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Abstract— The work presented here explains a framework to
build semantic annotated maps from laser range measurements
of a mobile robot. A hand-crafted and a learning classifier is
explained. Two alternative methods to aggregate the resulting
class membership vectors into a grid map have been developed
and are presented. Both alternative methods will be motivated
and described in detail and discussed critically. Results from
simulations and real robot experiments will demonstrate the
capability and the limitations of this approach to build semantic
maps.

I. INTRODUCTION

A. Motivation

Today mobile, autonomous robots have found their way
from being exotic, specialised research platforms to home
applications. It is expected, that in the near future the instal-
lations of mobile robots in service and domestic applications
will increase substantially. The World Robotics Report 2008
states:”Projections for the period 2008-2011: about 12.1
million units of service robots for personal use to be sold”
from [13].

As a second lucky circumstance the development of laser
based range scanners has progressed so quickly that high
quality laser measurement is available at a moderate price
and a lot of robotic platforms are today equipped with laser
range scanners. Thus a wide range of novel applications
come into the focus of nowadays robotics research. One
challenging goal for the forthcoming robotic research and
development is to make robots more autonomous to assign
tasks that they can complete on their own.

The job we have in mind for an autonomous robot is to ex-
amine an unknown area (e.g. office environment) build a grid
map and enhance this grid map with semantic information.
One necessary assumption hereby is, that a laser scan can
contain enough specific information about the surroundings
to yield a robust classification. Recently published work from
other research groups indicate that this is possible [15], [16].

Building metric, grid based mappings with the use of a
laser scanner while the robot is exploring has been widely
reported in the literature and can be regarded as state-of-the
art. The family of Simultaneous-Localisation-and-Mapping
(SLAM) algorithms are well established in the robotic com-
munity since the publication of John J. Leonard and Hugh
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F. Durrant-Whyte in 1991 [12]. Algorithm repositories and
forums for interchanging of data and experience are available
and give access to several SLAM implementations [18].
The (typically) grid based metric maps obtained by SLAM
algorithms are an extremely usefull basis for further robot
control tasks (e.g. navigation, planning, . . . ).

Still the representation as a grid map is not always
satisfying human communication habits, especially when the
operator is not a ”robotic specialist”, but when the robot
is used in a domestic application. Humans typically prefer
a linguistic statement instead of a mathematical precise
information when interacting with robots:”The robot is in
the seminar room”is more convenient than the more precise
information that the pose of the robot is(12.40,−3.85, π/2).

For testing the approach we have chosen to work with
the teaching and research mobile robot platformRoomRider
in a typical indoor, office environment and to use a
rather limited set of 5 classes for annotation to represent
typical situations of such office environments: doorway,
corridor, freespace, room, unknown. The results from the
classification are aggregated with two alternative approaches
to annotate the grid map, and thus to build the semantic
annotated map. The results from simulations and real world
experiments in different environments show the capabilities
and limitations of the presented approach. Part of this work
has recently been published as thesis in computer science [3].

B. Related Work

Classifying laser scans to annotate maps with semantic
information has been investigated before e.g. by works of
Rottmann [17] and Mozos [16]. Both have used a camera in
addition to the laser range sensor to divide rooms in more
specific classes, like seminar room, office room, lab and
kitchen. They trained strong classifiers with the AdaBoost
learning algorithm with extracted features of360◦ laser
measurements. After that, they made a 1-out-of-n decision
for the resulting class. To reduce the error rate of the
classifiers they use HMM with a transition matrix on the
trajectory of the robot.

Different research groups have published methods for
detection of one or several of the semantic classes used in this
work. In [4], Buschka and Saffiotti describe a virtual sensor
for room detection, which can retrieve already visited rooms
by features saved in a topological map. In [11], Koening and
Simmons developed a doorway detector, that searches for
gaps in corridor walls. Althaus and Christensen [1] describe
a method for line extraction in sonar date. With those lines
they are capable to detect corridors and doorways.
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II. STRUCTURE OF THEAPPROACH

The approach presented here is structured into four major
functional sections, see Fig. 1. Each of these sections is sub-
divided into several subtasks that are necessary to complete
the envisaged goal.

