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a) Ground robot with multimodal sensors b) Laser-based reconstruction c) Textured mesh reconstruction (color + geometry)

Fig. 1: a) UGV for high-resolution, georeferenced 3D in-field crop reconstruction with RTK, laser scanners and camera dome.
b) Point cloud created with the laser scanning system. c) Textured mesh reconstructed from the multi-camera system.

Abstract—With the need to feed a growing world population,
the efficiency of crop production is of paramount importance. To
support breeding and field management, various characteristics
of the plant phenotype need to be measured—a time-consuming
process when performed manually. We present a robotic platform
equipped with multiple laser and camera sensors for high-
throughput, high-resolution in-field plant scanning. We create
digital twins of the plants through 3D reconstruction. This allows
the estimation of phenotypic traits such as leaf area, leaf angle,
and plant height. We validate our system on a real field, where
we reconstruct accurate point clouds and meshes of sugar beet,
soybean, and maize.

Index Terms—Field robot, Plant, Phenotyping, Textured Mesh,
Point Cloud, NeRF, Neural Implicit Reconstruction, Kinematic
Laser Scanning, Direct Georeferencing

I. INTRODUCTION

With today’s population growth and adverse climatic con-
ditions, the need for crop monitoring and intervention has
increased. However, manual field management is costly and
laborious, which has encouraged the development of auto-
mated systems. In this article, we present such a system
for high-throughput and high-resolution plant phenotyping.
Phenotyping is the measurement and description of functional
and structural plant traits such as fruit quality, leaf area, and
biomass. These traits are critical for field management (fertil-
ization, irrigation, or weeding) and breeding, where genotypes
with desired traits are selected.

Existing phenotyping methods are diverse and range from
visual observation of the crop to cutting down plants for chem-
ical or structural analysis. In controlled environments such as
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greenhouses, phenotyping facilities have been established to
automate the process. However, in the field, where the plant
is in a natural environment subject to weather conditions and
competition from neighboring plants, the phenotyping process
is still mostly performed manually. Although remote sensing
platforms such as UAVs, airplanes, and satellites are increas-
ingly being used for measurements from higher altitudes, the
limited resolution of their sensors and plant self-occlusion can
cause issues when phenotyping at the leaf and sub-leaf scale.
The ground robot presented in this work enables automated
high-throughput, high-resolution phenotyping in the field. It is
equipped with multiple laser and camera sensors to capture
accurate plant representations. The characteristics of the two
system modalities are complementary: the 3D laser scanner
can capture larger sections of the field in a short time, while the
cameras focus more on individual plants and are suitable for
reconstructing high-resolution color together with geometry.
The acquisition system is precisely georeferenced using Real-
Time Kinematic (RTK) GNSS positioning, allowing it to be
combined with other relevant geospatial information, such
as soil maps, and to revisit individual plants in the field.
Fig. 1 shows the robot and exemplary 3D reconstructions from
both sensing modalities. Both measurement systems provide
a high geometric resolution, resolving plant organs such as
individual leaves and even smaller structures. The laser-based
reconstruction uses two laser-line triangulation sensors whose
profile scans are georeferenced using a factor graph-based
pose optimization technique. The camera-based system uses
the neural implicit method of PermutoSDF [1] to reconstruct
3D geometry and texture from 2D images only. We validate the
presented phenotyping system on the PhenoRob experimental
field. Accurate point clouds and textured meshes of sugar beet,
soybean, and maize were created. In addition, we compare
the laser and camera systems to each other given high-quality
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Fig. 2: a) UGV equipped with a multimodal sensor system for in-field plant phenotyping. b) 20 Nikon Z7 cameras are placed
in a dome-like manner around the UGV’s center. c) Two profile laser scanners capture entire plots while driving at low speed.

ground truth from a static indoor laser scanner. In summary,
our contributions are:

• a ground robot equipped with high-resolution laser sen-
sors, a camera dome, and a georeferencing system,

• methods to address outdoor lighting and localization
challenges,

• demonstration of neural implicit representation recon-
structions on a wide variety of plants imaged in the field,

• comparison between laser scanner and camera system
against ground-truth 3D measurements, and

• experimental validation of the phenotyping system on a
real field.

