
Large-scale Object Recognition with
CUDA-accelerated Hierarchical Neural Networks

Rafael Uetz and Sven Behnke
Autonomous Intelligent Systems Group

Institute of Computer Science VI
University of Bonn, Germany

Email: {uetz, behnke}@ais.uni-bonn.de

Abstract—Robust recognition of arbitrary object classes in
natural visual scenes is an aspiring goal with numerous practical
applications, for instance, in the area of autonomous robotics and
autonomous vehicles. One obstacle on the way towards human-
like recognition performance is the limitation of computational
power, restricting the size of the training and testing dataset as
well as the complexity of the object recognition system. In this
work, we present a hierarchical, locally-connected neural network
model that is well-suited for large-scale, high-performance object
recognition. By using the NVIDIA CUDA framework, we create a
massively parallel implementation of the model which is executed
on a state-of-the-art graphics card. This implementation is up to
82 times faster than a single-core CPU version of the system.
This significant gain in computational performance allows us to
evaluate the model on a very large, realistic, and challenging set
of natural images which we extracted from the LabelMe dataset.
To compare our model to other approaches, we also evaluate
the recognition performance using the well-known MNIST and
NORB datasets, achieving a testing error rate of 0.76 % and
2.87 %, respectively.

I. INTRODUCTION

Vision clearly is an indispensable sense for humans. Without
visual perception, orientation and movement are hardly possi-
ble. Another crucial ability of the visual system is the robust
localization and recognition of arbitrary objects within the
environment. This is an extremely difficult task due to different
angles of view, lighting conditions, and partial occlusions.

In order to cover these variations, it is essential to provide
an object recognition system with enough training examples
containing objects under different conditions. However, most
datasets commonly used for evaluating object recognition
models do not meet these requirements. Objects of Caltech
101 [1], for instance, are view-normalized, i.e., all instances
of an object class are depicted in the same angle of view.
Hence, only one specific view of each class is learned. The
NORB dataset [2], on the other hand, accounts for this problem
by including many different angles of view for each object
class. However, all images are created artificially and do not
show natural scenes. Models achieving a good recognition
performance on these and similar datasets are therefore not
guaranteed to also achieve good results in real-life applications
(see [3] for further discussion on this topic). To overcome these
limitations, we created a new, realistic dataset by extracting a
large number of objects from the LabelMe dataset of natural
images [4]. Our dataset is described in Section II.

Another important issue we address here is the compu-
tational time required to train an object recognition system
with a large dataset. Some classifiers, such as Support Vector
Machines (SVMs), may considerably limit the maximum size
of the training dataset because of the quadratic optimization
during the training process. Neural Networks (NNs), on the
other hand, often exhibit a sublinear runtime in the number of
training samples as well as a structure that is well-suited for
massively parallel implementation (see [2] and [5] for a com-
parison of the training runtime of SVMs and Convolutional
Neural Networks).

We propose a new neural network model which we call
Locally-connected Neural Pyramid (LCNP). This model is op-
timized for large-scale, high-performance object recognition.
Similar to models like the Neural Abstraction Pyramid [6]
or Convolutional Neural Networks [7], we use a hierarchical
structure of two-dimensional maps. This structure combines
fast, inherently parallel processing with the ability to extract
complex features at higher hierarchical layers. In contrast to
other models, we propose a local connection structure where
each neuron has its own weights, i.e., no weight sharing is
applied. This allows for a fine-grained parallelization and gives
very good recognition results. The model is described in more
detail in Section III.

We implemented our model using the NVIDIA CUDA
(Compute Unified Device Architecture) framework [8], allow-
ing us to execute all time-critical functions in parallel on a
state-of-the-art graphics card. The implementation is briefly
described in Section IV.

The model is evaluated in Section V. We measure the
speedup factor of the parallel implementation and the recog-
nition performance by using the MNIST [9] and NORB
normalized-uniform [2] datasets as well as our new dataset
of natural images.

