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Abstract. Many mobile service robots operate in close interaction with
humans. Being constantly aware of the people in the surrounding of
the robot thus poses an important challenge to perception and behavior
design.
In this paper, we present an approach to people awareness for mobile
service robots that utilizes knowledge about the semantics of the envi-
ronment. The known semantics, e.g., about walkable floor, chairs, and
shelves, provides the robot with prior information. We utilize informa-
tion about the a-priori likelihood that people are present at semantically
distinct places. Together with reasonable face heights inferred from scene
semantics, this information supports robust detection and awareness of
people in the robot’s environment. For efficient exploration of the envi-
ronment for people, we propose a strategy which chooses search locations
that maximize the expected detection rate of new persons.
We evaluate our approach with our domestic service robot that competes
in the RoboCup@Home league.

1 Introduction

Today’s industrial mass production would not be possible without the inven-
tion of robots that efficiently and precisely carry out repetitive manufacturing
tasks. Just as manufacturing tasks, many of our everyday tasks are monotone,
cumbersome or even dangerous. The development of autonomous service robots
that one day might relieve humans from these kinds of tasks will thus attain
significant importance in the future.

The requirements for service robots differ vastly from those of industrial
applications. Manufacturing robots work in an isolated static environment where
they fulfill specific tasks. Service robots, on the other hand, need to work in
dynamic environments in close interaction with humans. Being constantly aware
of the people in the surrounding of the robot thus poses an important challenge
to perception and behavior design.

In this paper, we present an approach to people awareness for mobile ser-
vice robots that utilizes knowledge about the semantics of the environment. The
known semantics, e.g., knowledge about the location and properties of furniture
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like chairs, provides important hints on the presence likelihood and the appear-
ance of persons. In our approach, we exploit such kind of information in various
ways. We estimate the presence probability of persons and incorporate semantic
knowledge as a prior to the estimation. The presence belief and the knowledge
about the appearance of persons enables us to discover false positive detections
of persons which is a frequent problem of person detection methods. When the
robot needs to explore its environment, we utilize the estimated presence belief
to select promising search locations that maximize the expected detection rate
of new persons. We evaluate our approach with our domestic service robot that
competes in the RoboCup@Home league.

The remainder of this paper is organized as follows: After a brief review of
related work in Sec. 2, we outline our method for detecting and tracking multiple
persons in the robot’s vicinity in Sec. 3. We detail our approach to estimating
the presence of persons and how to improve people awareness by semantic scene
knowledge in Sec. 4. In Sec. 5 we introduce an efficient method to explore the
environment for new people. We evaluate our approach in experiments in Sec. 6.

2 Related Work

Tracking people with laser range finders is a well studied topic in mobile robotics
(e.g., [1, 2]). Many approaches detect and track legs of people and fuse this
information in a multi-hypothesis tracker [3].

The computer vision community developed a variety of methods for tracking
multiple persons with camera systems. For statically mounted cameras (e.g., [4,
5]), background subtraction can be applied to improve the robustness of track-
ing. When the camera moves (as in [6–9]), subtracting background is no longer
possible. Instead, robust person detectors are required that provide stable infor-
mation for tracking.

Some approaches use spatial and semantic information to improve tracking
robustness. In [7], information about tracked objects is fed back as semantic
information into visual odometry to improve the robustness of the overall multi-
person tracking system. Luber et al. [10] learn Poisson process models of the
occurence of persons throughout the environment. They demonstrate improved
tracking accuracy with their model compared to standard multi-hypothesis track-
ing approaches. We propose to use semantic scene knowledge derived from the
environment to increase the robustness of people awareness.

3 Continuous People Awareness

For detection and tracking of multiple persons we combine measurements from
two laser range finders (LRFs) and a camera. With the LRFs we continuously
detect and keep track of possible persons. One LRF is mounted shortly above the
ground at a height of 24 cm and detects legs of people. We additionally detect
torsos of people with a second LRF at a height of approx. 80 cm.
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Fig. 1. Persons are detected as legs (cyan spheres) and torsos (magenta spheres) in
two laser range scans (cyan and magenta dots). The detections are fused in a multi-
hypothesis tracker (red and cyan boxes). Faces are detected with a camera mounted on
a pan-tilt unit. We validate tracks as persons (cyan box) when they are closest to the
robot and match the line-of-sight towards the face (red arrow). From the projection of
the track position onto the face direction we also determine the face height.