II. RELATED WORK

Existing field robots can be broadly categorized according
to whether they are designed for intervention, such as weeding
and seeding, or only for inspection and phenotyping. Although
the distinction is not always clear, here we describe and
compare some of the existing solutions.

For autonomous phenotyping, Bonirob [2] is a large four-
wheeled robot with both electric and internal combustion
engines designed for long-term scanning of sugar beet plots. It
is equipped with a 4-channel multispectral JAI camera and an
RGB-D Kinect v2 camera. However, the sensor does not have
the accuracy and resolution required for highly detailed plant
reconstruction. Later, Bonirob was also extended to support
weeding tasks. TerraSentia1 is another robot designed for
phenotyping but on a smaller scale. The robot is small enough
to fit under the canopy and navigate between crop rows. It
captures camera images to the front, sides, and top, as well
as horizontal lidar distance measurements, which are analyzed
offline to estimate multiple plant traits.

In contrast, our system is designed to navigate between rows
and is flexible and high-resolution enough to scan plants from
less than a centimeter to almost a meter high.

Several works exist on robots specialized in field interven-
tion, such as Robotti22, Oz44033, Dino44, and BonnBot-I [3],

1Earthsense: TerraSentia https://www.earthsense.co
2Agrointelli: Robotti https://agrointelli.com
3Naio Technologies: Oz https://www.naio-technologies.com/en/oz
4Naio Technologies: Dino https://www.naio-technologies.com/en/dino

all focusing on weed or pest control. Although they typically
include laser scanners and cameras, the sensors are used to
detect weeds or infected plants and not to reconstruct the
full structure of the crop. They are also limited to observing
smaller and younger plants, which is when weed control is
most important. In contrast to these robots, we focus on high-
resolution and accurate above-canopy 3D crop reconstructions
under field conditions, with a quality that allows modeling and
phenotyping at the plant and plant-organ level.

III. MATERIALS AND METHODS

A. Field Robot

Our field robot extends the Thorvald II platform [4], a
lightweight modular base designed for agricultural purposes.
Thorvald II features an electric 4-wheel drive that can be
adjusted to different track widths and robot sizes. The onboard
computer coordinates the motor wheels and can be remotely
controlled using a Bluetooth-enabled Xbox controller, im-
plemented in an ROS environment. This interface provides
the potential for autonomous driving capabilities and enables
easy communication and integration of the various sensor
systems. We extend the default Thorvald base by an aluminum
enclosure for the sensors of width and length 1.5m×1.5m as
seen in Fig. 2a. Together with the wheels, which are attached to
a suspension module, the robot has a height of about 2m. We
add two additional computers to the platform for the laser and
cameras. Both computers are equipped with multiple USB and
Ethernet ports for easy connection to all the sensors and a large
SSD hard drive for storing the captured data. They also have
ROS interfaces for connecting to and triggering the cameras
and laser. Processing of the data for 3D reconstruction is done
offline, as it usually takes longer than the capturing session.
A foldable table holds a laptop while working in the field
and motorized curtains on the front and rear openings reduce
excessive sunlight inside the robot while capturing plant data.
The robot’s 48 V lithium battery is transformed to the power
needed by our sensor and compute systems.

B. Georeferencing System

For robot navigation and spatio-temporal mapping, we need
a global position accuracy on the order of a single plant, i.e. a
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Fig. 3: UGV georeferencing. a) Antennas for global position-
ing with centimeter accuracy using RTK GNSS. b) Inertial
navigation system with integrated GNSS receiver. c) Factor-
graph-based pose estimation using GNSS and IMU data.

few centimeters. To achieve this, we equip the platform with an
Inertial Navigation System from SBG Systems, which includes
a dual-antenna multi-frequency GNSS receiver and an inertial
measurement unit (IMU) as shown in Fig. 3.