1) Acquire data:
The laser range sensor measures 540 distance values
D(t) in every time step(t) while the robot is moving
through the environment.

2) Metric Map:
Using several successive distance vectorsD(t),D(t+
1), . . . and the corresponding movements of the robot,
the SLAM algorithm GMapping [8] produces a grid
map.

3) Classification:
From the distance vectorD(t), a set of featuresF(t) =
F(D(t)) is extracted as basis for the classification.
The feature vector is fed into the classifier, yielding
the class membership vectorC(t). Each component
ci(t) of the class membership vectorC(t) is the graded
belief of belonging to the respective class.

4) Annotated Map:
The semantic annotated map is constructed by en-
hancing (annotating) the grid map with the semantic
information derived from the class membership vector.
Two alternative methods have been developed and
tested.

Fig. 1. The approach is structured into 4 major functional blocks: D(t)
distance measurement,CH(t),CA(t) class membership vectors, annotated
mapsM̂HZ , M̃AZ , created with the different methodŝ1 and 2̃, and with
different spatial resolutionsZ.

The complete structure is explicitly prepared to be ex-
tended by topological map builder (not depicted in Fig.
1). This is dedicated to build a topological map from the
semantic annotated map. Topological maps are said to be
even more user friendly and can be the basis for more
sophisticated planning algorithms.

III. I NFRASTRUCTURE: ROBOT, LASER SCANNER,
ENVIRONMENT, GRID MAP

A. RoomRider

We conducted the experiments with the research and
teaching robot platformRoomRider Fig. 2, developed
and constructed by the Department of Computer Science

VI, Autonomous Intelligent Systems at the University of
Bonn.RoomRider is a mobile robot platform based on the
consumer product iRobot RoombaR© 530 vacuum cleaning
robot [10]. The vacuum cleaning robot has been extended by
a notebook on top, controlling the robot via serial interface
and with a SICK S300R© Professional Safety Laser Scanner
[19].

Fig. 2. RoomRider: the teaching and research platform from the Au-
tonomous Intelligent Systems research group of the University of Bonn, with
a Roomba vacuum cleaning robot as basis, a SICK S300 laser range sensor
and the controlling notebook on top, photo by courtesy of M.Schreiber.

The SICK S300 Laser Scanner is scanning the area of 270◦

(−135◦ to +135◦) in front of the robot in a height of 21cm
above ground with 540 values. The working range for mea-
suring the distances is from 3cm up to 30m. The laser range
sensor measures 540 distance valuesD(t) in every time
stept and transmitts this data via the serial interface to the
controlling notebook. TheRoomRider platform can be con-
trolled with the notebook via the robot middlewarePlayer
[7] using a slightly modified interface of the roomba 500
driver and the interface for the SICK S300 laser scanner. In
addition the simulation environmentPlayer/Stage [7]
can directly be used to conductRoomRider simulations.
In the experiments with the realRoomRider we have
supervised, and corrected, the movement of the robot (for
security reasons) by a human operator. Within the simula-
tions we used a combination of wall-following behaviour
and Braitenberg type 3b [2] obstacle avoidance to move the
robot. Since the scanning distance of the laser scanner is
large enough, any reasonable philosophy for steering the
robot (including random walk) is valid, and can be applied
as long as the majority of the environment is encountered
frequently enough.

B. Environment

We have chosen two real world, office environments called
World9 Fig. 5 andWorld10 Fig. 3 as testing ground
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for the RoomRider experiments. For both environments
we have created a grid map (see next section) so we
could conduct simulations with thePlayer/Stage
simulation tool. The size of these environments isWorld9:
46.50m × 14.25m andWorld10: 12.67m × 12.67m

Although these environments have a limited spectrum of
different situations, the experiments have been conducted
during normal office hours.World10 is smaller in size
with just a two rooms, a corridor and a doorway and does
not have all situations available: the chairs and tables have
been hidden from the laser scanner and thus no chair-legs
or table-legs are in sight; the door leaf was kept completely
open during all measurements.World 9 is larger in size,
containing several rooms, offices, and laboratories. It hasa
long corridor with doorways and door leafs, and the rooms
contain chairs, tables and all the ”normal” equipment that
is usual for a typical office floor. Both environments have
been mapped and have been used with the robot simulator
Player/Stage. The classifiers have been developed, and
trained with real world data fromWorld9.

