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Abstract. Training convolutional neural networks (CNNs) on large sets
of high-resolution images is too computationally intense to be performed
on commodity CPUs. Such architectures, however, achieve state-of-the-
art results on low-resolution machine vision tasks such as recognition
of handwritten characters. We have adapted the inherent multi-level
parallelism of CNNs for Nvidia’s CUDA GPU architecture to accelerate
the training by two orders of magnitude. This dramatic speedup permits
to apply CNN architectures to pattern recognition tasks on datasets with
high-resolution natural images.

1 Introduction

Biologically-inspired convolutional neural networks (CNNs) have achieved state-
of-the-art results for the recognition of handwritten digits [5, 11] and for the
detection of faces [1, 8]. However, since gradient-based learning of CNNs is
computationally intense, it would require weeks to train large-scale CNNs on
commodity processors. It therefore remains a largely unexplored question whether
CNNs are viable to categorize objects in high-resolution camera images.

In the 1990ies similar incentives to parallelize neuroapplications led to the
development of both general-purpose and special-purpose neurohardware. Popular
data-parallel techniques primarily relied on the parallel execution of nodes for
a single input pattern [13]. Early approaches to implement CNNs on parallel
graphics hardware [2] yielded speedups of up to 4.11×. More recently, multilayer
perceptrons [3], locally-connected neural networks [12] and deep belief networks [9]
have been adapted to GPUs with speedups by two orders of magnitude.

Modern graphics cards consist of several hundred parallel processing cores.
Nvidia’s scalable CUDA framework [7] (Compute Unified Device Architecture)
makes it possible to harness their computational power of several hundreds of
GigaFLOPS (floating point operations per second) without requiring to learn a
specialized programming language. However, in order to accelerate an application,
hardware-imposed memory access restrictions must be considered to efficiently
exploit the fast on-chip shared memory. Both general neural networks and
convolution operations are inherently parallel. Thus, CNNs, which combine both,
are a particularly promising candidate for a parallel implementation.
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To account for the peculiarities of such CUDA-capable devices, we had to
slightly divert from common CNN architectures. However, our CNN model
for CUDA’s parallel hardware architecture is sufficiently flexible for a large
range of machine vision tasks. We describe a fast parallel implementation of
the backpropagation algorithm to train this network on GPU hardware. The
program scales well on an arbitrary number of processors, and employs a circular
buffer strategy to minimize data transfers from the device memory to the on-chip
shared memory. This implementation achieves a speed-up factor between 95 and
115 over a serial, single-core CPU implementation and scales well with both the
network and input size.

2 Massively Parallel Computing on GPUs

Modern graphics processing units (GPUs) have evolved from pure rendering
machines into massively parallel general purpose processors. Recently, they
exceeded 1 TeraFLOPS [7], outrunning the computational power of commodity
CPUs by two orders of magnitude. GPUs employ the fundamentally different
SPMD (Single Program, Multiple Data) architecture and are specialized for
intense, highly parallel computations. More transistors are devoted to data
processing rather than to data caching and control flow. The CUDA framework
introduced by Nvidia allows the development of parallel applications through “C
for CUDA”, an extension of the C programming language.

The CUDA programming model considers a graphics card (device) as a phy-
sically separate co-processor to the CPU (host). Computations on the GPU
are initiated through kernel functions which essentially are C-functions being
executed in N parallel threads. Semantically, threads are organized in 1-, 2- or 3-
dimensional groups of up to 512 threads, called blocks, as shown in Figure 1a. Each
block is scheduled to run separately from all others on one multiprocessor. Blocks
can be executed in arbitrary order – simultaneously or in sequence, depending
on the system’s resources. However, this scalability comes at the expense of
restricting the communication between threads.