1) RTK GNSS Hardware: Real-time kinematic (RTK)
GNSS positioning with centimeter accuracy requires a 4G
internet connection streaming the necessary data from the
reference station network provider SAPOS NRW. Additionally,
the receiver computes the GNSS baseline between the front
and rear antennas, which provides an absolute estimate of
the UGV’s heading and pitch. We use both the position and
angle observations within the pose estimation as presented in
section III-B2. The MEMS-based industrial-grade IMU shown
in Fig. 3b is installed under the robot’s roof in the back.
It measures in 3D accelerations and angular velocities with
a sampling rate of 100 Hz. The GNSS and IMU data are
streamed to an industrial-grade computer that we also use for
sensor data synchronization with the laser scanning data. We
use the PPS (pulse per second) signal from the GNSS receiver
to assign GPS time stamps to the laser scanner measurements
and link those to the estimated pose data with high precision.

2) Pose Estimation: To compute the poses of the robot
while driving in agricultural fields, a factor-graph-based ap-
proach is used [5]. In the factor graph shown in Fig. 3c, the
parameters of the robot state (position and orientation) are
represented as variable nodes. The factor nodes represent the
non-linear functions of the sensor measurements and parame-
ters of the variable nodes. They consist of the pre-integrated
IMU factor, the GNSS factor, and the GNSS heading-and-
pitch factor. The IMU factor takes into account the sensor
measurements of acceleration and angular velocity by integrat-
ing them, thereby imposing constraints on the robot’s change
of position and orientation. The GNSS factor depends on the
position measurements of the rear antenna and the heading-
and-pitch factor incorporates the global orientation information
of the GNSS receiver. Further variable nodes represent IMU

bias parameters to compensate for its systematic errors. From
the linearization of the factor nodes, a normal equation system
can be established to define a quadratic cost function for
global pose estimation. The iSAM (incremental smoothing and
mapping) algorithm [6] is used to minimize this cost function,
as implemented in the GTSAM5 library. This yields smoothed
robot poses to georeference the sensor data of the robot’s
camera and laser system for crop reconstruction.

C. Laser Scanning System

Typical laser scanners, often used in robotic mapping sys-
tems, do not provide the measurement precision necessary for
detailed 3D reconstruction of single plants and plant organs.
We therefore decided on a 3D sensing technology, which is
often employed for 3D inspection tasks in factory assembly
lines. Here, triangulation-based laser line scanners allow for
capturing sub-millimeter accurate 3D measurements of the
objects as they move through the scanner’s active area. In our
system, we turn this concept around by moving the scanner
with the robot to scan the plants.

1) Laser-line Triangulation Sensors: The kinematic laser
scanning system shown in Fig. 2c consists of two laser
triangulation scanners (LMI Gocator 2490) attached to robot
side panels at a height of 1.2m and a lateral offset of 1.4m,
measuring vertically towards the ground between the wheels.
We use two scanners to reduce occlusions due to the crops
themselves. The scanners are tilted at an angle of about 50 ◦

with respect to the side panels to capture lower plant structures.
The sensors use a red laser (600 nm) diode to project a laser
line into the plot (see Fig. 2c right), which is reflected to
the sensor’s 2D CCD array. Based on the known geometry
between the center of the projector and the lens focusing on the
CCD, the distance for each point along the line is triangulated,
yielding 2D points in the sensor coordinate system. For more
information on the methodology of laser triangulation sensors,
we refer to [7]. The measurement distance ranges from 390 to
2000 mm with a repeatability of 12 µm. Each laser line consists
of 1920 points, resulting in point-to-point distances along the
laser line of about 0.5mm at a depth of 1m. Important sensor
settings are the exposure time ∆t and the scan rate r. The
exposure time needs to be adjusted to obtain proper reflections
from the crop surfaces without over-exposure. The scan rate,
together with the driving speed, determines the line distances
along the driving direction. An exposure time of 1200 µs and
a scan rate of 200 Hz show reliable scans of crop structures in
terms of spatial resolution and reflectivity. At a robot speed of
10 cm/s and a scan rate of 200 Hz the line spacing is 0.5 mm.