In addition, further environments (e.g.World SDR B
from theRadishrepository, world SDR site B, [9]) have been
used in simulations to test the results in an environment that
is different from the environment the classifiers have been
developed.

C. Grid Map

The laser range sensor measures 540 distance valuesD(t)
in every time stept while the robot is moving through the
environment; almost every reasonable steering philosophy
can be applied. Using several successive distance vectors
D(t),D(t+1), . . . and the corresponding movements of the
robot, the Simultaneous-Localisation-And-Mapping (SLAM)
algorithm GMapping [8] from the robot middleware CAR-
MEN [14] is used to generate a grid map. The map is an
occupancy grid map, with a cell size of5cm×5cm, resulting
in 931 × 286 cells for World9 Fig. 5, and254 × 254 cells
for World10 Fig. 3. All maps had to be reworked manually
with a drawing program to close ”gaps” that the GMapping
produces in areas that have not completely been scanned
by the laser beams. A continuous contour is necessary to
conduct experiments with the simulation software.

Fig. 3. World10: left: result from GMapping; right: grid map annotated
with human generated ”ground truth” data.

IV. CLASSIFICATION

A. Five Classes

To investigate the capabilities of the approach we have
chosen to use a rather limited set of 5 classes that are typical
for office environments: doorway, corridor, freespace, room,
unknown. These 5 categories are typical for office environ-
ments, they are distinguishable from each other and they are
meaningful for humans and thus suitable for communication
with humans. In fact, we have used 4 + 1 categories; the
first 4 categories are to be detected by the classification
and the fifth categories which is calledunknownis getting
active in case no of the four categories is detected with
sufficient belief. We are convinced that introducing the class
unknown into the classification is reasonable. Sometimes
it is better to be honest, and to state that no believable
classification could be found instead of taking the least
worse classification result. The assumption that the laser
scan contains enough specific information about the office
environment is strengthened by recent publications [16].
Including a vision/camera based detection of the different
surroundings might be helpful for a more specific classifi-
cation. Nevertheless, all further processing steps described
here apply for a vision based system as well.

1) D: Doorway
A doorway is characterised by a doorframe with a typ-
ical width. This width can differ substantially between
70cm to 140cm (site dependent).

2) C: Corridor
Two parallel walls with a minimal length, that have a
typical distance (site dependent).

3) F: Freespace
An area of a reasonable size in front of the robot that
is not blocked by any obstacle.

4) R: Room, office or lab
Typical for a room is the large number of chair-legs
and table-legs. Other room typical characteristics (e.g.
rectangular shape, size, ...) have not been envisaged
in this work. A further sub classification into different
room types has not been regarded to be reasonable by
just using a laser range sensor.

5) U: Unknown
The class unknown is applied if the belief for the four
other classes is too low.

In contrast to other work, e.g. Mozos [15], [16] where
only one category is detected in a pure 1-out-of-n decision
process, we allow the classification to result in a real
valued vectorC(t) representing the graded belief values of
the respective classes. Each componentci(t) of the class
membership vectorC(t) is the graded belief of belonging
to the respective class. For each of the four primary classes
one classifier is calculating the belief of belonging to this
very class as a real value between0.0 (not at all) and1.0
(definitely). Thus, it is possible that a situation is belonging
to more than one of the four primary classes at the same
time: e.g. a doorway with a long door frame can have the
characteristics of a short corridor, a wide corridor on the
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other hand can be correctly classified to be a freespace
to some reasonable extent. When the classification shall
result in a 1-out-of-n decision, we have to implement a
mechanism to perform this: e.g. a winner takes all decision
is one possible solution for this. The process of annotating
described in this contribution implements two different
methods to handle this.