Threads have access to several memory spaces, as illustrated in Figure 1a.
Each thread has a small private local memory space. In addition, all threads
within the same block can communicate with each other through a low-latency
shared memory. The much larger global memory has a higher latency and can
be accessed by the CPU, thus being the only communication channel between
CPU and GPU. The GeForce GTX 285 graphics card running in our system
consists of 30 multiprocessors with 8 stream processors each, resulting in a
total of 240 cores and yielding a maximum theoretical speed of 1,063 GFLOPS.
Each multiprocessor contains 16 KB of on-chip shared memory as well as 16,384
registers. The GPU-wide 1024 MB of global memory can be accessed with a
maximum bandwidth of 159 GB per second.

In order to run hundreds of threads concurrently, the multiprocessors employ
an architecture called SIMT (Single Instruction, Multiple Threads), visualized in
Figure 1b. The SIMT unit of a multiprocessor creates, schedules and executes



(a) Thread hierarchy (b) SIMT architecture of CUDA-GPUs

Fig. 1: (a) Grids are subdivided into blocks, which consist of many parallel threads.
Threads of the same block can cooperate through shared memory. (b) A device consists
of several multiprocessors, each with their own memory spaces. (adapted from [7])

groups of 32 consecutive parallel threads. The highest efficiency can be achieved
if all threads execute the same instruction path. Memory accesses from different
threads can be coalesced into one memory transaction if consecutive threads
access data elements from the same memory segment. Following such specific
access patterns can dramatically improve the memory utilization and is essential
for optimizing the performance of an application. Despite such optimizations, the
CUDA framework is best suited for applications with a high arithmetic density,
that is, where the number of memory transactions is small compared to the
number of arithmetic operations.

3 CNN Architectures for SIMT Processors

The main concept of Convolutional Neural Networks (CNNs) is to extract local fea-
tures at a high resolution and to successively combine these translation-invariant
features into more complex features at lower resolutions. The loss of spatial infor-
mation is compensated for by an increasing number of feature maps in the higher
layers. Usually, CNNs consist of two altering types of layers, convolutional layers
and subsampling layers. Each convolutional layer performs a discrete folding
operation of its source image with a filter kernel. The subsampling layers reduce
the size of the input by averaging neighboring pixels. Our architecture – shown
in Figure 2 – diverges from this typical model because both the convolution and
subsampling operations are performed in one step.

This modification was necessary due to the limited memory resources of the
GPU hardware: During the backpropagation step it is required to store both
the activities and the error signal for each feature map and each pattern. When
combining both processing steps, the memory footprint of each feature map can
thus be reduced by a factor of four when 2× 2 subsampling is applied.



Fig. 2: Architecture of our CNN. The lower convolutional layers are locally connected
with one convolutional kernel for each connection. The last convolutional layer L4 is
followed by two fully connected layers.

The activity aj
(l)(x, y) of a neuron at position (x, y) in feature map j of layer

l solely depends on the activities of neurons in a local receptive field of all feature
maps from the preceding layer l − 1. Each filter not only consists of its elements
wij(u, v) at position (u, v), but also of a bias weight bij . The net input netj(x, y)
of feature map j is calculated over all source maps I:

netj(x, y) =
I∑

i=0

∑
(u,v)

wij(u, v) · ai(2x+ u, 2y + v)

+ bij

 . (1)

A non-linear sigmoid function – here we use hyperbolic tangent – is applied to
determine the activity aj(x, y) of each neuron:

aj(x, y) = fact(netj(x, y)) = tanh(netj(x, y)). (2)

For our implementation, we used 8×8 kernels which are overlapping by 75% in
each direction. The receptive field of a neuron increases exponentially on higher
layers. Each neuron in layer L4 is influenced by an area of 106×106 pixels of the
input image. A more technical advantage of this choice is that the 8×8 = 64 filter
elements can be processed by 64 concurrent threads. In the CUDA framework,
those 64 threads are coalesced into two warps of 32 concurrent threads each.