2) Kinematic Laser Scanning: For 3D crop point cloud
creation, we georeference the 2D laser line measurements
from the scanners using the globally optimized robot poses,
estimated by the georeferencing system. This kinematic laser
scanning pipeline is shown in Fig. 4 with the corresponding
equation (1). The line distance measurements of the laser
triangulation scanner are given in the sensor coordinate frame
(s), only populating the XZ-plane (Fig. 4a). In the first step,
the measurements are transformed into the body frame (b) of

5GTSAM: Factor graphs for Sensor Fusion in Robotics https://gtsam.org
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Fig. 4: Kinematic laser scanning pipeline for 3D point cloud
creation. a) 2D laser lines given in the sensor frame. b) Robot
poses known from factor graph optimization. c) Generated 3D
point cloud. See eq. 1.

the robot, which coincides with the IMU sensor frame, by
applying the system calibration parameters. These parameters
describe the orientation Rb

s and translation [∆x,∆y,∆z]
between the scanners and the body frame. They have been es-
timated using a plane-based calibration approach, as described
in [8]. xg
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The robot poses (Fig. 4b), describe the position [px, py, pz]
and orientation Rg

b of the robot with respect to the global
coordinate system g. Since the poses are needed at the exact
times of the laser scan measurements, we accurately tag the
time of the laser scans in the same time frame as the poses and
then performed a cubic interpolation of the poses with respect
to the laser time. The application of this direct georeferencing
procedure to the left and the right scanner data leads to the
creation of a globally consistent point cloud, as seen in Fig. 4c.
For more details on the georeferencing of 2D laser scanner
measurements, we refer to [9].

D. Color Camera System

To capture individual plants in the center of plots from
all sides, the UGV has been equipped with a dome of high-
resolution color cameras.

1) Camera Hardware: We use 20 Nikon Z7 cameras ar-
ranged around the center of the UGV, as shown in Fig. 2b.
We use the variable focal length Nikkor Z 24-70mm lens and
capture images at a resolution of 8256×5504 pixels. The zoom
of each camera is manually adjusted depending on the growth
stage of the plant to maximize the effective resolution on the
plant, which is in the range of 10-30 pixels/mm. The cameras
are attached to the robot frame with adjustable mounts for fast
on-field modifications. We distribute the cameras on a hemi-
sphere of approximately 1.5 m radius. We also experimented
with placing the cameras in stereo pairs with short baselines
but found that a roughly uniform distribution works better
for plant reconstruction as it minimizes possible occlusions
or under-constrained areas. Diffuse lighting is provided by
multiple LED panels mounted in the robot’s enclosure.

2) Camera Triggering: All cameras are connected to an
onboard PC via USB. We interface with the cameras using

the libgphoto2 library6 which allows to trigger all cameras
synchronously. Various parameters such as aperture, ISO,
and shutter speed can be controlled. This interface is made
available to ROS. Before triggering the cameras, we send a
signal to focus all cameras on a central patch of the image
where we expect the plant of interest to be. After focusing,
we send a capture signal to all cameras in parallel such that the
images captured are as time-synchronized as possible. In our
experiments, we observed that the maximum delay between
camera captures is below 33ms which is precise enough for
our use case, as the UGV is stationary during image capture.
We store both JPEG and RAW formats to allow for flexible
post-processing.