II. THE LABELME-12-50K DATASET

Our main goal in creating the new dataset was to use natural
images with a great variety of object instances, lighting condi-
tions, and angles of view. We chose to extract all training and
testing images from the LabelMe dataset [4], which consists
of more than 175,000 natural images, most of them showing
street and indoor scenes. Annotations (in the form of labeled

In Proceedings of the 1st IEEE International Conference on Intelligent Computing and Intelligent Systems 2009 (ICIS 2009)

(a) object size
(160x160)

image size (256x256)

(b)
tree 1.0 car 1.0 building 1.0 window 1.0 person 1.0 keyboard 1.0 sign 1.0 bookshelf 1.0

car 0.21 person 0.54 window 0.66 building 1.0,
tree 0.03

(none) (none) (none) (none)

Fig. 1. (a) Our dataset consists of JPEG images with a size of 256×256 pixels. Instances of the 12 object classes are resized to 160 pixels in their larger
dimension, so there are at least 30 % of context information in each direction. (b) Some images of our training dataset. Class labels different from −1 are
denoted below the images.

polygons) can be added by anyone using the online annotation
tool on the project’s web site http://labelme.csail.mit.edu.

We extracted 50,000 JPEG images in total, 40,000 of them
for training and 10,000 for testing. We chose this size because
larger training sets may be infeasible to train on current
computers, mainly because of the restricted main memory.
Potential future versions of the dataset could be much larger
as the LabelMe dataset keeps growing.

There are images of 12 object classes and one additional
“clutter” category in our dataset. Each image of the clutter
category shows a randomly selected region of a randomly
selected LabelMe image, whereas all the other images each
show one centered object. The number of instances of each
category is listed in Table I.

Our dataset was created as follows: We searched the whole
LabelMe dataset for all instances of the 12 object classes
using the MATLAB toolbox supplied with LabelMe. Instances
smaller than 160 pixels in both dimensions (width and height)
were discarded, the remaining instances were scaled down to
have exactly 160 pixels in their larger dimension. We then
randomly selected 25,000 of these instances (20,000 for the
training set and 5,000 for the testing set). Each object was
centered in a 256×256-pixel window by using the center of
mass of its annotation polygon (see Figure 1 (a)). Areas of the
window exceeding the image boundaries were colored gray.
Figure 1 (b) shows the first 16 images of the training set.

The class labels of the created dataset were stored in a
binary file as well as in a human-readable text file. For each
image, these label files contain 12 successive float values (one
for each class) with a range between −1 and 1. A value of 1
means that an instance of the corresponding class is exactly
centered in the 160×160-pixel object area. This is obviously
true for all extracted objects, so each of the object images (in
contrast to the clutter images) has at least one class label with a
value of 1. If one or more objects of a certain class overlap the
object area of the current image, the label of the corresponding
class is set to a value between 0 and 1, depending on the
percentage of the overlapping and the size difference between
the object and the object area of the image.

The dataset can be downloaded from our web site [10]. Its
compressed size is about 460 MB. Note that much more main

memory will be required (about 10 GB) if all JPEG images
are loaded and uncompressed into memory.

object class instances in instances in
training set testing set

1 person 4,855 1,180
2 car 3,829 974
3 building 2,085 531
4 window 4,097 1,028
5 tree 1,846 494
6 sign 954 249
7 door 830 178
8 bookshelf 391 100
9 chair 385 88
10 table 192 54
11 keyboard 324 75
12 head 212 49

total no. of objects 20,000 5,000
clutter images 20,000 5,000
total no. of images 40,000 10,000

TABLE I
OBJECT CLASSES AND NUMBER OF INSTANCES IN THE LABELME-12-50K

DATASET

III. THE LCNP MODEL

In this section, we describe our neural network model,
which we call Locally-connected Neural Pyramid (LCNP).
The following subsections describe the network structure,
the neuron connections, the input encoding, and the training
algorithm.

A. Network structure

The basic structure of our model is depicted in Figure 2.
Similar to the Neural Abstraction Pyramid [6], there are
L ≥ 1 regular layers and one output layer. Each regular layer
l ∈ {0, . . . , L − 1} consists of at least one map, each map
being a two-dimensional, square array of Nl × Nl neurons.
The neuron model is the same as the one used for multi-
layer perceptrons [11], i.e., each neuron has an output value
called activation which is calculated by applying a non-linear
function (we use the hyperbolic tangent) to a weighted sum
of input values.