The filter weights are adapted with the gradient descent algorithm backprop-
agation of error. For one particular training pattern, the error signal δk of a
neuron k in the output layer is calculated from the desired output tk and the
actual output ok:

δk = f ′
act(netk) · (tk − ok). (3)

For a fully connected hidden neuron j, this error is propagated backwards with

δj = f ′
act(netj) ·

∑
k

δkwjk. (4)



(a) Pulling the error signals (b) Pushing the error signal

Fig. 3: Simplified example of the backpropagation pass for a one-dimensional case.
(a) When the error signals are pulled by a neuron of the lower layer, discontinuous
weights and neurons of the higher layer are involved. (b) When pushing the error signals,
a neuron from the higher layer iterates the weights and accesses the error signals of
continuous neurons.

For the convolutional layers it is error-prone to calculate the error due to the
dimension-reducing filter kernels: Because of the subsampling operation, the
index arithmetics for the error signal computations are complex. Therefore, we
are employing a technique that Simard et al. [11] call “pushing” the error signals,
as opposed to “pulling”. Figure 3 depicts the difference between those operations
for a 1D case. When the error is “pulled” by a neuron from the lower layer, it
is tedious to determine the indices of the weights and neurons involved. On the
other hand, “pushing” the error signal can be considered as the inversion of the
forward pass, which enables us to use similar implementation techniques.

The convolutional kernel is applied at every position of a feature map, thus
the weights are shared between several connections. The partial derivative of the
error with respect to a weight wjk(u, v) is not only summed over all patterns P ,
but also over all positions (x, y) of the feature map:

∂E

∂wjk(u, v)
=

P∑
p=1

∑
(x,y)

(
−δ(l+1)

k (x, y) · a(l)
j (2 · x+ u, 2 · y + v)

)
. (5)

The weight update ∆wkj(u, v) can then be calculated as

∆wji(u, v) = −η · ∂E

∂wjk(u, v)
, (6)

with an adjustable learning rate of η > 0.
Determining a suitable learning rate can be difficult. Randomly initialized

deep networks with more than three hidden layers often converge slowly and
reach an inadequate local minimum [4]. During our experiments, it proved
impossible to empirically choose a suitable learning rate for each layer. We
therefore implemented the RPROP algorithm [10] which maintains an adaptive
learning rate for each weight.



4 Implementation

To accelerate an application with the CUDA framework, it is necessary to split
the problem into coarse-grained sub-problems which can be solved independently.
Each task is mapped to a multiprocessor. Within each block, this task is further
divided into finer pieces that can be solved cooperatively in parallel by many
threads. We decided to assign each training pattern to one block, which implies
that a mini-batch learning scheme has to be applied. During one batch learning
pass, every pattern uses the same network parameters and weights.

The number of training patterns to be processed in parallel is restricted by
the limited amount of global memory. With 32-bit precision, a feature map of
512×512 pixels occupies 1 MB of memory. The activities of all layers and all
feature maps are required in the training pass, hence they all contribute to the
memory footprint of one training pattern. Depending on the number of feature
maps per layer and the size of the feature maps, up to 10 MB might be required
for each pattern. When using the GeForce 285 GTX this means that only a few
dozen patterns can be processed concurrently. At a finer scale, i.e., within a block,
we perform the convolution of one source feature map onto eight target feature
maps simultaneously. With this setup, the activities of the source feature map
need to be loaded only once for every eighth target feature map. This dramatically
reduces the amount of memory transfers. To simplify the parallel implementation
described here, we will only consider the case of 64×64 pixel source feature maps
and 32×32 pixel target feature maps. It can be expanded for multiples of these
sizes with little effort.

Because shared memory is extremely limited, it is critically important to
reuse loaded data as often as possible. Even if the whole 16 KB of shared memory
is used, it can only hold a small fraction of the source feature map. For this
reason, we are utilizing the shared memory as a circular buffer which only holds
a small region of the source feature map, as shown in Figure 4. During each
iteration only two rows of this buffer need to be exchanged. A 70×8 window of

64 pixels
70x8 pixel region in shared memory

Source map

in global memory

Target maps in

global memory

...

