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Abstract

Restricted Boltzmann Machines are increasingly popular tools for unsuper-
vised learning. They are very general, can cope with missing data and are
used to pretrain deep learning machines. RBMs learn a generative model
of the data distribution. As exact gradient ascent on the data likelihood
is infeasible, typically Markov Chain Monte Carlo approximations to the
gradient such as Contrastive Divergence (CD) are used. Even though there
are some theoretical insights into this algorithm, it is not guaranteed to
converge. Recently it has been observed that after an initial increase in
likelihood, the training degrades, if no additional regularization is used.
The parameters for regularization however cannot be determined even for
medium-sized RBMs. In this work, we investigate the learning behavior of
training algorithms by varying minimal set of parameters and show that
with relatively simple variants of CD, it is possible to obtain good results
even without further regularization. Furthermore, we show that it is not
necessary to tune many hyperparameters to obtain a good model – finding
a suitable learning rate is sufficient. Fast learning, however, comes with a
higher risk of divergence and therefore requires a stopping criterion. For this
purpose, we investigate the commonly used Annealed Importance Sampling,
an approximation to the true log likelihood of the data and find that it
completely fails to discover divergence in certain cases.

1 Introduction

Restricted Boltzmann Machines (RBMs, [1]) have been widely used as generative models,
for unsupervised feature extraction and as building blocks of deep belief networks [2, 3].
Applications range from image processing [4] and classification [5] to collaborative filtering [6].
Despite this success RBM training remains a problematic task. For even medium-sized
RBMs likelihood maximization is not possible because the true gradient of the likelihood is
not tractable.

Most applications instead rely on a fast Markov chain Monte Carlo (MCMC) approximation
to the gradient, called Contrastive Divergence (CD), proposed by Hinton [5]. CD was shown
to work well in practice in a number of tasks, even though it is not a good approximation to
the likelihood gradient [7].

There are a number of variants of CD, notably Persistent CD [8] (PCD), Fast Persistent
CD [9], Tempered Transitions [10], and Parallel Tempering [11, 12]. Most of these come with
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Figure 1: AIS (solid green with average uncertainty) vs. ground truth (black, dashed). Left.
AIS follows true likelihood even during unstable learning. Right. AIS fails to detect PCD
learning divergence.

a variety of hyperparameters in addition to the more common heuristics of weight-decay,
momentum, and learning rate schedules. Since exact evaluation of the objective function is
infeasible for interesting datasets, it is not clear which heuristic to choose and how to set the
hyperparameters. Empirical evaluations exist [11, 9] but are scarce on realistic datasets.

In Fischer et al. [13], Dejardins et al. [11] and others, it was even observed that CD (and
PCD) training diverges on the training set after an initial increase in likelihood. In [13], it
was concluded that the right choice of hyperparameters can solve this problem. Due to the
problem of calculating the partition function, however, it is not clear how the best training
method and hyperparameters could be chosen.

Please also note that the effects discussed in this paper are not related to the common
“overfitting” phenomenon. This can be dealt with by choosing a validation set and monitoring
the ratio of the unnormalized probabilities, causing the partition functions to cancel. What
we are looking at in this paper is whether the training method actually follows the gradient
on the training set as opposed to generalization on a validation set.

To our knowledge, there are two main methods in use today to evaluate the learning progress
of RBMs. One is the so-called “reconstruction error”, the other is Annealed Importance
Sampling (AIS, [14]). In the practical guide to training RBMs [15], Hinton both refers
researchers to the reconstruction error but also warns them to rely on it. The “reconstruction
error” is the difference between a data point and the “reconstruction”, i.e. the expected
value of the visible nodes, given the expected value of the hidden nodes, given the data point.
It was found in [13], that this measure is truly dangerous, since it does not correlate with
the objective function of RBM training and in particular does not detect the divergence of
likelihood. In this paper, we can confirm this observation for more realistically sized RBMs.

The second commonly used method to evaluate RBMs is Annealed Importance Sampling
(AIS [14, 7]). AIS is an MCMC method that can be used to approximate the partition
function of an RBM with the help of a baseline model. We investigate the use of AIS, not
only to judge the final result of learning but also to find good hyperparameters and as an
indicator when to stop learning to prevent divergence.