3) Camera Auto-exposure and Calibration: During in-field
capture, we want to ensure that all cameras have the same
ISO, aperture, and shutter speed to obtain consistent exposures.
However, it is impossible to use fixed parameters because
the lighting conditions in the field are constantly changing
due to the weather and passing clouds. To address this issue,
we developed a method for multi-camera auto-exposure. At
a frequency of 5 Hz, all cameras capture a low-resolution
800×600 image which is transferred to the onboard PC. Using
all 20 images, we compute a gray-scale histogram of eight
bins. We are interested in reducing the number of pixels that
saturate to either too dark values (gathered in the first bin of
the histogram) or too bright values (last bin), thus ensuring
that the image is correctly exposed with most of the values
falling within the measurable range of the camera. For this,
we start with initial values for ISO, aperture, and shutter speed
and also define reasonable minimum and maximum values for
them. We follow a simple but robust algorithm to modify the
camera parameters:

1) While the first and last bin of the histogram are not
sufficiently equal, we increase or decrease the ISO of
all cameras by 100 such that their values are brought
closer together.

2) If we reach the acceptable ISO limit, we switch to
modifying the aperture of all cameras by adjusting the
F-stop.

3) If we reach the acceptable F-stop limit, we are left with
modifying the shutter speed in increments of 5 ms until
the image becomes correctly exposed.

We choose this priority list based on the expected effect
of each parameter on the final image. Increasing the ISO
can cause noise grain in the images. However, this can be
alleviated since we are fusing information from multiple
cameras. Therefore changing the ISO will have the highest
priority since it’s the easiest effect to correct. Increasing the
aperture of the camera can result in a shallow depth of field
and a blurred background. However, since the plant in the
center of the image is expected to stay mostly sharp, the
final reconstruction is usually unaffected by the depth of field.
Lastly, increasing the shutter speed can cause severe motion-
blurring artifacts which are difficult to correct. Therefore, we
place this parameter last in our list of priorities and increase
it only if the other two parameters fail to achieve a correct

6H. U. Niedermann and H. Figuière: GPhoto2 http://www.gphoto.org
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exposure. We initialize all cameras with an ISO of 400, an
f/14 aperture, and 10ms shutter speed and let our algorithm
dynamically modify them based on the weather conditions. To
obtain the camera poses, it is not sufficient to rely on offline
calibration methods as the robot is non-rigid and deforms
while driving, causing the relative camera poses to change.
To address this issue, we estimate the camera poses using
Colmap [10] after each multi-view image capture. We initialize
the camera poses with a reasonable prior for the location and
orientation and perform bundle adjustment to estimate both
intrinsic and extrinsic parameters.

4) Image Capture GUI: During robot operation in the field,
it is often necessary to inspect the captured images and to
manually trigger the cameras. For this, we use the Foxglove
GUI7. Foxglove enables us to remotely connect to the onboard
PC to visualize selected ROS topics. We show in real time the
captured low-resolution 800×600 images from all cameras.
Foxglove can be used either as a standalone app or as a web
application which extends its usage to environments that don’t
have a ROS installation.

5) 3D Plant Reconstruction using Neural Implicit Surfaces:
For the 3D reconstruction of plants given multiple 2D RGB
images from different viewpoints, we take inspiration from
recent neural implicit models [1], [11]–[13]. This family of
models represents a 3D scene with a neural network that
encodes both color and geometry. While the color is modeled
as a function of position and viewing direction, geometry
is modeled as either a signed-distance function (SDF) or
an occupancy field. The neural networks are trained using
volumetric rendering so that the renderings match the captured
images as closely as possible. We rely on neural implicit
models for reconstructing plants due to their ability to recover
very fine detail and complete geometry even in occluded areas.
We choose the recent PermutoSDF [1] model which optimizes
an SDF and a color field using local features embedded
in a permutohedral lattice. Fig. 5 gives an overview of the
PermutoSDF pipeline. We refer to Rosu and Behnke [1] for
more details. While PermutoSDF obtains accurate models,
visualizing them requires performing volumetric rendering or
sphere tracing. This is both expensive and requires special-
ized software solutions. To address this issue, we extract
a textured mesh from the trained PermutoSDF model that
can be visualized in any 3D package. For our visualizations,
we use EasyPBR [14]. To obtain the mesh, we first run
Marching Cubes [15] on the reconstructed signed-distance
field. Secondly, we decimate the mesh to 300 k faces using
QSlim [16] to reduce triangle density without sacrificing
geometric quality. We rely on texture mapping to obtain high-
resolution color. For this, the mesh is UV-unwrapped using the
automatic unwrapping tool from Blender8 which establishes a
UV-parameterization. We use a 4000×4000 RGB texture on
the mesh and set each texel to the average color of all cameras
that have an unobstructed view of the texel:

xi =

20∑
j=1

vji · Ij(Pj(ui)) (2)