We fuse person detections from both LRFs in a multi-hypothesis tracker. We
estimate position and velocity of each hypothesis by Kalman filters (KFs). In the
KF prediction step, we use odometry information to compensate for the motion
of the robot. The tracks are corrected with the observations of legs and torsos.
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We use the Hungarian method [11] to associate each torso detection in a scan
uniquely with existing hypotheses. In contrast, as both legs of a person may be
detected in a scan, multiple leg detections may be assigned to a person hypoth-
esis. Only unassociated torso detections are used to initialize new hypotheses.
Spurious tracks with low detection rates are removed.

Of course, the shape of legs and torsos in laser range scans are not discrimi-
native enough, such that parts of the environment cause false positive detections.
For this reason, we verify that tracks correspond to persons through a second
sensor modality that provides complementary information: We detect frontal
and profile views of faces in camera images using the Viola and Jones [12] algo-
rithm. Additionally, we detect upper bodies with a method based on Histograms
of Oriented Gradients [13].

The camera is mounted on a pan-tilt unit in a height of approx. 1.5 m. Since
the LRFs have a larger field-of-view than the cameras, we implemented an active
gaze strategy. We find the correspondence of detected faces and upper bodies
with possible person tracks by determining the matching track on the line-of-
sight of the detected face that is closest to the robot. We also measure the height
of the detected face by projecting the track position onto the face direction.
We test that the face has a reasonable height in a later processing stage. Fig. 1
illustrates our approach to continuous people awareness (CPA) with an example.

4 Utilizing Semantic Scene Knowledge for Estimating
People Presence

Approaches to person tracking are prone to false detections. Low false positive
rates in person detection can hardly be achieved, even with more powerful vision-
based approaches to person recognition. Thus, we propose to use prior semantic
scene knowledge to further increase the robustness of people awareness.

In our approach, we estimate the probability of the presence of people. Sim-
ilar to the well-known occupancy grid mapping approach to 2D environment
mapping, we estimate person presence in a two-dimensional discretized repre-
sentation of the environment. From semantic annotations of the environment,
e.g., walkable floor, chairs, and shelves, we infer prior information on the pres-
ence of people. The semantics also provides us with the valid height range of
faces. The prior knowledge and the estimated presence likelihood helps us to
decide when tracks are falsely detected as persons.

4.1 Estimating People Presence

Our CPA provides the position of persons in the robot’s vicinity. Where no per-
son is detected, LRFs measure distance and bearing to the environment structure
and thus provide negative information on the presence of people along the mea-
surement. From these measurements and the pose of the robot, we estimate the
presence likelihood of people in the environment.
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(a) Presence probability p(mi,j |dm, d) according to the dis-
tance dm of cell mi,j to the robot and the measured distance d.

(b) Presence probability p(mi,j |φm) according to the angular dif-
ference φm of cell mi,j to the measurement.

Fig. 2. Components of the inverse measurement model.

We discretize the environment into a 2D grid. For each cell (i, j) ∈ N×N in
the grid, we estimate the belief of the presence of a person at time t

belt(mi,j) := p(mi,j |s1:t, z1:t)

from the poses s1:t of the robot and the positive and negative measurements z1:t
up to time t. We assume independence between individual cells, which enables
us to estimate the posterior p(m|s1:t, z1:t) over the complete map by estimating
presence for each cell individually.

Following basically the same derivation as for occupancy grid mapping [14],
we arrive at the recursive update scheme in log-odds form:

lt(mi,j) = lt−1(mi,j) + log
(

p(mi,j |st, zt)
1− p(mi,j |st, zt)

)
− log

(
p(mi,j)

1− p(mi,j)

)
,

where we define

lt(mi,j) := log
(

p(mi,j |s1:t, z1:t)
1− p(mi,j |s1:t, z1:t)

)
.

Here, p(mi,j |st, zt) is the inverse sensor model and p(mi,j) is the prior presence
probability of cell (i, j).

The inverse measurement model is composed of two parts: The first com-
ponent p(mi,j |dm, d) determines the presence probability depending on the dis-
tance dm of cell mi,j to the robot and the measured distance d (cf. Fig. 2(a)).
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Fig. 3. A person is detected and included into the knowledge base (green square). We
update the presence belief (black for probability 1) with positive measurements of the
detected person and negative measurements of the environment structure.

We model high likelihood pinfo = ppresent, when the cell lies within the influ-
ence region of a person, which we denote size radius r. For measurements of the
environment structure, the presence probability pinfo = pfree is small within
an influence radius r. For cells behind the distance dm ≥ d + r + δd we cannot
measure, and thus we model prior probability pprior. Cells in front of the robot
and with a distance 0 ≤ dm ≤ d−r−δd are not occupied by persons. Distance δd
is a small interpolation range to model uncertainty in the measured distance.