Maps of a specific layer all have the same size, whereas the
size of maps in consecutive layers is halved each time so that

In Proceedings of the 1st IEEE International Conference on Intelligent Computing and Intelligent Systems 2009 (ICIS 2009)

layer 0

layer 1

layer L-1

maps {

...

...

output layer

fo
rw

a
rd

 p
ro

p
a
g
a
ti

o
n

Fig. 2. Basic structure of our hierarchical neural network model. There are
L regular layers and one output layer. Each regular layer consists of at least
one map.

Nl = 1
2Nl−1. The number of maps increases with each layer.

This property ensures a decreasing spacial resolution while the
number of features increases at the same time. Experiments
have shown that doubling the number of maps in each layer
seems to be a good trade-off between recognition performance
and calculation speed.

In contrast to the regular layers, the output layer is a one-
dimensional array of neurons, each representing one object
class (one-hot encoding).

B. Neuron connections

Any two maps i and j of two consecutive regular layers l
and l+1, l ∈ {0, 1, . . . , L−2}, respectively, can potentially be
connected by a map connection. A map connection is a local
connection structure between two maps where each neuron
of map j has connections to an adjacent set of neurons in
map i, called the receptive field of the neuron in map j. We
chose the size of the receptive field to be 4 × 4 neurons. As
the maps of layer l are twice as large as the maps of layer
l + 1, the receptive fields overlap by 50 % in each direction
(see Figure 3).

map of layer l

map of layer l+1

receptive fields

Fig. 3. Illustration of a map connection. Every neuron of the higher layer l+1
has local connections to neurons of the lower layer l.

The highest regular layer L − 1 is fully connected to the
output layer, i.e., each neuron of each map of layer L − 1 is
connected to each neuron of the output layer.

Unlike most other hierarchical neural network models, such
as LeNet [7], our model does not employ weight sharing. That
means each neuron’s weights are independent of any other
neuron’s weights, resulting in a very large total number of
free parameters. This design decision is motivated twofold:
Firstly, the “blessing of dimensionality” gives hope to find
good local minima when training the network via gradient

descent algorithms. At the same time, the hierarchical, locally-
connected network structure allows for a fast calculation
compared to fully-connected structures like the multi-layer
perceptron. Secondly, a simple reason to study local, non-
shared weights is that this structure is massively used by the
human brain [12]. To our knowledge, there is no work about
hierarchical neural networks where such a tremendous amount
of weights has been evaluated before.

C. Input encoding

Any map of each regular layer can be used as an input map.
This is done by setting the activation values of its neurons to
the desired input values.

To train and test the model with natural image datasets,
the most obvious input method would be to use one input
map for each of the red, green, and blue channels. However,
such highly correlated values should be avoided as they
may impair the training process [13]. Hence, we applied a
principal component analysis (PCA) to a large sample of RGB
values taken from all images of the LabelMe dataset. For the
following measurements, we used the resulting three principal
components to calculate three less correlated input channels
from the RGB channels.

Additionally, four edge channels are calculated by convolv-
ing with the filters

(i)
[
−1 1

0 0

]
(ii)

[
−1 0

1 0

]

(iii)
[
−1 0

0 1

]
(iv)

[
0 1
−1 0

] (1)

to the grayscale values of the input image’s pixels. The
absolute values of the result are then used as activation values
for four input maps. They resemble edge detectors of different
orientations.

Another significant property of our model is the use of input
maps in every regular layer. We do this by first subsampling
the original input image multiple times to the size of all
regular layer’s maps. In the second step, we calculate the
described input channels from these subsampled images. An
advantage of this method is that the edge filters on lower layers
extract fine-grained edges while those of higher layers extract
coarse-grained edges. Similarly, the PCA channels of lower
layers represent fine details, whereas those of higher layers
represent coarse features. This approach turned out to improve
the recognition performance significantly.

