240V AC)

100 / 150 min
2kg

USD 9109

ROBOCUP RESCUE 2016 TDP COLLECTION 7

APPENDIX A
TEAM MEMBERS AND THEIR CONTRIBUTIONS

z Yi Taek Kim Team Leader/ Mechanical Design
z Han Soul Kim Robot Arm Design/ Control
z Su Yeon Lee Mechanical Design/ Motor Control
z Hyeon Seok Lee Software Design/ Navigation algorithm
z Dong Hoon Baek Robot Arm Design/ Control
z Hyun Gon Kim Software Design/ Image processing
z Tae Min Hwang Software Design/ SLAM algorithm
z Ju Hoon Back Advisor
z Geon Woo Park (Supporter) Video producer
z Jae Hyun Yoon (Supporter) Translate support

APPENDIX B
CAD DRAWINGS

Fig. 11. Photo of 6DOF arm CAD drawing

Fig. 12. Photo of driving module CAD drawing

Fig. 13. Photo of body CAD drawing

APPENDIX C
LISTS

TABLE II

OPERATOR STATION
Attribute Value
Name
System Weight
Weight including transportation case
Transportation size
Typical operation size
Unpack and assembly time
Startup time (off to full operation)
Power consumption (idle/ typical/ max)
Battery endurance (idle/ normal/ heavy load)
CPU
Cost

Rescue operator
1.99kg

2.5kg
0.45 × 0.35 × 0.5 m

0.38 × 0.25 × 0.23 m
1 min

10 min
15W

9 / 6 / 4 h
Intel i5-4210U

USD 903.86

TABLE III
HARDWARE COMPONENTS LIST

Part Brand & Model Unit Price Num
Drive motors*
Drive gears*

Drive encoder*
Dynamixel

Motor drivers

Maxon DCX35L GB KL
Planetary Geared GPX42 81:1

ENX16 EASY 1024IMP
XM-430 (12V 5.3Nm)

ESCON 50/5
ESCON 70/10*

CHF 667.01

USD 224.83
CHF 229.10
CHF 336.80

4
4
4
8
3
1

Camera

IMU
LIDAR

Thermo_graphic
CO2 sensor
Microphone

USBFHDO1M
Kinect Window

EBIMU-9DOFV2
URG-04LX

Lepton 500-0659-00 (camera)
SEN0159

POM-2245L-C10-R

USD 34.01
USD 123.70
USD 120.38
USD 1140.00
USD 178.00
USD 65.40
USD 3.30

1
1
1
1
1
1
1

Microcontroller

Computing Unit

Arduino Mega Uno (R3)
OpenCM 9.04-C

Raspberry Pi 2 Model B 1GB
ASUS VivoPC VM62

USD 68.91
USD 14.94
USD 35.70

USD 481.53

1
1
1
1

Battery 36V 4400mAh
11.1V 1000mAh

USD 166.04
USD 22.83

1
1

WiFi Adapter ipTIME A604 USD 28.14 1

Operator laptop SAMSUNG NT450R5J-X58M USD 913.24 1

etc Kobuki USD 414.28 1
z We won second place in mini DRC competition which held in South

Korea, and we received the 20 Dynamixel motors as a prize. So we were
able to save our economic material.

z We marked devices which are supported by Kwang Woon University
with an asterisk (*)

ROBOCUP RESCUE 2016 TDP COLLECTION 8

TABLE IV
SOFTWARE LIST

Name Version License Usage

Ubuntu 14.04 LTS open

ROS indigo BSD
OpenNI 1.5.4.0 BSD Kinect depth
OpenCV 3.0 alpha BSD Victim detection

Hector_SLAM BSD 2D Mapping
Arduino IDE 1.0.5 Upload board

REFERENCES
[1]. Stefan Kohlbrecher , Johannes Meyer, Thorsten Graber, Karen Kurowski , Oskar von

Stryk. Introduction, operator station set-up and break-down, communication and
hardware modularity in Hector Darmstadt’s TDP. RoboCupRescue 2015, Hefei,
China. http://www.robocup2015.org/show/article/90.html

[2]. Stefan Kohlbrecher, Johannes Meyer, Thorsten Graber, Karen Kurowski and Oskar
von Stryk. Communication in RRT-Team’s TDP. RoboCupRescue 2015, Hefei,
China. http://www.robocup2015.org/show/article/90.html

[3]. Farshid Najafi, Mehdi Dadvar, Alireza Hosseini, Soheil Habibian, Hossein Haeri,
Mohammad Arvan, Mohammad Hossein Salehzadeh and Alireza Haji Mohammad
Hosseini. Software/ hardware architecture in PANDORA team’s TDP.
RoboCupRescue 2015, Hefei, China.
http://www.robocup2015.org/show/article/90.html

[4]. Introduction to Robotics: Mechanics and Control (John J. Craig|Pearson). Inverse
kinematic theory, page101~134.

[5]. An improved binarization algorithm of QR code image (Yinghui
Zhang ; Chengdu Neusoft Univ., Chengdu, China ; Tianlei Gao ; DeGuang Li ;
Huaqi Lin)

[6]. Decoding Algorithm of Two-Dimensional QR Code (Kwang Wook Park, Sang
Yong Han, Bo Hyun Jang and Jong Yun Lee -Dept. of Compute Education,†
Chungbuk National University Dept. of Digital Informatics and Convergence,
Chungbuk National University)

[7]. Joan Sola - Simulataneous localization and mapping with the extended Kalman filter, `A very
quick guide... with Matlab code!'. SLAM, EKF-SLAM, Geometry. Pages 2-17. October 5,
2014.

[8]. Heng Zhang, Yanli Liu, Jindong Tan, Naixue Xiong - RGB-D SLAM Combining Visual
Odometry and Extended Information Filter. Pages 18742-18766. August, 2015.

[9]. A oroca cafe on website. http://cafe.naver.com/openrt. Kinect-slam instruction reference 2012.
[10]. A oroca cafe on website. http://cafe.naver.com/openrt. URG-04LX-slam instruction reference

2012.
[11]. Sebastian THRUN, Wolfram BUGRARD, Dieter FOX, “Using localization /

pose estimation method in PROBABILISTIC ROBOTICS”, Cambridge, Mass:
MIT PRESS, 2005

[12]. Sebastian THRUN, Wolfram BUGRARD, Dieter FOX, "Using avoid obstacle
algorithm in the dynamic window approach to collision avoidance",
https://en.wikipedia.org/wiki/Dynamic_window_approach

[13]. Daiki Maekawa, “driving method with navigation and node composition”,
http://daikimaekawa.github.io/