The second part p(mi,j |φm) models influence width and uncertainty along the
orthogonal direction to the line of sight. We consider the angular deviation φm
between the cell and the measured position (cf. Fig. 2(b)). In this model, the
angular range α is determined from the width of the person or the influence range
of a beam. Within this range, the presence likelihood is determined by the first
component pd := p(mi,j |dm, d). Beyond the angular deviation |φm| ≥ α + δα
the measurement bears no information for the cell and thus we model prior
probability pprior. Again, the interpolation range δα models uncertainty in the
measurement.

Finally, we consider dynamic changes in the environment by unlearning the
acquired information about the presence of people. To implement this exactly,
one would require to store a temporal history of measurement updates to each
grid cell. As this is not feasible, we approximate unlearning with a small temporal
decay towards the prior cell probability.

4.2 Maintaining Person Knowledge

When new persons are found, we represent their size, location, and face height in
a knowledge base. Then, the presence map is updated from positive and negative
measurements. Fig. 3 illustrates this process in an examplary situation.

While persons are tracked, their information is continuously corrected in the
person knowledge base. Simultaneously, the presence map is updated with pos-
itive measurements of the tracked persons. We remove persons from the knowl-
edge base, if the presence belief at their location drops below some threshold.
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(a) Occupancy grid map. (b) Person presence prior map.

(c) Minimum face height map. (d) Maximum face height map.

Fig. 4. Semantic prior maps (b)-(c) for the environment in (a). Darker is lower / more
likely.

4.3 Prior Information from Semantic Scene Knowledge

For high-level control of autonomous robots, the semantics of the environment is
an important source of information. In the context of people awareness, we pro-
pose to exploit the semantics to support the interpretation and disambiguation
of sensory data for robust person detection and representation. For example, a
chair gives us a hint that persons are more likely to be present at this location
than on walkable floor. There, a person typically occupies space for only short
durations. In addition, we can use information on the possible postures of people
to constrain the detectable heights of faces. Furthermore, we can surely exclude
that people reside in walls or furniture like shelves.

We incorporate semantic scene knowledge into our approach in the following
way: From semantics, we infer the prior probability of person presence. Addi-
tionally, we deduce minimum and maximum face heights throughout the map.
We represent this information in 2D grid maps, which enables us to efficiently
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use the information during presence belief and person knowledge base updates.
Fig. 4 shows examples for grid maps of occupancy used for navigation, person
presence prior, and minimum and maximum face height.

4.4 Improving People Awareness by Semantic Priors

With semantic priors we can improve the robustness of our people awareness
approach. The prior probability on person presence can be directly incorporated
into our method for person presence estimation. We use the person presence
prior to initialize the posterior estimate. Furthermore, applying Bayes rule to
the inverse measurement model, we see that

p(mi,j |st, zt) = η p(zt|st,mi,j) p(mi,j).

We assume an uninformed prior probability of p(mi,j) = 1
2 in our previous inverse

measurement model and seek to obtain the semantic inverse measurement model
by replacing it with the semantic prior psem(mi,j). Unfortunately, the prior is
also contained in the normalization factor η =

∑
m p(zt|st,m) p(m). However,

by substituting p(zt|st,mi,j) with 2
η p(mi,j |st, zt) in

psem(mi,j |st, zt) = η′p(zt|st,mi,j) psem(mi,j), and
psem(¬mi,j |st, zt) = η′p(zt|st,¬mi,j) psem(¬mi,j),

and exploiting the fact that psem(mi,j |st, zt) is a probability measure over a
binary variable, we find

psem(mi,j |st, zt) =
p(mi,j |st, zt) psem(mi,j)

p(mi,j |st, zt) psem(mi,j) + (1− p(mi,j |st, zt)) (1− psem(mi,j))
.

The prior strongly biases belief estimation. At locations with very low prior
probability, spurious person detections increase the person presence belief in-
significantly. On the other hand, detections in a-priori highly probable areas will
faster converge to high presence probability.

We further exploit semantic priors to reject falsely detected persons in regions
with low presence probability. Low prior probability in such regions supports
the robustness against false detections, as the posterior belief is hardly increased
from spurious person detections. Finally, we validate the face height of detections
using semantic priors.