Summing up, there are seven input maps per regular
layer for datasets consisting of RGB images: Three input
maps resembling the color information by using a linear
combination (calculated by a PCA) of the RGB channels
and four input maps resembling different edge detectors. As
the described preprocessing does not require any non-local
memory accesses, it is well-suited for a massively parallel
implementation.

In Proceedings of the 1st IEEE International Conference on Intelligent Computing and Intelligent Systems 2009 (ICIS 2009)

D. Training algorithm

The model is a pure feed-forward architecture. Learning is
supervised and done via “plain-vanilla” backpropagation of
error. We use a fixed learning rate ηl = 0.01 · 2L−l for map
connections between layer l − 1 and l, l ∈ {1, . . . , L − 1},
and ηo = 0.0001 for map connections between layer L − 1
and the output layer. We tried regularization methods such as
weight decay, but these did not improve the results (neither
recognition rate nor training speed).

All connection weights of the network are randomly initial-
ized in the range ± 1√

n
, where n is the number of inbound

connections for a specific neuron.

IV. CUDA IMPLEMENTATION

In this section, a brief introduction of the CUDA framework
is given, followed by a sketch of our parallel implementation.

A. The NVIDIA CUDA framework

CUDA (Compute Unified Device Architecture) is a frame-
work which allows to develop C/C++ programs that execute
specific functions (so-called kernels) on a CUDA-compatible
graphics card in parallel. This graphics card is called device in
this context. The computer on which the device is installed is
called host. An instance of a kernel is called a grid. It consists
of an arbitrary number of blocks. Each block consists of the
same number of threads, which all execute the kernel’s code
in parallel.

During the execution of a grid, blocks and threads are
mapped to the multiprocessors of the GPU (Graphics Process-
ing Unit) and their (scalar) processors, respectively.

A kernel may use multiple kinds of memory: Registers,
shared memory, texture cache and constant cache are fast, but
small on-chip memory, whereas device memory is much larger
(up to 2 GB), but has a drastically higher latency. Registers
are accessible only from the current thread, shared memory is
accessible from all threads of one block. Data transfer between
blocks as well as between the host and the device can only be
accomplished via the device memory. The hardware model of
CUDA-compatible graphics cards is depicted in Figure 4.

When developing CUDA kernels, one has to consider the
hardware constraints of the graphics card in order to obtain
good performance. Compared to developing a conventional
CPU program, CUDA kernels require by far more manual op-
timization and their performance strongly depends on memory
access patterns and a fine-grained parallelism.

There are two major challenges when implementing a pro-
gram using CUDA. Firstly, one must decide how to parallelize
the original, sequential program, i.e., how to map loops to
threads, blocks, and loops in the host function and/or in
the kernel function. Secondly, the access patterns must be
optimized for the different kinds of memory. Accesses to
the device memory, for example, should be coalesced for all
threads of a half-warp (that is a batch of 16 threads executed
on one multiprocessor concurrently). Coalesced means that all
threads access memory in a certain area whose size and start
offset depend on the size of the data type that is requested.

Multiprocessor 1

Shared Memory

Processor 1

Registers

Processor M

Registers

Constant Cache Texture Cache

Device

Multiprocessor N
...

Device Memory

CPU

Host Memory

...

data transfer

Fig. 4. Hardware structure of a CUDA graphics card. Adapted from [8].

B. Parallel implementation of our model

We implemented our model in C++ with CUDA under
Linux. All performance-critical functions were programmed as
a CPU- and a GPU version. This way, we were able to check
the GPU version for correctness and to compare the execution
speed of both versions directly. The CPU functions use one
CPU core only and are not optimized manually (for example,
by using the MMX or SSE instruction sets), so they only serve
as a rough baseline for measuring the speedup factor of the
parallel implementation. Compilation was done with g++ and
the O2 flag set.

All attributes of the model’s neurons are of the type float.
Using double instead would drastically reduce the perfor-
mance since twice the memory bandwidth would be required
and the calculation would be slower.