7Foxglove Technologies Inc.: Foxglove https://foxglove.dev
8Blender Organization: Blender https://www.blender.org

Fig. 5: 3D plant reconstruction from multiple 2D RGB images
through volumetric rendering. We follow the approach of
PermutoSDF [1] and shoot rays through every pixel of the 20
cameras (a). 3D point samples on the ray are passed through
a neural network (b) to output both geometries as a signed-
distance function (SDF) and a color field (c). The network is
trained so that the resulting rendered images match the given
captured images.
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Fig. 6: Image-based 3D reconstruction over multiple days.
The same plant is captured over the course of nine days and
textured meshes are reconstructed for each individual day. The
computed plant height is shown over time and the predicted
RGB and depth from the PermutoSDF network are shown for
three days.

where xi is the value of i-th texel, P projects a texel position
ui into the j-th camera coordinate system, Ij represents the j-
th camera image, and vji is a binary visibility indicator that is 1
if texel i is visible in camera j and 0 otherwise. Reconstructing
plants using PermutoSDF is done offline on a computer with
an RTX 3090 GPU and takes approximately 30 minutes per
plant, followed by 10 minutes for mesh extraction and texture
creation. We note that PermutoSDF can also run on less
powerful GPUs by slightly downsampling the images.
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UAV image UAV+mesh Textured mesh

Fig. 7: Georeferencing of the 3D textured meshes reconstructed from multi-camera images. Our field robot globally localizes
with RTK while capturing images. This allows us to embed our highly detailed single-plant reconstructions into an ortho
mosaic map captured by a UAV.

IV. DATASETS AND EXPERIMENTS

We performed several experiments to validate the proposed
plant phenotyping methods. They include field experiments
with both laser-based and camera-based captures of plots and
individual plants, respectively. We extract phenotypic traits
from the 3D reconstructions and compare the precision and
completeness of the 3D reconstructions from the cameras and
the laser scanners.

A. In-field Image Capture and Laser Scanning

Field experiments were performed on the PhenoRob Central
Experiment field at Campus Klein-Altendorf in Germany
which features various crops and species that allow for a wide
variety of phenotypic traits to be captured. We focused on
measuring sugar beet, maize, and soybean and acquired laser
and image data with our robot platform for a total of 14 days
spanning from May 13 until August 2nd, 2022. This covers
the bulk of the vegetation period, from the initial sprouting
of the plants until the plants became too large to fit inside
the robot. With the multi-camera system, we captured images
from approximately 30 plants from each species. This resulted
in a dataset of ≈ 2.3TB consisting of 24 046 images. With the
laser system, we captured a large dataset on August 2nd, 2022
including scans of multiple crops rows of sugar beet, soybean,
and wheat leading to ≈ 100GB high-resolution point cloud
data. In terms of the time taken to measure and reconstruct
3D using the laser system, we need about 30 s to collect data
from one plot (1.5 m × 3 m) and a few minutes to post-process
and create the point cloud on a standard office computer at a
driving speed of 10 cm / s and a scanner rate of 200 Hz. For
the camera system, we stop on top of each plot to trigger the
cameras which takes about 2 s followed by a copy to disk
which is done in the background. We then reconstruct the
scene using the 20 images on a computer with an RTX 3090
which takes about 30 min. In addition to the images and laser
scan data, we also recorded the position and orientation of the
robot’s georeferencing system which enables us to embed our
reconstructions within other datasets that were captured in the
same field, as shown in Fig. 7 and Fig. 8.