Each classifier has the task to implement a mapping
from the 540 dimensional distance vectorD(t) onto a
scalar belief value for the very class. All five belief values
build the 5-dimensional class membership vectorC(t) =
(cD(t), cC(t), cF (t), cR(t), cU (t)). First tests showed that
this mapping can be rather complicated, and we decided to
extract sets of features from the original laser scan and use
these features as input for the classification. The features
have been selected and designed by hand and are in part
motivated by recently published work [16]. As an alternative
approach not pursued here one could use an automatic
dimensionality reduction method (e.g. Principal Component
Analysis PCA, Isomap, Vector Quantization, . . . , see [6])

Fig. 4. Three typical doorways with different shape. Clearly visible are
some of the situations that can cause difficulties: the door leafs and a second
doorway directly behind the first one (most right picture).

B. Hand-Crafted Classifiers

For comparison reasons we have implemented one hand
crafted classifier for each of the four classes (Doorway,
Corridor, Freespace,Room). Each of this classifiers is
extracting some special characteristics (features) from the
original scanned distancesD(t) and maps this to a scalar
value. The values are normalized to0.0 to 1.0 and indicate
the belief of belonging to the respective class. The class
membership vector for the hand-crafted classifiers is denoted
CH(t).

The Doorway detection assumes that the robot is exactly in
the doorframe, with the orientation pointing through the door,
that the distance between the objects (shall be the doorframe)
detected on the two sides of the robot is between 80cm and
110cm and that there is a free area in front of the robot
which is believed if more than 80% of the laser beams in
front detect no obstacle in the range up to 100cm.

The Corridor detection assumes that a corridor consists of
two straight walls that are parallel and are 170cm to 260cm
apart. Two lines, left and right of the robot are fitted through
the laser measurements, the deviations from the optimal
angle and the allowed distance between the fitted lines is
used to calculate the resulting belief value.

The Freespace detection is referring to the90◦ area in front
of the robot. The area up to 40cm in front of the robot must
be completely obstacle free, and the the area up to 120cm
must be to 90% free. So, if all laser measurements from
the 90◦ segment in front of the robot indicate no obstacle
closer than 40cm and 90% of them indicate no obstacle up
to 120cm then the belief value is set to1.0.

The Room detection works with the assumption that
typical rooms in office and lab environments contain a lot of
furniture that can be characterised by detecting and counting
the legs. Legs reveal themselves typically by a sudden change
(edge) in ad joint distance values. If more than 15 of these
edges are detected within the distance vector than the belief
for a room is set to1.0. Unfortunately this policy leads to a
lot of false positives, e.g. when a corridor has a lot of corners
and door leafs. At the moment we are experimenting with
an improved room detection.

All of these hand-crafted classifiers give a1.0 as belief
value, if all described requirements are met perfectly, and
a 0.0 if the requirements are violated to a certain extent.
The real valued responses are calculated by the grade of
match between the laser scan and the requirements. These
classifiers have been on line tested and evaluated with the
real robot system in the environmentWorld9 with a human
operator steering the robot. The training patterns for the
learning classifier origin fromWorld9.

C. Learned Classifiers

As a secondary implementation for the classification we
have chosen to use a set of learning classifiers based on
the AdaBoost method with single layer9-1-perceptrons as
weak classifiers. We used a set of featuresFA(t) derived
from the original laser scanFA(t) = FA (D(t)) as input for
the classifiers. Therefore we have implemented 12 features
F

′

A
that we expected to contain sufficient information about

the environment. We reduced theses 12 primary features to
9 relevant featuresFA by calculating the covariance matrix
between all features over a total set ofp = 1 . . . P = 7632
training patternsD(p) that have been measured inWorld9.
To eliminate features that are too alike we took only those
features that have a covariance value below 0.02 and less
than 5 values below 0.03.