The most performance-critical functions of our implemen-
tation are the forward and backward propagation steps. All
other steps, like copying the input patterns from host to device,
copying the results back, and calculating some statistics on the
host require less than 10 % of the runtime in total. Hence, we
only describe the implementation of the forward and backward
propagation here.

Both functions process 16 patterns of an epoch concurrently,
an epoch being one iteration of all training patterns. This
method is called mini-batch learning. It is a trade-off between
online learning (where all connection weights are updated after
each pattern) and batch learning (where all patterns of the
training set are processed before the connection weights are
updated). Mini-batch learning generally requires less epochs
for learning in comparison to batch learning and exhibits
higher computational performance than online learning be-
cause the connection weights are saved less frequently.

We compared mini-batch learning (using batches of 16
patterns) and online learning directly and found both to be
equally fast in terms of epochs required to obtain a certain
testing error rate, but a lot faster in terms of runtime because
of the better parallelization options.

In Proceedings of the 1st IEEE International Conference on Intelligent Computing and Intelligent Systems 2009 (ICIS 2009)

...

first kernel call
(8 maps)

second kernel call
(8 maps)

third kernel call
(2 maps)

block 1
(16 neurons
per target map)

...

maps of
layer l+1

maps of
layer l

...

Fig. 5. Illustration of the forward propagation. For a source map of layer
l ∈ {0, . . . , L− 2}, up to eight target maps of layer l + 1 are processed in
parallel by one kernel call.

1) Forward propagation: The forward propagation pro-
cesses all regular layers sequentially because all neuron ac-
tivations of layer l ∈ {0, . . . , L− 2} are required to calculate
the neuron activations of layer l+1. Within each loop iteration,
there is another sequential loop over all maps of the current
layer. For each map in layer l (source map), up to eight map
connections to the maps of the next layer l+ 1 (target maps)
are concurrently processed by one kernel call. The kernel
processes these map connections for all 16 patterns of the
current mini-batch in parallel.

Each block of a launched grid consists of 256 threads and
represents the neurons of a specific area of all target maps that
are currently processed, namely an array of 16×1 neurons (see
Figure 5). Depending on the number of concurrently processed
target maps, the threads perform different tasks: As there are
16 neuron positions and 16 patterns, each thread calculates
the activation of exactly one neuron if only one target map is
being processed by the kernel. If more target maps are being
processed, the threads are subdivided by the number of target
maps. The reduced number of threads for each target map
is compensated by a loop within each thread so that each
neuron’s activation can be calculated.

This approach was chosen to minimize the memory latency:
The more target maps are processed in parallel, the more often
the same activation values of the source map are required. As
we use texture functions to read the source map’s activations
more quickly, the on-chip texture cache is exploited better if
the same values are read several times.

The forward propagation kernel uses multiple kinds of
memory. As already stated above, the activations of the source
map’s neurons (source neurons) are read via the texture cache.
This is because the read accesses cannot be coalesced due to
the structure of the activations in memory (which is optimized
for the backpropagation step). Using the texture cache is
especially advantageous if coalesced reading is not possible
but the access pattern is local.

Connection weights are read from the device memory and
then written to the shared memory. It is a common principle to
first load all required values into the fast on-chip memory and
then use them several times during the execution of a block.
The target neurons’ activations, calculated from a weighted
sum of the connection weights and the source activations,
are finally written back to the device memory. All of these

accesses are coalesced in order to utilize the full device
memory bandwidth.

After all activations of the regular layers’ maps have been
calculated, the full connections between the maps of layer
L − 1 and the output layer are calculated via matrix multi-
plications. For this step, we use the CUDA CUBLAS library,
more precisely, the cudaSgemm general matrix multiplication
function. This function allows to multiply the weight changes
by a learning rate and to add the result to the current weights
in one step.

2) Backpropagation: Similar to the forward propagation,
the backpropagation processes all layers sequentially, but in
reverse direction. The weight changes of the full connections
between the output layer and the regular layer L − 1 are
again calculated via matrix multiplications. After that, each
map connection of each regular layer is processed by one
kernel call. In contrast to the previously described forward
propagation, one kernel processes exactly one instead of up to
eight map connections. This is due to the restricted hardware
resources, namely registers, since the backpropagation requires
more data.