B. 3D Reconstructions of Individual Plants and Plots

Fig. 7 and Fig. 8 show camera-based and laser-based 3D
reconstructions of plants in the field, respectively. Both types

of reconstructions are overlaid with UAV images, highlighting
the highly accurate georeferencing. The camera-based recon-
structions provide detailed textured meshes of the measured
individual plants. The output of the laser scanning system is a
high-resolution 3D point cloud of entire plots. In the soybean
and sugar beet plots, single leaves are visible. Within the wheat
plot, even the ears and the stems are recognizable.

Fig. 6 shows image-based reconstructions of the same
soybean plant over multiple days and its estimated height.
Analyzing plant growth is needed for growth models and
allows to identify potential plant stressors that can stunt
growth. Therefore, 4D (3D space + time) reconstruction is
of great interest to breeders and plant scientists. Structural
analysis and tracking of plant organs such as [17] registers the
plant temporally and provides insight into how the structure
of the plant changes as it grows.

C. Precision and Completeness

To analyze the reconstruction quality of the two approaches
in terms of precision and completeness, we generate 3D
reference point clouds of two distinct plants using a high-
precision scanning system in a lab. We capture and scan the
same plants using cameras and laser sensors of the robot
system in an outdoor environment, mimicking the in-field
situation, and compare the reconstruction results with the lab
reference. Fig. 9b shows the lab scanner. It consists of a
measuring arm and a laser triangulation sensor commonly
used in industrial applications. The sensor poses are calculated
from joint encoder measurements by forward kinematics and
used to reference the laser measurements to create a high-
resolution 3D reference point cloud with a point accuracy
below 1 mm. This measurement system was used to create
the popular Pheno4D dataset [18].

For this experiment, we chose two semi-rigid plants to
minimize plant movements while scanning and between the
scans enabling a proper comparison of the reconstructions.
Fig. 9c shows the chosen Hen-and-chick (Echeveria Pelusida)
and the Lamb’s tail (Chiastophyllum oppositifolium) plants.

We obtain 3D textured meshes from the captured images
and 3D point clouds from the laser measurements. We call the
standard deviation of the distances between the reconstructed
mesh or point cloud and the reference point cloud ’precision’
and provide it as a measure of the reconstruction quality. In
the absence of georeferencing information about the reference

HTTP://DX.DOI.ORG/10.1109/MRA.2023.3321402


IEEE ROBOTICS & AUTOMATION MAGAZINE, VOL. 30, NO. 4, PP. 20-29, DECEMBER 2023. DOI: 10.1109/MRA.2023.3321402 7

Fig. 8: Point clouds created with the laser scanning system of the robot while driving in the field. a)-c) Soybean, wheat, and
sugar beet in the UAV image of the field (left), on plot level (middle), and single plant level (right).

Fig. 9: Measurements for precision and completeness analysis.
a) Plants 1 and 2 are captured with the robot’s camera and laser
system. b) Reference capture using a precise scanning system
in the lab. c) Plant 1: Hen-and-chick (Echeveria Pelusida),
Plant 2: Lamb’s tail (Chiastophyllum oppositifolium).

cloud, we first register the reconstruction results with the
reference using the ICP (iterative closest point) algorithm.
We then calculate the distances using the multi-scale model-
to-model (M3C2) algorithm [19]. M3C2 uses the surface
normal vectors of the reference point cloud to build point
correspondences at averaged core points and computes signed
distances between the point clouds. For detailed information
on the M3C2 method, see [19]. For Plant 2, we additionally
extract leaves and perform an ICP fine registration for each