5 Exploiting Semantics for Efficient People Search

So far, our approach robustly tracks multiple persons in the robot’s surrounding.
It estimates a belief of person presence in the viewed environment and also
maintains knowledge of found people. Typically, a mobile service robot operates
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Fig. 5. For efficient exploration, we randomly draw N = 400 poses from a normal
distribution around the current pose. Among these poses (small red arrows) we select
a new exploration pose (big blue arrow) that maximizes the expected detection rate
(increasing from dark to bright).

in an environment which it cannot survey from a single location. When the robot
further requires awareness of people in the complete environment, an efficient
exploration strategy needs to be devised.

For this purpose, we propose an exploration strategy that utilizes semantic
prior knowledge. Based on the presence belief of people, the robot selects promis-
ing exploration views in which the rate of detecting new persons is maximized.

We sample N random poses from a normal distribution around the current
pose of the robot. From these poses we select the one that achieves best expected
detection rate in the viewed area. We define the expected detection rate EM(D)
in a map region M as

EM(D) =
∑

mi,j∈M
(p(D|mi,j) bel(mi,j) + p(D|¬mi,j) bel(¬mi,j)) ,

where bel(mi,j) is the current belief estimate for the presence of a person in
cell (i, j) and p(D|mi,j) is the detection probability given the presence of a
person in a cell.

We determine the viewed area M by ray-casting in the environment map.
To prevent search at places where persons have already been found, we exclude
regions that are occupied by known persons in the knowledge base. In this way,
we measure the expected detection rate of new persons. Combined with our
semantic prior, the robot prefers to explore regions with high expected detection
rate of new persons.
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Fig. 6. Expected detection rate in discretely samples poses without (left) and with
(right) semantic prior. For each position the best orientation is shown. With semantic
prior the expected detection rate is high for poses that view regions with predominantly
high presence likelihood. Without prior, the number of cells under the pose’s view solely
determines the detection rate measure.

6 Experiments

We first present exemplary results for our exploration strategy. Fig. 6 visualizes
the effect of the semantic prior on the expected detection rate. We sample poses
at equidistant positions with a spacing of 5 cm and in π

8 orientation steps. At
each location we determine the maximum value over orientations and normalize
all values to the interval [0, 1]. Without prior, the number of cells under the
pose’s view solely determines the detection rate measure. When we add the
semantic prior, the expected detection rate is high for poses that view regions
with predominantly high presence likelihood. By utilizing semantic information,
our exploration approach concentrates on those regions with high detection rate
of new persons.

We also evaluate our exploration approach with our domestic service robot
that competes in the RoboCup@Home league. We conduct an experiment in our
test environment (cf. Fig. 7). Three persons are placed at the locations depicted
in the upper left of Fig. 7. Person presence prior and face height maps have been
manually designed to represent the semantics of the environment. A timeline of
the events in the experiment is given on the bottom of Fig. 7. The robot drives
to 16 exploration views. It finds all three persons in ca. 909 seconds. Three
false positive detections are rejected: the first one due to an invalid face height
of approx. 0.55 m, the others as they are located at places with low presence
estimate.

We successfully applied continuous people awareness during the RoboCup
GermanOpen 2010 in Magdeburg. In the Who-Is-Who test, the robot detected
and identified all 5 persons that either sat or stood in an apartment-like envi-
ronment.
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Fig. 7. Top left: Environment of the exploration experiment with three persons (green
circles). Top right: Final person presence belief and locations in the knowledge base
(green boxes). The blue arrows indicate exploration poses. Bottom: Event timeline
of the experiment showing visit time of exploration poses (red diamonds), number
of detected persons (blue crosses), and number of represented false detections in the
person knowledge base (green circles).

7 Conclusions

We propose an approach to people awareness for mobile service robots that
exploits knowledge about the semantics of the environment. From known se-
mantics, we model the prior probability of the presence of persons and represent
it in a 2D grid. We estimate the presence probability of persons recursively and
incorporate the semantic prior into the estimation. Furthermore, we extract valid
face height ranges from semantics.

During person search, we reject false detections in unlikely regions and with
invalid face heights. We also propose a search strategy for people that maximizes
the expected detection rate in the robot’s view. We demonstrate our approach
with our domestic service robot that competes in the RoboCup@Home league.



12

Currently, our approach is limited by the person detection methods we em-
ploy. The use of more generic person detection schemes could further improve
robustness and detection rate.

In the current system the user provides semantic annotations and interpre-
tations in the form of priors and face height ranges. It is an interesting line of
research to recognize objects and places, and to learn semantic prior models by
observation of people at such spatial entities.
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