Below is a short description of the 12 primary features;
the features (2,3,6,7,9,10,11,12) that have been selectedas
being relevant are marked with∗

1 Obstacle free area, calculated by the sum of the distance
valuesdi(t) over all i = 1 . . . 540 laser beams.

2∗ Mean value of the measured distances.
3∗ Standard deviation of the measured distances.
4 Mean difference of two successive distances.
5 Standard deviation of the difference of two successive

distances.
6∗ Minimum of measured distance, shortest distance in

scan.
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Fig. 5. World9, map created with GMapping, containing doorways, a corridor, freespace regions and several rooms, the door leafs are clearly visible,
and have not been erased from the map, the cell size is0.05m. The map has been reworked manually with a drawing program to get a closed contour for
the walls which is necessary for the simulations.

Fig. 6. World9, a journey of the real robot with resulting annotations along the path; AdaBoost classification, method 2 for annotation,the cell size is
0.15m. The different classifications results in the different areas show the feasibility of the approach.

7∗ Maximum of measured distances, longest distance in
scan.

8 Maximum of slope between two successive distances.
9∗ Number of edges in the whole scan, difference of

successive distances is lager than a threshold.
10∗ Number of relative edges, ratio between two successive

distances is larger than a threshold.
11∗ Distance in the real world between the two closest

objects.
12∗ Angle (with respect to the laser scanner) between these

two closest objects.

The AdaBoost algorithm is taking a learning weak classi-
fier as basis and enhances (boosts) the classification quality
by taking a next weak classifier with a special focus on those
training patterns that have been classified incorrectly before.
The final strong classifier is then obtained by combining
the sequence of constructed weak classifiers as a weighted
sum. Each weak classifier is a9-1-perceptron with 9 input
neurons and one single output as class belief value. Typically
after 4 to 6 boosting steps the results saturated and therefore
we have limited the boosting steps to 10. All together4 ∗ 10
9-1-perceptrons with a total of 400 synaptic weights and
40 AdaBoost weighting factors have been trained for the
AdaBoost based classification. The training patterns for the
learning classifier origin fromWorld9. The class member-
ship vector for the AdaBoost classifiers is denotedCA(t).

First experiments in using only one threshold per feature,
or a single9-4-perceptron for all four classes projecting

directly onto the 4 class belief values and the use of multi-
layer perceptrons (9-X-1, and9-X-4, and9-X1-X2-4)
have started and are currently investigated.

V. A NNOTATION

The classifiers calculate the class membership vectorC(t)
in every timestep from the measured distancesD(t) that are
said to be typical for that very robot position(x(t), y(t)).
Annotation means to include the class information for with
respect to the robot position into the grid map, which is
thereby enhanced from a pure occupancy grid map to a
semantic annotated map.

A. Challenges for the Annotation

The spatial resolution of the robot postionx(t), y(t) is in
most cases finer than the spatial resolution of the grid map
(size of the cells). A cell of the grid map will typically be
encountered several times during a journey of the robot, and
thus several classification results are obtained for the same
spatial cell of the grid. It would be ideal if the classification
results would only depend on the spatial location, and all
classification results would be identical. But the reality
revealed a different situation; deviations between real and
detected robot position, changes within the environment
between two measurements, fluctuations of the distance
measurements, and even the different locations within one
grid cell can lead to different classification results for a grid
cell. The annotation task has to deal with the different, and
sometimes noticeable contradicting, classifications before
storing this information into the grid map.
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A second challenge arises from the wish to have only one
class value per cell in the resulting semantic map neglecting
the vectorial character of the classification. If the map has
to be annotated following such a 1-out-of n philosophy, and
only one single class per grid cell is allowed or preferred, the
annotation process has to pay respect to this as well. Two
alternative procedures to build up the annotated map have
been developed that deal with both requirements at the same
time.