During each kernel call, each block of the grid represents an
array of 16×16 neurons on the lower layer’s map. Each of the
256 threads within a block represents one of these neurons.
Most of the required values are loaded directly from the device
memory and are stored into registers. When the calculations
are done, these values are written back to the device memory.
All read and write accesses are coalesced.

V. RESULTS

In this section, we present our results concerning the
speedup factor of the parallel CUDA implementation and
the recognition performance using the MNIST, NORB
normalized-uniform, and LabelMe-12-50k datasets.

A. Speedup factor of the CUDA implementation

For our measurements, we used an Intel Core i7 940 CPU
and an NVIDIA GeForce GTX 285 graphics card on a Linux
system with 12 GB of RAM. With the network structure
described in the next subsection, we obtained a speedup factor
of 43.5 compared to the CPU version of the system. Using
other network structures, the speedup factor is between 7.7
and 82.2 for very small and very large networks, respectively.
The number of connection weight updates per second (WUPS)
is up to 7.98 · 109. This number was calculated as if online
learning was used, so every weight update of every pattern
was counted (though the changes are only applied once for
each mini-batch). This kind of calculation allows to compare
the WUPS of different batch sizes directly.

The absolute time for one training epoch of the LabelMe-12-
50k dataset is 70.2 seconds when using the network structure
described in the next subsection. As one epoch consists of
40,000 images, the network processes about 570 images per
second in the training phase. In the recall phase, the network
processes about 1,356 images per second.

In Proceedings of the 1st IEEE International Conference on Intelligent Computing and Intelligent Systems 2009 (ICIS 2009)

B. Recognition performance
We tested our system with three datasets: (1) The MNIST

dataset [9], which consists of 60,000 grayscale images (50,000
for training and 10,000 for testing). Each image shows
one handwritten digit. (2) The NORB normalized-uniform
dataset [2], which consists of stereoscopic grayscale images of
50 toys, belonging to 5 categories. Each of the 48,600 images
(24,300 for training and 24,300 for testing) shows one toy
under different lighting conditions, elevations and azimuths.
(3) The LabelMe-12-50k dataset described in Section II.

We used almost the same network structure and exactly the
same parameters for these datasets. The only difference was
the number of input maps per layer, depending on the number
of color and/or stereoscopic channels of the input images.

The network we used for the measurements has five regular
layers with the dimensions 256×256, 128×128, . . ., 16×16.
As described in Section III-C, we used seven input maps in
each layer for training and testing the LabelMe-12-50k dataset.
For the MNIST dataset, five input maps per layer were used
(one grayscale channel and four edge channels). Accordingly,
we used 10 input maps per layer for the NORB dataset (one
grayscale and four edge channels for each of the left and right
channels of the stereoscopic image).

Additionally, there are 2l non-input maps in each regular
layer l ∈ {1, . . . , L−1}, which have map connections to each
map of layer l − 1. All patterns were initially stretched to
256×256 pixels in order to fit the input maps in layer 0. Each
training image was randomly shifted by ±5 % of the map size
during the training phase in order to improve generalization
and avoid overtraining. Testing images were not shifted. The
order of the training patterns was permuted in each epoch.

Dataset Training error rate Testing error rate
MNIST 0.03 % 0.76 %
NORB normalized-uniform 0.05 % 2.87 %
LabelMe-12-50k 3.77 % 16.27 %

TABLE II
TRAINING AND TESTING ERROR RATES

The results are shown in Table II. The training and testing
error rates denote the percentage of incorrectly classified
patterns of the whole training and testing set, respectively.
To verify the correctness of the output during the LabelMe-
12-50k testing phase, we first determined the output neuron
having the largest activation value (winning neuron). If the
winning neuron’s activation exceeded a threshold of 0, the
pattern was classified as the winning neuron’s class, else it
was classified as belonging to the clutter category.