The main observations in this paper can be summarized as follows: By analyzing detailed
learning curves on medium-sized RBMs, we find that using PCD and a simple update
rule suffices to produce high likelihood values. In particular, it is not necessary to tune
many hyperparameters or to find the right learning schedule. Prevention of divergence
remains difficult, however, since results on AIS approximations are rather mixed. In most
cases, the behaviour of the true likelihood was reproduced accurately but in other cases
serious divergence was not detected at all. Theoretical work by Yuille [16] shows that CD is
guaranteed to converge to a local maximum when an appropriate learning rate schedule is
used. Whether this can be used in practice is not clear, as too conservative learning rate
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schedules result in convergence to low likelihood values [13]. It was also shown that it is
NP-hard to approximate the likelihood of a given RBM to a certain precision [17]. We
therefore suggest more research in the direction of early stopping and detection of divergence.

2 Background on Restricted Boltzmann Machines

A Restricted Boltzmann Machine (RBM) is an undirected graphical model with binary
observed variables v ∈ {0, 1}n (visible nodes) and binary latent variables h ∈ {0, 1}m
(hidden nodes). The energy function of an RBM is given by

E(v,h, θ) = −vTWh− bTv − aTh, (1)

where θ = (W,b,a) are the model parameters, namely pairwise visible-hidden interaction
weights and biases of visible and hidden activation potentials, respectively. This yields a
probability distribution

p(v; θ) =
1

Z(θ)
p∗(v; θ) =

1

Z(θ)

∑
h

e−E(v,h,θ),

where Z(θ) is the normalizing constant (partition function) and p∗(·) denotes unnormalized
probability. The conditional distributions p(v|h) and p(h|v) factorize completely, making
exact inference of the respective posteriors possible. Their expected values are given by

〈v〉p = σ(Wh + b) and 〈h〉p = σ(Wv + b). (2)

Here, σ denotes element-wise application of the logistic sigmoid: σ(x) = (1 + exp(−x))
−1
.

In practice, Contrastive Divergence (CD, [5]) or one of its variants is used to approximate
the true parameter gradient

∂ ln p(v)

∂W
= 〈vhT 〉+ − 〈vhT 〉−

by a MCMC algorithm. Here, 〈·〉+ and 〈·〉− refer to the expected values with respect to
the data distribution and model distribution, respectively. The expected value of the data
distribution is approximated in the “positive phase”, while the expected values of the model
distribution are approximated in the “negative phase”. For CD in RBMs, 〈·〉+ can be
calculated in closed form, while 〈·〉− is estimated using k steps of a Markov chain started at
the training data.

Recently, Tieleman [8] proposed a faster alternative to CD, called Persistent Contrastive
Divergence (PCD), which employs a persistent Markov chain to approximate 〈·〉−. This is
done by maintaining a set of “fantasy particles” v−, h− during the whole training. The
chains are also governed by the transition operator in Equation (2) and are used to calculate
〈vhT 〉− as the expected value with respect to the Markov chains 〈v−hT−〉.
If the learning rate is small enough, the chains v− and h− should mix faster than the
model changes. Therefore they form a better estimate of the model distribution than a
k-step Gibbs sampling as performed by CD. As a side effect, PCD removes k from the set of
hyperparameters to be adjusted and again emphasizes the importance of the learning rate.

RBMs can be stacked to build hierarchical models. The training of stacked models proceeds
greedily layer-wise. After training an RBM, one calculates the expected values 〈h〉p(h|v) of
its hidden variables given the training data. Keeping the parameters of the first RBM fixed,
we can then train another RBM using 〈h〉p(h|v) as its input. We do not directly investigate
stacking but concentrate on the learning of a single layer, as the results can be directly
applied to the stacked setting.

Annealed Importance Sampling (AIS) can be used to obtain an approximation of the partition
function of an RBM. It is an algorithm to estimate the ratio of two normalization constants,
and builds upon the following fact. Let pA(v) = p∗A(v)/ZA and pB(v) = p∗B(v)/ZB be two
distributions such that pA(v) 6= 0 if pB(v) 6= 0. Then:

ZB
ZA

=

∫
p∗B(v)dv

ZA
=

∫
p∗B(v)

p∗A(v)
pa(v)dv =

〈
p∗B(v)

p∗A(v)

〉
pA
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Figure 2: Learning curves for Shifter dataset: Top row. Exact likelihood during training,
with standard deviation for different random initializations. Dashed lines show “reconstruc-
tion error”. Bottom row. AIS approximations to likelihood with error bars showing mean
uncertainty. Colors indicate different learning rates η: black η = 0.1, red η = 0.01, green
η = 0.001, blue η = 0.0001. See main text for a detailed discussion.

If is is possible to draw independent samples from pA, then this expected value can be
approximated using a Monte Carlo approach. This only gives good approximations if pA is
very close to pB .