B. Method 1: Decide and Aggregate

The first method is directly selecting the resulting class
for a time stept from the class membership vectorC(t)
using a winner takes all decision, the position information
is still on the resolution of the robot positions. The possibly
different classification results are now accumulated for each
of the grid cells. At the end of the experiment, when all laser
measurements have been processed, the resulting final class
is again determined by a winner takes all decision. Since a
winner takes all decision is allready performed very early,
a lot of information that may be usefull has been omitted.
The chosen size of the grid cells may influence the resulting
map. Annotated maps that have been created using method
1 will be denoted withM̂.

C. Method 2: Aggregate

The second method is paying respect to the vectorial
characteristics of the classification process and thus is ag-
gregating all the available information. The real valued
class membership values from the class vectorsC(t) are
accumulated for all measurements that fall into the respective
grid cell.

Only if necessary (e.g. for visualisation) the 1-out-of-n
classification is performed to determine a single resulting
class per grid cell. Once again the chosen cell size of the
grids may influence the result.

D. Annotation using Further Classes

In addition to place the semantic information obtained
from the classifiers into the annotated map, the information
of the primary laser range measurements and the robot
movement can be integrated into the map as well. The laser
measurement will leading to the additional classObstacle,
and the spatial positions that the robot has not yet visited
can be marked as classNot-visited. These additional classes
are integrated into the annotated map with respect to the
chosen cell size in exactly the same way as the classification
results; see Fig. 5 and Fig. 6 for a direct comparison of two
maps created with different cell size.

Annotated maps that have been created using method 1
will be denoted withM̂, those created using method 2
M̃. The classifier philosophy (Hand-crafted or Adaboost) is
added as letterH or A respectively. The size of the grid (in
meter) is added as index. Thus̃MA0.2 is the notation for
a semantic annotated map with cell size of0.2m that has
been annotated using method 2 with the AdaBoost classifier
results. Consequently the annotated maps derived with the

hand-crafted classifiers using method 1 for the annotation
that are depicted in Fig. 7 are named̂MHZ with Z the
respective cells sizes fromZ = 0.05m to Z = 0.5m.

Fig. 7. Semantic map ofWorld10 created with the hand-crafted classifiers
using method 1 for the annotation̂MHZ with Z the respective cells sizes
from top leftZ = 0.05m to bottom rightZ = 0.5m, 0.05,0.10, 0.15,0.20,
0.25,0.30, 0.40,0.50.

VI. EXPERIMENTAL RESULTS

To test and validate the presented approach, and to
judge the different alternatives for the classifiers and the
annotations, several experiments have been conducted using
simulations and the real robot.

Some of the results were a little bit disappointing. Espe-
cially the large number of false positives in the hand-crafted
room classifier that occurred when the robot is definitively
located in a corridor. This might have been caused by the
large number of edges present in the corridor due to the
obstructing door leafs. The other effect that puzzled us, was
the rather small detection rate of doorways by both classifi-
cation schemes. Neither the learned classifier, nor the hand-
crafted one showed a satisfactory detection rate for doorways
in the real experiments. Up to now, no consistent explanation
was found for this effect. We originally had expected, that
detecting doorways should be rather easy when looking at
the features no. 11 and 12 (since they have been specially
chosen for detecting doorways, compare [16]). Unfortunately
a reliable detection of doorways is a prerequisite for building
valuable topological maps. Detecting corridors and freespace
was satisfactory, in Fig. 9 and 10 the freespace in the
left part of World9 has been detected robust. During the
journey of the real robot throughWorld9 Fig. 5 theRoom
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Fig. 8. Hand made Ground Truth data forWorld9, the large room in the right part of the map is a seminar room witha lot of tables and chairs. Only
the chair legs and table legs are visible for the laser scanner, thus the room appears rather empty.

characteristics of the large seminar room in the right part of
the map has been detected correctly see Fig. 6, as well as
the Freespace in the left part.

The large room in the right part of the map ofWorld9
see Fig. 5 is a seminar room with a lot of tables and chairs.
Only the chair legs and table legs are visible for the laser
scanner, thus the room appears rather empty, although a large
hexagonal structure is dominating in the room in reality.