All results were measured after training for 1000 epochs
and are averaged over 10 epochs. However, similar recognition
rates appeared much earlier. The testing error rate of LabelMe-
12-50k, for instance, did not change significantly after having
trained for 100 epochs. The testing error rate of MNIST was
3.86 % after one epoch and < 1 % after about 35 epochs. For
NORB, it was 18.35 % after one epoch and < 5 % after about
20 epochs. We did not observe any significant overtraining.

VI. CONCLUSION

In this paper, we introduced a large, realistic dataset of
natural images which was extracted from LabelMe [4]. Our
dataset consists of 50,000 256×256-pixel images of natural
scenes, showing objects of 12 classes with a great variety of
object instances, lighting conditions, and angles of view. The
dataset can be downloaded from our web site [10].

Furthermore, we presented a neural network model called
Locally-connected Neural Pyramid (LCNP) and described its
massively parallel implementation using the NVIDIA CUDA
framework. The main features of our model are its hierarchical
structure, the local connectivity without weight sharing, the
use of subsampled inputs in all hierarchical layers, and the
local preprocessing of the input patterns.

The recognition performance of our model is competitive
with state-of-the-art approaches. For the MNIST dataset, most
approaches achieving better results (see [9] for a comprehen-
sive list) use sophisticated preprocessing algorithms and/or
unsupervised pretraining. For the NORB dataset, our results
are (to our knowledge) the best ones achieved so far. As the
parallel implementation of our model runs extremely fast, it
allows for very large-scale object recognition systems and an
unprecedented size of training and testing datasets.

Future work will focus on training with larger datasets by
keeping compressed JPEG images in the main memory and
uncompressing them “on the fly” during the training phase.
We are also planning to employ de-noising autoencoders for
unsupervised pretraining and recurrent network structures for
an iterative improvement of the output.

REFERENCES

[1] L. Fei-Fei, R. Fergus, and P. Perona, “Learning generative visual models
from few training examples: An incremental bayesian approach tested
on 101 object categories,” Computer Vision and Image Understanding,
vol. 106, no. 1, pp. 59–70, 2007.

[2] Y. LeCun, F. J. Huang, and L. Bottou, “Learning methods for generic
object recognition with invariance to pose and lighting,” in Proceedings
of CVPR04. IEEE Press, 2004.

[3] N. Pinto, D. Cox, and J. DiCarlo, “Why is real-world visual object
recognition hard,” PLoS Computational Biology, vol. 4, no. 1, 2008.

[4] B. C. Russell, A. Torralba, K. Murphy, and W. T. Freeman, “LabelMe:
a database and web-based tool for image annotation,” International
Journal of Computer Vision, vol. 77, no. 1–3, pp. 157–173, 2008.

[5] F.-J. Huang and Y. LeCun, “Large-Scale Learning with SVM and Con-
volutional Nets for Generic Object Categorization,” in Proc. CVPR’06.
IEEE Press, 2006.

[6] S. Behnke, Hierarchical Neural Networks for Image Interpretation, ser.
Lecture Notes in Computer Science. Springer, 2003, vol. 2766.

[7] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[8] NVIDIA Corporation, CUDA Programming Guide, version 2.2, 2009.
[9] Y. LeCun and C. Cortes, “The MNIST database of handwritten digits,”

http://yann.lecun.com/exdb/mnist/.
[10] R. Uetz, “The LabelMe-12-50k dataset,” http://www.ais.uni-bonn.de/

download/datasets.html.
[11] F. Rosenblatt, “The perceptron: A probabilistic model for information

storage and organization in the brain,” Psychological Review, vol. 65,
no. 6, 1958.

[12] E. R. Kandel, J. H. Schwartz, and T. M. Jessel, Principles of Neural
Science, 4th ed. McGraw-Hill, 2000.

[13] Y. LeCun, L. Bottou, G. Orr, and K. Müller, “Efficient backprop,” in
Neural Networks: Tricks of the trade. Springer, 1998.

In Proceedings of the 1st IEEE International Conference on Intelligent Computing and Intelligent Systems 2009 (ICIS 2009)