1

8
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Fig. 4: Convolution operation. A region of the source map is loaded from global memory
into the circular buffer in shared memory. Each thread performs a convolution on this
section and subsequently writes the result into the target map in global memory.



Fig. 5: Aggregation of the backpropagated error signals. Each thread first sums the
partial error signal over one position in all eight target map rows. Then it writes the
result to the accumulator in shared memory. As indicated by the thread numbers on
the right, each thread of a warp writes to a different memory bank. Thus, bank conflicts
are avoided. This step is repeated four times to cover each element of a filter.

the source feature map is maintained within shared memory. This area includes
the 64 columns of the source map as well as a 3 pixel wide border on both sides.
The 8×8 convolutional filter is applied at every other pixel, thus fitting exactly
32 times into this 70×8 window.

The source feature map is being iterated from top to bottom. During each
iteration, three steps are performed: (1) Loading two rows of 70 consecutive
pixels of the source feature map from global into shared memory with a coalesced
transfer operation. (2) Iterating through each filter element to compute the
convolution. (3) Writing 32 consecutive pixels, each computed by continuous
threads, back to global memory. Since this kernel calculates the output of a 32
pixel wide row for eight target feature maps, it uses 256 threads. The source
image window only requires 70×80×4 = 2240 Byte of shared memory. Therefore,
it is theoretically possible to run seven thread blocks on one multiprocessor at
once. In practice, only four blocks can be scheduled simultaneously because each
thread requires at least 16 registers. Data transfers are minimized as each loaded
pixel is reused 128 times (at 16 positions for each of the 8 target maps). The
result of our optimizations is that the runtime is bounded by the maximum
arithmetic performance of the hardware as opposed to being bounded by the
memory bandwidth.

During the backpropagation step, two tasks are performed simultaneously:
the weight gradients are calculated for each element of the eight convolutional
filters and the error signal is accumulated on the lower layer. For both operations,
the error signal of the higher layer is required. Hence, it is reasonable to reuse
this data once it is loaded. We are again handling eight convolutional filters
during one device function call: 512 threads can be employed for this, one for
each of the eight 8×8 filters. Similar to the forward pass, we are using a circular
buffer to load the activities of the source map ai

(l) from global memory into
shared memory. An additional circular buffer is used as an accumulator for the
backpropagated error signals δj(l+1)(x, y) of the target maps.

One thread runs through all 32 pixels of the row for one specific feature
map. It multiplies the error signal with the activity of the source map pixel
corresponding to its weight position and accumulates this value in a register.



Before the kernel function terminates, the final value for the weight gradient
is written to global memory. Access to the error signals of the target maps is
coalesced because all 32 pixels of a row are loaded simultaneously. Similarly,
loading the error signals from shared memory is optimal. All of the 64 threads
(two warps) of a specific filter access the same memory location, which enables
the CUDA driver to broadcast this value to all threads. Write-access to global
memory is coalesced as well, because all 64 elements of a filter are stored in
succession.

As described in Section 3, we invert the forward pass to propagate the error
signal δ(l+1)

j (x, y) from the target layer l + 1 back to the source layer l. The
first step is to accumulate the partial error signal in a circular buffer in shared
memory. Once these values are pushed out of the circular buffer, they are added
to the partial error signals in a temporary memory space in global memory.

This part of the algorithm reuses the error signals of the target maps which
already reside in shared memory from the weight gradient computation. In order
to avoid bank conflicts when accessing shared memory, our thread indexing
scheme is not straight-forward, as illustrated in Figure 5. Each thread calculates
and sums the partial error signal at a specific position for all eight target feature
map rows. This sum is then accumulated in the shared memory circular buffer.
As indicated in the figure, consecutive threads write to consecutive memory
elements, thus avoiding bank conflicts. This step is repeated four times.

The ratio between memory transactions and arithmetic operations for the
backpropagation pass is high because the error signals of the target maps are
reused 64 times.