A. Ground Truth

Trying to evaluate the quality of the classification results
we found it difficult to obtain ground truth data to compare
with. Different persons that we have asked to judge part
of the environmentWorld9 and the complete environment
World10 revealed that even the 1-out-of-n decision for
one of the 4+1 classes doorway, corridor, freespace, room
+ unknown was neither identical, nor stable over time; see
Fig. 3 right part of diagram and Fig. 8. Interestingly the
classification asDoorwaywas performed almost without any
problems and seemed to be easy for the contestants. Perhaps
the contestants decision was mostly based on the visual
input, which the robot didn’t had. Therefore a quantitative
comparison with ground truth data has been omitted until
stable ground truth data will be available.

B. Hand-crafted vs. Learned

As expected, the difference between the hand-crafted and
the AdaBoots trained classifiers are noticeable. One can see
some of the effects by comparing the corridor of the resulting
maps Fig. 10 and Fig. 6; although the first is a result from
the simulation, and Fig. 6 has been produced with the real
robot.

C. Cellsize

The influence of the different cell sizes for the resulting
semantic maps is large. If the cell size is small, only a small
part of the cells would have been visited by the moving
robot, and thus gaps would result within the map. Methods
that close these gaps will probably resemble the methods
we have proposed to aggregate the class membership data.
On the other hand, if the cell size is large, too much of the
detail information is lost, and the map is probably not specific
enough. The cell size we found to be acceptable, (at least
for the environments we have tested) was between0.15m

and 0.25m. In Fig. 7 resulting annotated mapŝMHZ with
different cell sizesZ are depicted for a direct comparison.

Comparing the two aggregation methods for annotating,
and building a semantic map reveals that there are differences
between the two methods, but that they are not drastic. We
interpreted this as a hint that the developed methods are
reliable. Please keep in mind, that for method 2 we have only
visualised the results from the winner-takes-all decision. The
M̃HZ maps contain the vectorial information aggregated
into the grid cells, available for further processing.

VII. CONCLUSIONS AND FUTURE WORKS

The work presented here is one possible framework for
building semantic annotated maps based on laser range
measurements from an autonomous robot. Different imple-
mentations of the classifiers that detect one of the chosen
four classes within an indoor, office environment have been
described: a hand-crafted classifier system, and a learning
classifier based on boosting perceptrons. Both approaches
use features that are extracted from the original laser range
measurements to calculate a class membership vector for the
robot position. To build an annotated grid map from the
different class membership vectors two methods of aggre-
gation have been presented. Results from the experiments
conducted in simulations and in real world experiments have
been presented.

The presented approaches to build an annotated map from
the laser range measurements for a mobile robot showed
to be in principle feasible. Although some future work is
necessary to make the results more robust and reliable, the
presented framework can be applied for building semantic
annotated maps by mobile robots. A greater respect should
be paid to the choice of the training situations, to further
reduce the inaccurate classifications. In total, the idea to
prefer the vectorial class membership information over an
early 1-out-of-n decision showed to be a valuable approach,
although some extra methods had to be implemented. We
are convinced, that the presented work is a further step into
making robots more end-user friendly.

For direct future work, as follow up developments for the
presented approach, we propose to include a camera/vision
based classification, a grid map that pays respect to the robot
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Fig. 9. Annotated map̂MH0.15 of World9 obtained from simulations. Depicted is the resulting class from the winner takes all decision.

Fig. 10. Annotated map̃MH0.15 of World9 obtained from simulations after a final winner takes all decision for visualisation and comparison. A direct
comparison with Fig. 9 reveals that there are differences between the two methods, but that they are not drastic.

orientation and a more reliable doorway classification. When
the doorways can be detected more reliable the way to realize
a topological mapping is open, since doorways typically
connect rooms with each other and rooms with corridors.
This structural property of office environments will then be
used to build topological maps.

A challenging project for the future would be to make
the class definition and the class specification the result
of a psychophysical voting by possible human users of
autonomous service robots in home environments.
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