AIS overcomes this weakness by introducing an annealing chain of distributions pn such that
p0 = pA, pN = pB and pk is very close to pk+1. Calculating the ratios of all intermediate
normalization functions – which can be done efficiently using an MCMC algorithm – then
yields the desired ratio ZB/ZA.

As detailed in [7], AIS can be applied to calculating the partition function of an RBM by
setting pB to a distribution for which the normalization constant can be computed effiently
and setting pA to the distribution modeled by the RBM.

3 Experimental Setup

We use three datasets in this paper, which we chose for comparability with the literature.

Shifter. Labeled Shifter Ensemble [13] is a 19-dimensional data set containing 768 samples.
The samples are generated in the following way: The states of the first eight visible units
are set uniformly at random. The states of the following eight units are cyclically shifted
copies of the first eight. The shift can be zero, one unit to the left, or one to the right and
is indicated by the last three units. The average log-likelihood is log 1

768 ≈ −6.64 if the
distribution of the data set is modeled perfectly.

4



14

12

10

8

6

4

P
(v

) 
(n

a
ts

)

CD1

re
co

n
st

ru
ct

io
n
 e

rr
o
r

PCD

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Update Number 1e5

14

12

10

8

6

4

P
(v

) 
(n

a
ts

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Update Number 1e5

Figure 3: Learning curves for Bars and Stripes. Color coding as in Figure 2.

Bars and Stripes. This dataset also stems from [13] and has 16 visible units. Each
pattern corresponds to a square of 4× 4 units and is generated by first randomly choosing
an orientation, vertical or horizontal with equal probability, and then picking the state for
all units of every row or column uniformly at random. Since each of the two completely
uniform patterns can be generated in two ways, the upper bound of the average log-likelihood
is −3.21.

MNIST. Finally, we use the MNIST database of handwritten digits1, which is more
realistic dataset than the first two. If not by itself, it certainly has gained relevance through
heavy use for evaluation of new learning algorithms.

Determining the log-likelihood. Due to the symmetric structure of the RBM energy
function with respect to v and h, the likelihood can be factored in two different ways:

log p(v; θ) = −Z(θ) + log
∑
h

exp (−E(v,h; θ))

= −Z(θ) +
(
bTv

)
+

n∑
j=1

log

(
1 + exp

(
aj +

m∑
i=1

wijvj

))
(3)

= −Z(θ) +
(
aTh

)
+

m∑
j=1

log

(
1 + exp

(
bj +

n∑
i=1

wjihj

))
(4)

Depending on the dimensions of W , the larger of h and v is summed out (Equations (3)
or (4), respectively). For Z(θ) =

∑
v

∑
h exp (−E(v,h; θ)), all possible values of v ∈ {0, 1}n

or h ∈ {0, 1}m must be considered.

1http://yann.lecun.com/exdb/mnist/
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Figure 4: Learning curves for MNIST for varying learning rates. Color coding as in Figure 2.
Note especially the divergence of AIS and the ground truth likelihood in the plot on the
lower right.

Details on Learning Procedure. Since the Shifter and Bars and Stripes datasets are
quite small, we use true batch learning. Minibatch learning gave similar results which are not
shown here. For the MNIST dataset we use minibatches of size 400. Other batch sizes gave
similar results, small batch sizes just result in less stable learning curves. No weight-decay,
learning rate schedule, momentum or sparsity bias was used in either case.

For PCD, we used as many chains as there were samples in a batch. This was mainly done for
convenient implementation. Since varying the batch size did not have significantly influence
on our main observations, PCD does not seem to be very sensitive to the particular number
of persistent chains used.

Details on Annealed Importance Sampling. As a base model for AIS, we used the
standard procedure of modeling each visible unit as independent. This corresponds to a
energy model consisting only of the bias term E(v, θ) = −bTv. The maximum likelihood
solution for b is then given by: b = log(v̄)− log(1− v̄), where v̄ is the mean of v over the
dataset.

We initialized b to a smoothed version of the maximum likelihood solution, by using
v̄′ = v̄+0.1. This heuristic was chosen on MNIST and kept unchanged for the other datasets.
The schedule employed for the parameter β was proposed in [7], where β was taken uniformly
spaced in three intervals. Specifically, we use 500 β ∈ [0, 0.5[, then 4000 β ∈ [0.5, 0.9[ and
10.000 β ∈ [0.9, 1.0] for a total of 14.500 intermediate distributions. Using β that were
uniformly distributed in [0, 1] did not produce significantly different results. We used 512
parallel Markov chains for a stable approximation.