of the five leaves individually. The standard deviation of the
M3C2 distances is used as a value for the reconstruction
precision of the robot’s two 3D capturing systems. To evaluate
the completeness of the reconstruction, we compare the leaf
area of the reconstruction with the ground truth. To obtain
the ground truth leaf area, we use the reference point cloud
and perform surface reconstruction using the ball-pivoting
algorithm [20] which generates a 3D triangle mesh. The areas
of all triangles are summed up to estimate the total leaf
area. Since the output of the robot’s laser scanning system
is also a point cloud, we repeat this pipeline for these scans
as well. We compute the differences in leaf area for the
laser and camera systems relative to the ground truth. Fig. 10
shows the distribution of the M3C2 distances of the laser-
and the camera-based reconstruction for the two plants and
one example leaf of the Lamb’s tail plant. We observe that
the reconstruction from the camera system exhibits a long
tail distribution compared to the laser which is more peaked
around zero and therefore more precise. The precision of the
single leaf reconstruction on the right-hand side of figure
Fig. 10 is in general better due to the separate leaf-level fine
registration before the comparison, since the sugar beet leaf
comparison includes an additional fine ICP registration the
deviations from the reference are smaller. Tab. I reports
the reconstruction precision and the leaf area differences to
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Fig. 10: M3C2 comparison between the reference measuring arm scan and the 3D reconstructions of the camera and laser
system for the two plants of Fig. 9a. a), b) M3C2 distances and their histograms of Plant 1 and Plant 2 for laser and camera
system. c) M3C2 distances and histograms for an example leaf of Plant 2.

TABLE I: Mean M3C2 distances and leaf areas compared to
the reference scans for the Lamb ’s tail plant. The means of
the leaf area comparisons in the last row are average absolute
percent differences (see Fig. 9c).

σM3C2 [mm] Differences of Leaf Area
Leaf Laser Camera Laser [%] Camera [%] Ref. [cm2]

1 0.48 0.55 -3.3% 4.1% 23.78
2 0.18 0.33 -6.2% 7.8% 8.65
3 0.32 0.35 1.73% -3.6% 9.38
4 0.22 0.67 -6.3% -1.2% 13.18
5 0.17 0.24 -14.9% -2.4% 8.54

mean 0.27 0.43 6.5% 1.9%

the reference scans for five example leaves of Plant 2. The
precision of the laser system ranges from 0.17 mm (Leaf 5) up
to 0.48 mm (Leaf 1) with a mean of 0.27 mm. In comparison,
the precision of the image-based reconstruction ranges from
0.24 mm (Leaf 3) to 0.55 mm (Leaf 1) and a mean of 0.43 mm.
The comparison w.r.t. leaf areas are shown in the right part
of Tab. I. The leaf areas estimated from the laser scans deviate
from the reference from -14.9% (Leaf 5) to 1.73% (Leaf 3)
with an overall absolute mean difference of the leaves of 6.5%.
The camera system shows leaf area differences between -
3.6% (Leaf 3) and 7.8% (Leaf 2) and an absolute average
difference to the reference of 1.9%. We observe that the laser
system tends to underestimate the leaf area more than the
camera system. This is mostly because the point cloud from
the laser scanning system can contain holes caused by self-
occlusion by the plant itself. In contrast, the camera system
uses more viewing angles for the reconstruction, resulting
in more complete plant structures. The advantage of the
camera system is that it provides a textured mesh with a
high-resolution color texture, whereas the laser provides only
3D information and laser intensity. The results show that the

laser reconstructions are more accurate but less complete than
the camera system. However, the camera system struggles to
recover detail in reflective areas such as raindrops on the plant
while the laser has problems with bright sunlight conditions
and wind-induced plant movement during the scans. The two
systems therefore complement each other and have different
advantages and limitations.

V. SUMMARY AND OUTLOOK

We presented a ground robot for in-field phenotyping. We
developed an integrated system equipped with laser scanners,
cameras, and accurate pose estimation capable of reconstruct-
ing 3D models of crops in the field with high throughput,
resolution, and precision. Using the reconstructed plants over
multiple days of field acquisition, we show that it is possible to
obtain georeferenced 3D models that offer enough resolution
to reconstruct single plants and plant organs to derive pheno-
typic traits such as leaf area, leaf angles, and plant height. We
believe that our system can help automate various phenotyping
tasks that currently require significant manual work in the field.
In the future, we plan to extend our methods by recovering
structural plant models, performing automated point cloud
segmentation for crop organ detection, and registering plants
over time for a better understanding of the growth processes.
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