5 Evaluation

To verify the correctness of our implementation, we evaluated our CNN architec-
ture on the normalized-uniform NORB dataset [6]. This dataset consists of 24,300
binocular grayscale training images and the same number of testing images,
depicting toy figures of five categories. After training on the raw pixel data for
360 epochs (291,000 mini-batch updates), an error rate of 8.6% on the test set
was achieved. To evaluate our architecture on the MNIST dataset of handwritten
digits [5], we scaled the input images from 28×28 pixels to 256×256, because our
implementation requires large input patterns. After 10 epochs of backpropagation,
this network achieved a test error rate of 1.38%.

The speed of our implementation was benchmarked on a system with an Intel
Core i7 940 (2.93 GHz) CPU and a Nvidia GeForce GTX 285. For a comparison of
the runtime, we implemented a functionally equivalent single-threaded, sequential
CPU version. The most critical components of the parallel implementation are
the forward pass and the the backpropagation of error. For both, several patterns
are processed in parallel, as described in Section 4. Thus, it is to be expected that
a larger speedup can be achieved for an increasing number of patterns. Figure 6
shows the runtime of the setup described above as a function of the number
of patterns processed in parallel. For any value between 1 and 30 patterns, the
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Fig. 6: Runtime of the forward and back-
propagation passes as a function of the
number of training patterns.
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Fig. 7: Speedup of the parallel GPU im-
plementation compared to a serial CPU
version.

runtime remains almost constant, with a sudden jump at 31 patterns which is
repeated every 30 patterns. Thus, as shown in Figure 7, the highest speedup was
achieved when the number of patterns is a multiple of 30. This discontinuity is
owed to the hardware: the GTX 285 GPU consists of 30 multiprocessors, each
processing one pattern. If more then 30 patterns are scheduled, the remaining
patterns are queued until another multiprocessor has finished.

When choosing a suitable number of patterns, the forward pass can be
accelerated by a factor of 80. A maximum speedup factor of 110 is achieved
for the backpropagation pass. In addition to the forward and backward pass,
memory transfers are necessary to copy the training patterns from host memory
to device memory. The CPU version has the advantage of using hardly any
explicit memory transfers and memory access is accelerated by caching. On the
contrary, for parallel GPU implementations memory transactions are often a
bottleneck. To ensure a realistic comparison it is therefore necessary to include
memory transfers in the total runtime of our GPU implementation.

We timed the total runtime of both our serial and parallel implementations
for networks with a varying number of feature maps on each layer and with
varying input sizes. Dispite memory transactions being included in the benchmark
results in Table 1 speedups of two orders of magnitude are achieved. Thus,
we conclude that data transfer times are negligible compared to forward and
backward propagation. We can also deduce that neither network size, nor the
size of the input has a significant influence on the speedup of our implementation.
In all cases, the gradient descent mini-batch learning was accelerated by a factor
ranging from 95 to 115.

6 Conclusion

Our work shows that current graphics cards programming frameworks with their
hierarchy of threads are very well suited for a parallel implementation of CNNs.
In comparison to a serial CPU implementation, we were able to significantly



Input Size Feature maps CPU [ms] GPU [ms] Speedup

256×256 1-8-8-8 14,045 141 99.8

256×256 2-8-16-32 44,242 383 115.7

256×256 4-16-64-64 278,010 2,583 107.6

512×512 1-8-8-8-8 53,495 561 95.4

512×512 2-8-16-32-64 225,110 2,045 110.1

512×512 4-8-32-64-64 545,803 5,143 106.1

Table 1: Benchmarks for one epoch with 60 training patterns, including all memory
transfers. The networks have two fully connected layers with 100 and 10 neurons.

speed up the learning algorithm for a large convolutional neural network by a
factor ranging from 95 to 115 on a single GPU. Until now, it was impossible
to study deep CNNs with high-resolution input images due to the tremendous
computational power required for their training. The aim of our future work is
to extend this approach to systems with multiple GPUs and to apply large-scale
CNNs to pattern recognition tasks using datasets with millions of high-resolution
natural images.
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