Empirical Verification of Implementation. Since the calculations for training and
evaluation of the true and approximate (AIS) log-likelihood are quite demanding, we paral-
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lelize them using the NVIDIA CUDA framework and the CUV python library [18]. Training
and evaluation jobs are further distributed over a cluster of 25 GPUs on eight computers.
A complete learning curve for MNIST with 25 hidden units can thereby be generated in
about ten minutes. Two adjustments were made to ensure numerical stability. Firstly, the
large sums in Equations (3) and (4) are calculated using the Kahan algorithm on CPU and
logarithmic summing on GPU. Secondly, we set log(1 + exp(x)) := x if x > − log(ε), where
ε is machine precision for double (CPU) or float (GPU). We calculated the true average
log-likelihood of MNIST for a trained RBM both on GPU and on CPU and consistently find
that the results differ only after the fifth decimal place.

4 Results

During training, we save the weights every 4000 weight updates and determine the ground
truth log-likelihood, the estimated log-likelihood using AIS, norm of weight matrix and the
reconstruction error. All data shown is for RBMs with 25 (24) hidden units for MNIST
(Bars and Stripes and Shifter). We repeated each experiment with five different random
initializations except the special case for MNIST where AIS does not follow the ground truth,
which was repeated 10 times to ensure that this is a repeatable observation.

Likelihood development over training. In both, PCD and CD1, learning curves were
strongly dependent on the learning rate. Further parameters (learning rate schedules, weight
decay) are hard to set and may lead to convergence to suboptimal results [13]. We find that
we can obtain results which compare favorably with the literature without the use of these
methods.

With regards to learning rates, we observe that for all datasets (top rows of Figures 2, 3 and 4)
learning speed correlates with learning rate. In contrast to, for example, neural networks,
large learning rates in RBM training do not result in instable learning and bad optima but
in divergence of the log-likelihood function after achieving good likelihood values. This
divergence of RBM training has been observed before (e. g. [13, 11]) and we could reproduce
this effect in larger RBMs on MNIST (Figure 4, top row). The divergence effect is more
pronounced for high learning rates. This is expected for PCD, since PCD requires “small”
learning rates, so that the persistent chains stay close to the current model distribution.
Still, large learning rates reached good solutions quickly before training diverged. We also
observed divergence for smaller learning rates when training was carried on long enough
(data not shown).

In general, learning with higher learning rates is more dependent on the seed (see e. g. the
upper left plot of Figure 2).

The optimum in PCD learning is consistently larger than the optimum in CD1 learning,
which is conforming to the literature (e. g. [8]).

AIS approximation of log-likelihood. Generalizing the above observations and accept-
ing the divergence of RBM training algorithms, we would like to choose a learning rate which
is large and stop before the likelihood starts to diverge. As can be observed in all plots, the
“reconstruction error” (dashed lines in top row) mentioned before is of no help at all. The
value always decreases. We therefore consider AIS as an evaluation method of the learning
process.

For the toy datasets (Bars and Stripes, Shifter) and also for most cases in the MNIST
dataset, AIS approximates the ground truth likelihood accurately. This is even the case
when learning is very unstable (e. g. left plot in Figure 1). We also measured the uncertainty
of AIS. The error bars in the bottom rows of Figures 2, 3 and 4 show the uncertainty of AIS
averaged over learning trials with varying random seeds. As long as learning is stable, the
uncertainty is very small. Surprisingly, however, for various trials ground truth likelihood
dropped dramatically, while AIS completely failed to either capture the change in likelihood
or to increase uncertainty (see right of Figure 1 for single run and bottom right of Figure 4
for the average over trials). We also observed this behavior for smaller learning rates (which
diverge later) on MNIST, but not at all on the toy datasets. Therefore generalizations from
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small models to larger ones should be taken with a grain of salt. To investigate the reason
for the drop in likelihood, we examined the persistent chains at the problematic update
steps, but found no obvious deficiency in the mixing. Therefore, AIS, while it models easy
cases perfectly and some hard cases very well should be used cautiously for such purposes as
stopping learning, finding hyper-parameters and evaluating new learning algorithms.

5 Conclusions

While RBMs are successful learning machines, their training remains a tricky task. We
evaluated training methods with minimal parameter sets on small to medium-sized problems
to analyze the behavior of CD1 and PCD training with respect to parameter selection and
divergence. Our findings suggest that often a simple setup provides good results, provided one
finds a suitable learning rate. We can confirm divergence of CD1 and PCD learning algorithms
and therefore investigated AIS as a stopping and evaluation method. The presented results
suggest that AIS is often, but not always, a good measure of the training progress and we
suggest further investigation into alternative criteria.

Acknowledgements We thank Asja Fischer for valuable suggestions and discussions.
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